ALGO1 2022-2023

DM 1

À rendre le 8 novembre en TD.

- Exercice 1 - Découpage électoral. Le parti des programmeurs dynamiques (PPD) se présente aux élections sur deux circonscriptions qui regroupent à elles deux un total de n zones (avec n pair). Chaque zone a m électeurs. Le nombre de voix du PPD dans une zone $i \in [n]$ (on note $[n] := \{1, \ldots, n\}$) est estimé à v_i , avec $0 \le v_i \le m$. Le PPD peut choisir à sa guise le regroupement des zones en deux circonscriptions de tailles égales. Un découpage gagnant est une partition de [n] en deux parties sur lesquelles le PPD à la majorité absolue.

Précisément, c'est une partie $I\subseteq [n]$ de taille n/2 telle que $\sum_{i\in I}v_i>m.n/4$ et $\sum_{i\in [n]\setminus I}v_i>m.n/4$.

Par exemple pour n=4 et m=100, si les estimations de vote sont 46,60,55,44, un découpage gagnant est 46+55 et 60+44 (regroupant donc les zones 1 et 3 et les zones 2 et 4).

- 1. Proposer une instance ayant 6 zones telle qu'il existe un unique découpage gagnant (on choisira ici m=100).
- 2. Proposer un algorithme en $O(n^3m)$ qui calcule tous les nombres possibles de voix des sous-ensembles de n/2 zones.
- 3. Comment décider s'il existe un découpage gagnant en temps polynomial?
- Exercice 2 Indépendant. On se donne un graphe G=(V,E) ainsi qu'une fonction de poids ω positive définie sur les arêtes. Un sous-ensemble d'arêtes F est indépendant si chaque composante connexe de F possède au plus un cycle (i.e. est un arbre ou un arbre plus une arête).
 - 1. Montrer que si G a n sommets, alors un indépendant a au plus n arêtes.
 - 2. Soit F un indépendant. On dit qu'un sommet $v \in V$ est saturé dans F s'il appartient à une composante de F qui possède un cycle. Montrer que si e est une arête de $E \setminus F$ qui ne relie pas deux sommets saturés, alors $F \cup \{e\}$ est indépendant.
 - 3. Montrer que l'ensemble des indépendants forme un matroide.
 - 4. Proposer un algorithme qui calcule un indépendant de poids maximum (on indiquera surtout comment les composantes connexes sont mises à jour).
- Exercice 3 Arbre binaire. On se donne un arbre binaire A de racine r ayant n noeuds tel que chaque noeud i (interne ou feuille) possède une valeur $v_i > 0$. On note p la hauteur de A, c'est à dire la distance maximale de la racine à une feuille. Pour les problèmes suivants, décrire un algorithme de résolution aussi performant que possible, montrer sa validité, et calculer sa complexité.
 - 1. Calculer un sous-ensemble X de noeuds de valeur totale maximale sans relation de parenté directe (i.e. pour toute paire de noeuds x, y de X le parent de y n'est pas x).

ALGO1 2022-2023

2. Calculer un sous-ensemble X de noeuds de valeur totale maximale sans relation de descendance directe (i.e. tout chemin de la racine à une feuille contient au plus un élément de X).

- 3. Calculer un minimum local de A (dont la valeur est inférieure ou égale à celles de son enfant gauche, son enfant droit, et de son parent, si applicable).
- 4. (Bonus) Calculer un minimum local dans la grille $n \times n$ en temps O(n).
- Exercice 4 Rendu de la monnaie. On considère le problème du rendu de la monnaie. Étant donne une somme à rendre $S \in \mathbb{N}$ et un système monétaire $P := \{p_1 > p_2 > \ldots > p_n\}$ avec $\forall i \in [n], p_i \in \mathbb{N}$ et $p_n := 1$, on cherche à minimiser le nombre de pièces pour rendre la somme S en utilisant autant de fois que l'on souhaite chaque pièce. Formellement, cela revient à minimiser $\sum_{i=1}^n \lambda_i$ sous la contrainte $\sum_{i=1}^n \lambda_i p_i = S$ et $\forall i \in [n], \lambda_i \in \mathbb{N}$. On appellera $N_P(S)$ ce minimum.
 - 1. Calculer $N_P(S)$ à la main pour :
 - (a) S = 9 et $P = \{5, 2, 1\}$.
 - (b) S = 6 et $P = \{4, 3, 1\}$.
 - 2. Exprimer $N_P(S)$ en fonction des $N_P(S-p_i)$. En déduire un algorithme de programmation dynamique qui résoud le problème en temps O(Sn).

L'algorithme précédent est malheureusement seulement pseudo-polynomial, car l'entier S, codé en binaire, est de taille $\log(S)$. L'objectif à présent est de trouver une solution polynomiale en n et la taille de S (la taille des p_i étant bornée) dans certains cas. Nous allons nous intéresser à l'approche gloutonne qui consiste à prendre la plus grande pièce tant que c'est possible.

- 1. Prouver que si $\{\lambda_i^G\}_{i\in[m]}$ est la solution donnée par l'algorithme glouton, alors $\forall i\in[n-1], \lambda_{i+1}^G<\frac{p_i}{p_{i+1}}$.
- 2. Pour les systèmes monétaires P suivants, prouver que l'algorithme glouton est correct ou exhiber un contre-exemple S (les méthodes numériques pour trouver un tel contre-exemple sont autorisées):
 - (a) $P = \{5, 2, 1\}.$
 - (b) $P = \{2^{m-i}\}_{i \in [m]}$
 - (c) $P = \{200, 149, 33, 1\}.$
 - (d) (Bonus) $P = \{F_{m-i+1}\}_{i \in [m]}$ pour $F_1 = 1, F_2 = 2, F_{k+2} = F_{k+1} + F_k$.
- 3. On appelle les systèmes monétaires pour lesquels l'algorithme glouton est correct des systèmes canoniques. Prouver que si P n'est pas canonique, alors il existe un contre-exemple S de taille inférieure à $p_1 \sum_{i=2}^{n} p_i$.
- 4. Conclure: donner un algorithme en temps polynomial en n et $\log(S)$ (la taille des p_i étant bornée par une constante C) qui vérifie que le système monétaire P est canonique et qui, le cas échéant, résoud le problème du rendu de la monnaie sur S.