TUTORIAL 2

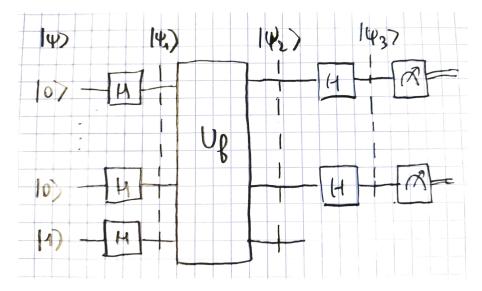
1 Partial Measurements

- 1. For all $|\varphi\rangle$ and \mathcal{B} , measure $|\varphi\rangle$ in \mathcal{B} and determine the post-measurement states and their respective probabilities.
 - (a) $|\varphi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$, and $\mathcal{B} = \{I \otimes |+\rangle\langle +|, I \otimes |-\rangle\langle -|\}.$
 - (b) $|\varphi\rangle = \frac{1}{2}(|00\rangle |01\rangle + |10\rangle |11\rangle)$, and $\mathcal{B} = \{I \otimes |+\rangle\langle +|, I \otimes |-\rangle\langle -|\}$.
 - (c) $|\varphi\rangle = 2^{-n/2} \sum_{a \in \{0,1\}^n} |a\rangle |a \mod 2\rangle$, and \mathcal{B} = measure the second register in the computational basis.
 - (d) $|\varphi\rangle = 2^{-n/2} \sum_{a \in \{0,1\}^n} |a\rangle |a \mod 4\rangle$, and \mathcal{B} = measure the second register in the computational basis.
- 2. Let $|\varphi\rangle, |\psi\rangle$ two normalized quantum states, let $|\Psi\rangle = \frac{1}{\sqrt{2}} (|0\rangle|\varphi\rangle + |1\rangle|\psi\rangle)$, suppose we apply H to the first qubit, then measure that qubit in the computational basis. Give the probability of measurement 1 as a function of $|\varphi\rangle$ and $|\psi\rangle$.

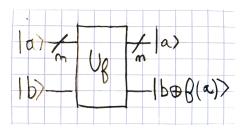
2 Bernstein-Vazirani Problem

The *Bernstein-Vazirani* problem is the following: given a function $f : \{0, 1\}^n \to \{0, 1\}$ which is of the form $f(x) = a \cdot x := \sum_{i=1}^n a_i \cdot x_i \mod 2$ for some unknown $a \in \{0, 1\}^n$, the objective is to retrieve the value of a.

Consider the following circuit:



with the gate U_f defined in the following way:



- 1. Compute the values of $|\psi_1\rangle$, $|\psi_2\rangle$ and $|\psi_3\rangle$ (where $|\psi_3\rangle$ is the state corresponding to the first *n* qubits).
- 2. How efficiently, in terms of quantum query complexity, can we solve the Bernstein-Vaziran problem?

3 Quantum Random Access Code

We want to encode 2 bits in a single qubit in such a way that we should be able to recover the information about the first bit only or the second bit only with a good probability of success. Formally:

Definition 3.1 (QRAC). A quantum random access code (*QRAC*) with success probability p is an encoding $f : \{0, 1\}^2 \to \mathbb{C}^2$ (maps a pair of bits (x_1, x_2) into a quantum state $|f(x_1, x_2)\rangle$) and two unitaries U_1 and U_2 (U_i is the transformation we apply on the qubit $|f(x_1, x_2)\rangle$ to retrieve bit i) such that for all x_1, x_2 :

 $\mathbb{P}(\text{Measure output } = x_1 | U_1 \text{ was applied}) = |\langle x_1 | U_1 | f(x_1, x_2) \rangle|^2 \ge p$ $\mathbb{P}(\text{Measure output } = x_2 | U_2 \text{ was applied}) = |\langle x_2 | U_2 | f(x_1, x_2) \rangle|^2 \ge p$

- 1. A classical random access code depicts the situation where you restrict yourself to encodings $f : \{0,1\}^2 \rightarrow \{0,1\}$, i.e. encoding two bits into one bit. Then we aim to design a (probabilistic) strategy that, given $f(x_1, x_2)$, recover the information of either x_1 only or x_2 only. Show that such strategies cannot succeed with probability greater than 0.5.
- 2. How can you geometrically interpret a real unitary acting on real qubits?
- 3. Exhibit a quantum random access code with p > 0.5. What is the best you can achieve? *Hint* : *Plot the space of real qubits, and try to dispatch them the furthest appart, in such a way that two distinct unitaries can distinghuish them efficiently*