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1 Assignment 9

Recall Shor’s code that was defined in the lecture:

0) - 21[ (10%) + 1%)*

1) = 5 (09— 1)

Show that this code cannot correct arbitrary acting on two qubits.

2 Exam from last year

Problem 1 (Basic calculations). 1. Consider the following circuit

|0) »7

0) D

(a) Compute the two-qubit state |1)) 4, 4, after applying this circuit. Here A; denotes the top wire and Ao the

bottom wire.

(b) Compute the density matrix of the state on Ay, i.e., the partial trace over A5 of the density operator

[9) (0|4, 4, that we denote tra, (|1¥) (Y|4, 4,)-

1

2. Recall that Z = ( 0 ) and the controlled version C'Z is defined by CZ(|0) ® |¢)) = |0) ® |¢) and

0 -1

CZ(1) @ [¢)) = |1) ® (Z|¢)). In circuit diagrams, C'Z is denoted by a black dot on the control qubit
connected with a Z gate for the target qubit. Compute the unitary defined by the following circuit:

P

3. Let U be the unitary on three qubits computed by the following circuit
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where V is a unitary on 1 qubit. Recall that VT is the complex conjugate of V. For each by, by € {0,1}, give
the state U(|b1) ® |b2) ® |¢)) as a function of V and |¢)). The state has a simple description. Here, |¢)) € C?
an arbitrary qubit state.



Problem 2 (SWAP test and application to quantum fingerprinting). Assume we have two quantum registers A
prepared in the state [¢)) € C? and B prepared in the state |¢) € C% We would like to construct a circuit to
estimate |(1)|¢)|2. The “SWAP test” is a procedure for doing this: use a qubit register C' initialized in the state |0),
apply a controlled-SWAP gate followed by a Hadamard on register C' and then measure C' as shown in the following
circuit diagram:
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The SWAP unitary on C% ® C? is defined by SWAP(|i)4 ® |7)5) = |j)a ® |i)p for any i,j € {0,...,d — 1}.
Here |0)4, 1) 4,...,|d — 1) 4 is a fixed orthonormal basis of C¢ (and the same for B). The controlled-SWAP gate
is defined as usual: if the control qubit is |0) nothing is done on the AB registers and if the control qubit is |1), the
unitary SWAP is applied on the AB registers.

1.

When d = 2, what is the dimension of the controlled-SWAP unitary? Write down the matrix for controlled-
SWAP explicitly.

Show that for any states |) € C%, |¢) € CY, we have SWAP(|¢))4 @ |¢)5) = |¢)a ® |¢) 5. (As the name
suggests, the unitary exchanges the two registers A and B).

. Compute the probability that the outcome of the measurement of the C' register at the end of the circuit diagram

is 0. This probability should be a function of |{1|¢)|?.

. Let e € (0,1). Deduce a procedure that outputs a number that lies in the interval [|(1|#)|? — €, |(1]¢)|* + €]

with probability at least 2/3 by using multiple copies of |i), |¢). How many copies of |¢) and |¢) do you use
as a function of €?

. We now apply this procedure for a problem of testing equality also called fingerprinting. Suppose Alice has a

bitstring € {0,1}™ and Bob has a bitstring y € {0, 1}"" and the Referee would like to know whether z = y
or x # y while minimizing communication. Communication can only be between Alice and the Referee or
Bob and the Referee (i.e., no communication between Alice and Bob). The objective is to design a protocol
that allow the referee to correctly decide whether x = y or = # y for all possible choices of x € {0,1}™ and

y € {0,1}™.

(a) Give a protocol achieving this task and using m bits of communication from Alice to Referee and m bits
from Bob to Referee (this protocol is supposed to be trivial).

(b) In a quantum protocol, Alice can prepare a state |t),) € C¢ as a function of her bitstring 2, and Bob a
state |¢,) € C? as a function of his bitstring y. The Referee receives both states |¢/,) and |¢,) and can
perform an arbitrary operation allowed by quantum theory and outputs 1 (corresponding to x = y) or 0
(corresponding to = # y). Design a quantum protocol satisfying the following properties:

e (Cost) d = poly(m), i.e., d is polynomial in m. In other words, the number of qubits of
communication used is O(logm).

e (Correctness) For every z,y € {0,1}™, if x = y, the Referee outputs 1 with certainty and if = # v,
the Referee outputs 0 with probability at least %

Hint: You may want to use classical error correcting codes, in particular, you may use without proof the
existence of codes of type (n, |[n/10]) that have a minimum distance at least [n/10] for any n € N.
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