TUTORIAL 5

This tutorial contains **bonus** questions. Those question should be worked on **if and only if** the rest of the sheet has been completed.

1 BPP

Definition 1.1. Let $F : \{0,1\}^* \mapsto \{0,1\}$. F is said to be in **BPP** if there exist a polynomial time algorithm such that on input 1^n outputs a classical circuit C_n with input $x \in \{0,1\}^n$, $r \in \{0,1\}^{p(n)}$ for p(n) a polynomial, such that for all n > 0, $x \in \{0,1\}^n$, $\Pr_r(C_n(x,r) = F(x)) \ge 2/3$, where the probability is taken over the uniform choice of r.

You can think as C_n as a probabilistic algorithm making a polynomial number of bit flips, the first bitflip outcome being r_1 , the second outcome is r_2 , etc...

You can freely use the following proposition:

Proposition 1.2 (Chernoff Bound). Let X_1, \ldots, X_n iid random variables with values in $\{0, 1\}$. Let $Z = X_1 + \ldots + X_n$ and let $\mu = E(Z)$, then for any $1 > \delta > 0$,

$$\Pr(|Z - \mu| > \delta\mu) < 2 \cdot \exp\left(-\delta^2 \mu/3\right)$$

- 1. Propose a problem solved more efficiently with bounded error than with zero error. *Hint: think about the previous tutorials...*
- 2. Show that $\mathbf{P} \subseteq \mathbf{BPP}$.
- 3. Let **BPP'** be defined as **BPP**, with $Pr(C_n(x, r) = F(x)) \ge 1 e^{-n^c}$ for c > 0 and n the size of the input, instead of $Pr(C_n(x, r) = F(x)) \ge 2/3$. Show that **BPP'** = **BPP**.
- 4. Does the same proof works for $1 e^{-2^n}$? Why?
- 5. (Bonus, Hard) Let \mathbf{P}/\mathbf{poly} be the set of functions $F : \{0,1\}^* \to \{0,1\}$ such that for any n > 0there exists a classical circuit C_n of polynomial size in n with input $x \in \{0,1\}^n$ such that for all $x \in \{0,1\}^n, C_n(x) = F(x)$. What is the difference between \mathbf{P}/\mathbf{poly} and \mathbf{BPP} ? Show that there exists undecidable functions in \mathbf{P}/\mathbf{poly} .

2 BQP

Definition 2.1. Let $F : \{0,1\}^* \mapsto \{0,1\}$. F is said to be in **BQP** if there exist a polynomial time algorithm A such that on input 1^n outputs a quantum circuit C_n composed of a polynomial number of gates in the set $\{H, K, K^{-1}, CNOT, TOFFOLI\}$, operating on a polynomial number of qubits, such that for all $x \in \{0,1\}^n$, the probability of obtaining F(x) by measuring the first qubit of $C_n \cdot |x\rangle |0^l\rangle$ is $\geq 2/3$.

1. Prove that **BPP** \subseteq **BQP**.

- 2. Let **EXP** be the set of functions that can be computed in exponential time in the size of their input. We are going to prove that **BQP** \subseteq **EXP**.
 - (a) Propose a way to represent a quantum state of n qubits in memory, what amount of memory will you need to represent states during the execution of a circuit of l gates in the set $\{H, K, K^{-1}, CNOT, TOFFOLI\}$?
 - (b) Propose an algorithm simulating a quantum circuit, gives its complexity in time and memory. Conclude.
- 3. Let **PSPACE** be the set of functions that can be computed with polynomial memory (but *a priori* unbounded time). We are going to prove that **BQP** \subseteq **PSPACE**.
 - (a) Show that **PSPACE** \subseteq **EXP**.
 - (b) Let C be a circuit of size m operating on n qubits composed of gates g₁, g₂,..., g_m. We are going to visualize the evolution of a quantum state in C in the following way: The history tree is a complete 2ⁿ-regular tree of depth m + 1. Its root is labeled |x⟩ where x ∈ {0,1}ⁿ is the input of the circuit, and each of the other node are labeled with |y⟩ for y ∈ {0,1}ⁿ (see Figure 2).

The weight of the edge $|i\rangle \rightarrow |j\rangle$ at level p is defined to be the amplitude of $|j\rangle$ after applying g_p to $|i\rangle$.

- i. Write the history tree of the circuit consisting of H on input $|0\rangle$. Of the circuit CNOT on input $|11\rangle$.
- ii. Write the weight of the edge $|i\rangle \rightarrow |j\rangle$ at level p as a function of i, j and g_p .
- iii. Let $x \to u_1 \to \cdots \to u_m$ be a path in the history tree. The weight of this path is the product of the weights of its edges. Show that the weight of a path can be computed in polynomial time and space, given the circuit description and a path.
- iv. Let $y \in \{0, 1\}^n$. Compute the probability of outputting $|y\rangle$ when measuring $C \cdot |x\rangle$ in terms of the weights of the paths starting with $|x\rangle$ and ending with $|y\rangle$ in the history tree.
- v. Conclude that the probability of C to output 0 on input $|x\rangle$ can be computed with a **PSPACE** algorithm.

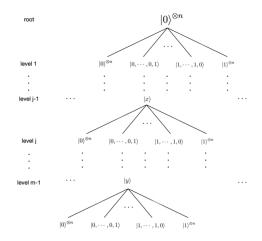


Figure 1: History tree of root $|0^n\rangle.$ Source: https://en.wikipedia.org/wiki/File:Sum_of_histories_tree.png