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1 Assignment 9

Recall Shor’s code that was defined in the lecture:

|0̄〉 =
1

2
√

2

(
|03〉+ |13〉

)⊗3
,

|1̄〉 =
1

2
√

2

(
|03〉 − |13〉

)⊗3
.

Show that this code cannot correct arbitrary acting on two qubits.

2 Exam from last year

Problem 1 (Basic calculations). 1. Consider the following circuit

|0〉 H •

|0〉

(a) Compute the two-qubit state |ψ〉A1A2 after applying this circuit. Here A1 denotes the top wire and A2 the
bottom wire.

(b) Compute the density matrix of the state on A1, i.e., the partial trace over A2 of the density operator
|ψ〉〈ψ|A1A2 that we denote trA2 (|ψ〉〈ψ|A1A2).

2. Recall that Z =

(
1 0
0 −1

)
and the controlled version CZ is defined by CZ(|0〉 ⊗ |ψ〉) = |0〉 ⊗ |ψ〉 and

CZ(|1〉 ⊗ |ψ〉) = |1〉 ⊗ (Z|ψ〉). In circuit diagrams, CZ is denoted by a black dot on the control qubit
connected with a Z gate for the target qubit. Compute the unitary defined by the following circuit:

• Z

Z •

3. Let U be the unitary on three qubits computed by the following circuit

• • •

• •

V V † V

where V is a unitary on 1 qubit. Recall that V † is the complex conjugate of V . For each b1, b2 ∈ {0, 1}, give
the state U(|b1〉 ⊗ |b2〉 ⊗ |ψ〉) as a function of V and |ψ〉. The state has a simple description. Here, |ψ〉 ∈ C2

an arbitrary qubit state.



Problem 2 (SWAP test and application to quantum fingerprinting). Assume we have two quantum registers A
prepared in the state |ψ〉 ∈ Cd and B prepared in the state |φ〉 ∈ Cd. We would like to construct a circuit to
estimate |〈ψ|φ〉|2. The “SWAP test” is a procedure for doing this: use a qubit register C initialized in the state |0〉,
apply a controlled-SWAP gate followed by a Hadamard on register C and then measure C as shown in the following
circuit diagram:

|0〉
C

H • H

|ψ〉
A

SWAP

|φ〉
B

The SWAP unitary on Cd ⊗ Cd is defined by SWAP(|i〉A ⊗ |j〉B) = |j〉A ⊗ |i〉B for any i, j ∈ {0, . . . , d − 1}.
Here |0〉A, |1〉A, . . . , |d − 1〉A is a fixed orthonormal basis of Cd (and the same for B). The controlled-SWAP gate
is defined as usual: if the control qubit is |0〉 nothing is done on the AB registers and if the control qubit is |1〉, the
unitary SWAP is applied on the AB registers.

1. When d = 2, what is the dimension of the controlled-SWAP unitary? Write down the matrix for controlled-
SWAP explicitly.

2. Show that for any states |ψ〉 ∈ Cd, |φ〉 ∈ Cd, we have SWAP(|ψ〉A ⊗ |φ〉B) = |φ〉A ⊗ |ψ〉B . (As the name
suggests, the unitary exchanges the two registers A and B).

3. Compute the probability that the outcome of the measurement of theC register at the end of the circuit diagram
is 0. This probability should be a function of |〈ψ|φ〉|2.

4. Let ε ∈ (0, 1). Deduce a procedure that outputs a number that lies in the interval [|〈ψ|φ〉|2 − ε, |〈ψ|φ〉|2 + ε]
with probability at least 2/3 by using multiple copies of |ψ〉, |φ〉. How many copies of |ψ〉 and |φ〉 do you use
as a function of ε?

5. We now apply this procedure for a problem of testing equality also called fingerprinting. Suppose Alice has a
bitstring x ∈ {0, 1}m and Bob has a bitstring y ∈ {0, 1}m and the Referee would like to know whether x = y
or x 6= y while minimizing communication. Communication can only be between Alice and the Referee or
Bob and the Referee (i.e., no communication between Alice and Bob). The objective is to design a protocol
that allow the referee to correctly decide whether x = y or x 6= y for all possible choices of x ∈ {0, 1}m and
y ∈ {0, 1}m.

(a) Give a protocol achieving this task and using m bits of communication from Alice to Referee and m bits
from Bob to Referee (this protocol is supposed to be trivial).

(b) In a quantum protocol, Alice can prepare a state |ψx〉 ∈ Cd as a function of her bitstring x, and Bob a
state |φy〉 ∈ Cd as a function of his bitstring y. The Referee receives both states |ψx〉 and |φy〉 and can
perform an arbitrary operation allowed by quantum theory and outputs 1 (corresponding to x = y) or 0
(corresponding to x 6= y). Design a quantum protocol satisfying the following properties:

• (Cost) d = poly(m), i.e., d is polynomial in m. In other words, the number of qubits of
communication used is O(logm).
• (Correctness) For every x, y ∈ {0, 1}m, if x = y, the Referee outputs 1 with certainty and if x 6= y,

the Referee outputs 0 with probability at least 2
3

Hint: You may want to use classical error correcting codes, in particular, you may use without proof the
existence of codes of type (n, bn/10c) that have a minimum distance at least bn/10c for any n ∈ N+.
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