1 Minimum of a List

You have a set of N numbers (N can be written on n bits) x_0, \ldots, x_{N-1} than can be encoded on b bits and an access to a gate $U_x |y⟩|i⟩|y⟩ → |y⟩|y⟩ ⊕ x_i⟩$. We denote $[N] = \{0, \ldots, N-1\}$.

In the following, we are going to use the "unknown target" version of Grover algorithm: UNK-GROVER. This is a version of Grover that finds a marked element in a list of N elements, and makes $O(\sqrt{N/r})$ queries to the elements of the list where r is the (unknown) number of marked elements. UNK-GROVER succeeds with probability $\geq 2/3$ (that we can amplify).

1. Let $i \in [N]$. Explain how to adapt UNK-GROVER to find $j \in [N]$ such that $x_j < x_i$ if it exists.

How many queries to U_x does your algorithm makes?

2. We are going to study the following algorithm:

Algorithm 1 Find-Min

\begin{verbatim}
 i ← U([N])
 while 1 do
 Find j such that x_j < x_i with UNK-GROVER.
 If it is impossible, return i.
 Else, i ← j.
 end while
\end{verbatim}

(a) How many calls to U_x makes algorithm in the worst case?

(b) Show that if x_j is the element of rank r, the probability that j is picked from the algorithm at some point is $1/r$. Hint: induction on N.

(c) Compute an upper bound on the expected number of queries to U_x made by algorithm

(d) Conclude by proposing a quantum algorithm doing $O(\sqrt{N})$ calls to U_x that find a minimum in the x_i with probability $\geq 2/3$. Hint: Markov.

2 QMA, quantum generalization of NP

We consider the following complexity class: we say that a promise problem $L = (L_{YES}, L_{NO})$ is in the class QMA if there exist a polynomial-time classical algorithm C such that $C(x)$ is a quantum circuit realizing U_x, such that it satisfies the two following properties:

- **Completeness**: $x \in L_{YES} \Rightarrow \exists |ψ⟩$ such that measuring the first qubit of $U_x|ψ⟩ \otimes |0⟩$ gives 1 with probality $\geq 2/3$
- **Soundness**: $x \in L_{NO} \Rightarrow \forall |ψ⟩$, measuring the first qubit of $U_x|ψ⟩ \otimes |0⟩$ gives 1 with probality $\leq 1/3$

1. Show that $\text{NP} \subseteq \text{QMA}$.

2. Show that $\text{BQP} \subseteq \text{QMA}$.
3. Call $\text{QMA}[c(n), s(n)]$ the variant of QMA where the completeness error $\frac{2}{3}$ is replaced by $c(n)$ and the soundness error $\frac{1}{3}$ is replaced by $s(n)$. Can you prove that $\text{QMA} = \text{QMA}[c(n), s(n)]$ with $c(n) - s(n) \geq \frac{1}{p(n)}$ for a positive polynomial p? We will nonetheless assume this result for this exercise.

4. Recall that the k-LOCAL HAMILTONIAN problem takes as input the description of $H = \sum_{j=1}^{r} H_j S_j$ acting on $(\mathbb{C}^2)^{\otimes n}$, with H_j k-local and $\text{sp}(H_j) \subseteq \{0, 1\}$ (so H_j is a projector), and parameters $0 < a < b$ with $b - a \geq \frac{1}{\text{poly}(n)}$. The goal is to output 1 if $\lambda_{\min}(H) \leq a$ and 0 if $\lambda_{\min}(H) \geq b$. We want to show that k-LOCAL HAMILTONIAN is in QMA. We consider the following quantum algorithm:

- Sample j uniformly in $\{1, \ldots, r\}$.
- We can decompose $H_j = \sum_{i=1}^{n_j} |b_i^j\rangle \langle b_i^j|$, with $(|b_i^j\rangle)_{i \in [n]}$ basis of $(\mathbb{C}^2)^{\otimes n}$. Apply the change of basis V_j such that $V_j^\dagger = (|b_i^j\rangle)_{i \in [n]}$, measure in the standard basis. If the output $i \not\in [n_j]$, then output 1; else output 0.

(a) Justify why we can construct such a quantum algorithm with a polynomial-size quantum circuit using ancillas and measuring only its first output.

(b) On input $|\eta\rangle$, first compute the probability that given j, you get 1. Then prove that the global probability of getting 1 is $1 - \frac{\langle \eta | H | \eta \rangle}{r}$.

(c) Find a lower bound on the probability of outputting 1 in the completeness part of QMA for the k-LOCAL HAMILTONIAN using the certificate $|\eta\rangle$, where $|\eta\rangle$ is an eigenvector of H for eigenvalue $\lambda_{\min}(H)$, under the hypothesis that $\lambda_{\min}(H) \leq a$.

(d) Find an upper bound on the probability of outputting 1 in the soundness part of QMA for the k-LOCAL HAMILTONIAN under the hypothesis that $\lambda_{\min}(H) \geq b$.

(e) Conclude.

Remark. The k-LOCAL HAMILTONIAN is in fact QMA-complete for $k \geq 2$. \qed

3 Matrix Exponentials

1. Compute $\exp(iX)$, $\exp(iZ)$, $\exp(iX) \cdot \exp(iZ)$, $\exp(i(X + Z))$.

2. Tail-cut of the matrix exponential. Assume that A is a matrix of norm ≤ 1. Let $0 < \varepsilon < 0.99$ and $t > 0$. Show that there exists a constant $c > 0$ independant of A, ε and t such that:

$$\left| \sum_{k=0}^{c(t+\log(1/\varepsilon))} \frac{(itA)^{k}}{k!} - \exp(itA) \right| < \varepsilon.$$

You can use freely that $k! \leq \left(\frac{e}{k}\right)^{k}$.

3. What tail-cut bound do you have to take if $\|A\| \leq 1$ is not supposed anymore?