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Generalities

Regression models describe the dependence of the
response variable of interest Y on one or more predictor
variables X.
A basic analysis starts with a random sample of size n
from the distribution of (X, Y) where the conditional
mean and variance of the ith response Yi are given by

E(Yi/X = xi) = η(xi) Var(Yi/X = xi) = σ2(xi) = σ2.

The parameter σ is a scale parameter which is assumed
to be constant in what follows.
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Nonparametric methods

Nonparametric models are those models where the form

of the conditional expectations is dictated by the data.

Two approaches:

Fit simple parametric models locally, e.g., moving

averages or local polynomial estimation.

Fit a highly complex parametric model with a

complexity penalty to prevent “overfitting”. Roughly,

“overfitting” means fitting the noise, not the signal, so

that features are detected that would not be present in

an independent replicate of the data.

Both approaches require a “smoothing parameter.”
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Spline based methods

We will focus on nonparametric penalized regression

methods involving the use of basis functions and quadratic

penalties, pointing out some basic principles they have in

common with splines when fitting regular curves and

wavelets when fitting less regular curves. More precisely,

we will consider the estimation of η(x) through the

minimization of

Zn(η) =
1

n

n

∑
i=1

(yi − η(xi))
2 + λJ(η), (1)

where J(·) is a roughness functional. The parameter λ con-

trols the trade-off between lack of fit of η and roughness.. – p.5/55



To estimate η(·) in a flexible manner we represent it as a
linear combination of known basis functions
{hk, k = 1, . . . , K},

η(x) =
K

∑
k=1

βkhk(x),

and then try to estimate the coefficients

β = (β1, . . . , βK)T.
Usually the number K of basis functions used in the
representation of η should be large in order to give a
fairly flexible way for approximating η.
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Popular examples of such basis functions hk are wavelets
and polynomial splines.
A crucial problem is the choice of the number K of basis
functions. A small K may result in a function space
which is not flexible enough to capture the variability of
the data, while a large number of basis functions may
lead to serious overfitting.
Traditional ways of “smoothing” are through basis
selection see e.g. Friedman and Silverman (1989),
Friedman (1991) and Stone et al. (1997) or regularization.
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For x given, let H be the matrix whose columns are
hk(xi), for k = 1, . . . , K. We have η(x) = H(x)β. Denote

Ly(β) =
n

∑
i=1

(yi − Hβ)2 .

Then (??) becomes

Zn(β) =
1

n
Ly(β) + λJ(β).
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Power basis

Polynomial regression splines are continuous piecewise
polynomial functions where the definition of the
function changes at a collection of knot points, which we
write as t1 < · · · < tK.
Using the notation z+ = max(0, z), then, for an integer
p ≥ 1, the truncated power basis for polynomial of
degree p regression splines with knots t1 < · · · < tK is

{1, x, . . . , xp, (x− t1)
p
+, . . . , (x− tK)

p
+}.

η(x, β) = H(x)β is a pth degree polynomial on each
interval between knots and has p− 1 continuous
derivatives everywhere. Refer to Eilers and Marx (1996)
and Ruppert and Carroll (2000).
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Example of Regression Splines
Basis functions of piecewise linear spline

Basis functions multiplied by coefficients

Spline

Illustration of a Truncated Power Basis construction.
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P-splines

Let β̂ minimize

PSS(β) = Ly(β) + λ ∑
K
j=1 β2

p+j

This penalized least-squares estimator is called a
P-spline (term due to Eilers and Marx (1996)). Other
quadratic penalties on β are possible.

In particular, one can find B so that

βTBβ =
∫ max xi

min xi
(η̈(x, β))2dx

The choice of spline basis is unrestricted: Truncated
power functions are not needed, though we find
them convenient. A natural cubic spline basis could
be used, so that cubic smoothing splines are a
special case of P-splines.
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Smoothing parameter

Here λ > 0 is a penalty or regularization weight. As
λ → ∞ , the penalized spline converges to a pth degree
polynomial fit. As λ→ ∞, the penalized spline
converges to the OLS fitted spline.

The coefficient βp+j is the jump in the pth derivative at

the knot tj. Thus, the penalty is on the (p + 1)th

derivative, interpreted as a generalized function.
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P-splines – cont.

Let y = (y1, · · · , yn)T and D = diag(0, . . . , 0, 1, . . . , 1)
(p + 1 zeros and K ones). Then

PSS(β) = ‖y− Hβ‖2 + λ‖Dβ‖2.

Since β̂(λ) solves ∂PSS(β)
/

∂β = 0 we have

β̂(λ) =
(

HT H + λD
)−1

HTy.

(Ridge regression)
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Cross Validation (CV)

Goal: Choose λ.
η(x, β̂(λ)) is the fitted spline with penalty weight λ.

η−i(x, β̂(λ)) is the fitted spline with penalty weight λ
and without using (xi, yi).

CV(λ) =
n

∑
i=1

{

yi − η−i(xi, β̂(λ))
}2

Principle: Choose λ that minimizes CV(λ).
Problem: CV is computationally intensive.

Solution: Use generalized cross validation (GCV), an ap-

proximation to CV.
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Generalized cross validation

The Smoother or Hat Matrix

S(λ) := H(HTH + λD)−1HT −→ ŷ = S(λ)y

Degrees of freedom: DF(λ) = tr(S(λ)).
GCV:

GCV(λ) =
∑

n
i=1(yi − η(xi, β̂(λ)))2

(1− DF(λ)/n)2
.

So use λ̂ that minimizes GCV(λ) and define β̂ = β̂(λ̂).
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Penalized wavelet regression

We will now be concerned with developing a
counterpart to the spline smoothing technique for the
case of fitting less regular curves.
Several variants of this penalized approach have been
suggested by several authors (Devore and Lucier (1992),
Antoniadis (96), Amato and Vuza (97), Dechevsky and
Penev (99).
The regularity of the curve is discussed in terms of the
size of its norm in a Sobolev space with a relatively small
value of the positive smoothness index.
We will also study a specific version of generalized full
cross validation for the choice of the smoothing
parameter.
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Setup and assumptions

Considering the structure of the wavelet multiresolution,
the design points xi will be assumed to have the form

xi = i∆, with ∆ = 2−N for i = 0, . . . , n− 1, where
N = log2 n, n being the sample size.

For simplicity of presentation we shall work with
periodic wavelets on the interval on [0, 1].

Functions φ and ψ will respectively denote the scaling
function and the wavelet associated to a periodic

q-regular multiresolution analysis of L2([0, 1[).
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Penalized wavelet regression – cont.

We will assume that η ∈ Hν([0, 1[), where Hν(Hν([0, 1[)
denotes the Sobolev space of order ν (ν > 1/2).
Assume further that the scaling function φ is a coiflet of
order L with L > [ν] + 1.
The nested structure of a multiresolution analysis leads
to an efficient tree-structured algorithm for the
decomposition of functions in VN for which the
coefficients 〈η, φN,k〉 are given.

When a function is given in sampled form there is no gen-

eral method for deriving the coefficients 〈η, φN,k〉. We will

approximate the projection PVN
by some operator ΠN in

terms of the sampled values η( k
2N ). . – p.18/55



Since the coiflets have L vanishing moments, we have:

The set of non zero coefficients α{N}(k) = 2N/2〈η, φN,k〉 has a

cardinality equivalent to O(n). Moreover, with L > [ν] + 1,

the following uniform (in 0 ≤ k ≤ 2N − 1) bound holds:

|α{N}(k)− η(
k

2N
)| ≤ C1 2−Nν

where C1 is a constant only depending on the coiflet φ.

One is therefore able to approximate the coefficients

〈η, φN,k〉 with an error O(2−N/22−Nν).

. – p.19/55



It is now natural to approximate PVN
η by

(ΠNη)(t) =
2N−1

∑
k=0

η(
k

2N
) φ(2Nt− k)

Using such an approximation we have:

‖PVN
η −ΠNη‖∞ ≤ O(2−Nν)

Observing that E(Yk) = η( k
2N ) justifies completely

replacing the original data by the “raw” function

η̂N(t) = 2−N/2
2N−1

∑
k=0

YkφN,k(t)
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For any η ∈ Hν([0, 1]), ΠNη can be expanded as

ΠNη =
2j0−1

∑
k=0

aj0,kφj0,k +
N

∑
j=j0

2j−1

∑
k=0

dj,kψj,k.

The orthogonal discrete wavelet transform on the in-

terval, say W, applied on η̂N, identified by the vec-

tor y of observed values, gives a new sequence

of numbers {
(

vj0,k

)

k=0,...,2j0−1
,
(

wj,k

)

j=j0,...,N;k=0,...,2j0−1
},

say
(

(vj,k), (wj,k)
)

for short, that are interpreted as the co-

efficients of the expansion of the function η̂N.
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Under the noise model, noise contaminates all wavelet
coefficients of ΠNη equally.

Consequently, the empirical wavelet coefficients
(

(vj,k), (wj,k)
)

, obtained by applying the discrete

orthogonal transform on the data vector 2−N/2y, can be

considered as a version of the coefficients
(

(aj,k), (dj,k)
)

of ΠNη, contaminated by a similar white noise ǫj,k of

variance σ2/2N.
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The regularization problem is now given by

inf
η∈H

{

‖η̂N − η‖2
2 + λ‖PV⊥j0

η‖2
H

}

.

and using the equivalent sequence norms and these
expression, minimizing the penalized functional given
above is equivalent to minimize the expression

2j0−1

∑
k=0

[

vj0,k − aj0,k

]2
+

N

∑
j=j0

2j−1

∑
k=0

[

(wj,k − dj,k)
2 + λ22νjd2

j,k

]

,

where wj,k = 0 for j > N and k = 0, . . . , 2j − 1.
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We thus have âj0,k = vj0,k, k = 0, . . . , 2j0 − 1 and

d̂j,k =
wj,k

1 + λ22νj
, j ≥ j0, k = 0, . . . , 2j − 1,

that is: η̂λ = ∑
2j0−1
k=0 vj0 ,kφj0,k + ∑

N
j=j0 ∑

2j−1
k=0 d̂j,kψj,k,

a tapered wavelet series estimator of η, i.e. η̂λ may be

viewed as the result of passing the “raw” wavelet series

estimate η̂N through a low pass filter controlled by the

parameters λ and ν. We see that the resulting estimator

is a linear estimator of shrinkage type. Shrinking is level

dependent. Up to level j0 there is no shrinking; shrinking

of the wavelet coefficients is heavier at higher levels.
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Asymptotics

Asymptotic minimax optimality theory (see Delyon and
Juditsky (1996)) allow us to make the above choice for j0
and N. It turns out that j0 should satisfy an inequality of

the type (C̃n)1/(2ν+1) ≤ 2j0 ≤ 2(C̃n)1/(2ν+1) with C̃ > 0

suitably chosen. A choice 2N = O(n/ log n) is motivated
by the observation that for ν > 1/2 (when Hν contains

only continuous functions), both |dj,k| ≤ O(n−1/2) and

|wj,k − dj,k| = O(n−1/2) hold simultaneously. Hence, for

any n there is no point in going to levels of j with 2j ≥ n
since the order of the coefficient estimated is smaller than
the order of the error of estimation. The logarithmic
factor in the choice of N ensures better behaviour of the
estimator for continuous and smooth functions.
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Asymptotics–cont.

Let us introduce the mean square error

ER(λ) = E

{

1
n ∑

n
i=1(η̂λ(xi)− η(xi))

2
}

(the quantity we

are interested in controlling). We then have

If λ = O
(

n−2ν/(2ν+1)
)

then ER(λ) = O
(

n−2ν/(2ν+1)
)

.

The estimator is linear in the observations. Asymptotic
minimax optimality theory suggests that linear wavelet
estimators may in general be outperformed by nonlinear
ones when no a priori information is available for the
curve. But for ν > 1/2 this case is within the parameter
range where linear estimators have the same asymptotic
rates as the best non-linear ones.
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Choosing λ

Essentially two methods:

One is generalized cross-validation used by Amato
and Vuza (97), Jansen et al. (1997), Dechevski and
Penev (1999) who have chosen to work directly with
a wavelet analogue of the cross-validation formula
for smoothing splines, overcoming some
“compatibility condition” which doesn’t hold for
the wavelet case.

Another method (Antoniadis (96)) completely
avoids the compatibility problem but the price to be
paid for this is that the estimator depends explicitly
on the noise variance. To deal with this, an
estimator of the noise variance is incorporated
within the definition of the estimator. . – p.27/55



GFCV for λ

Denote η̂λ = ∑
2j0−1
k=0 âj0,kφj0,k + ∑

N
j=j0 ∑

2j−1
k=0 d̂j,kψj,k, and

η̂
(−i)
λ = ∑

2j0−1
k=0 âj0,k,(−i)φj0,k + ∑

N
j=j0 ∑

2j−1
k=0 d̂j,k,(−i)ψj,k, with

âj0,k,(−i) = (n− 1)−1 ∑
n
ℓ=1,ℓ 6=i φj0,k(xℓ)yℓ and

d̂j,k,(−i) = (n− 1)−1 ∑
n
ℓ=1,ℓ 6=i

1
1+λ22νj ψj,k(xℓ)yℓ.

Then, paralleling the P-splines case the typical cross
validation functional to be minimized with respect to λ is

CV(λ) =
1

n

n

∑
i=1

(yi − η̂
(−i)
λ (xi))

2.
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Compatibility condition

Reduction in computation for minimizing CV is
achieved if the “compatibility condition” holds. First
define ŷ(−i)(λ) = η̂λ(xi; y1, . . . , yi−1, yi+1, . . . , yn).

Compatibility means that
ŷ(−i)(λ) = η̂λ(xi; y1, . . . , yi−1, ŷ(−i)(λ), yi+1, . . . , yn)

holds.
Under the above condition the cross-validation
functional can be expressed in terms of the ordinary
residuals:

CV(λ) =
1

n

n

∑
i=1

(yi− η̂λ(xi))
2/(1− hii(λ))2, hii(λ) =

∂η̂λ

∂yi
(xi)

Unfortunately, for a shrinking type estimator the compat-

ibility condition is violated.
. – p.29/55



Compatibility condition–cont.

The idea is to opt for another alternative by changing the
cross validation criterion itself. Note that standard cross
validation is defined entirely with respect to samples of
size (n− 1). One can adjust it for samples of size n as
suggested by Bunke et al. (1993). In their approach, the
value of yi is replaced by η̂λ(xi) instead of leaving it out
in defining the prediction of the i-th design point. The
resulting functional is called the FCV (full cross
validation) functional :

FCV(λ) =
1

n

n

∑
i=1

(yi − η̃λ(xi))
2.
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Compatibility condition–cont.

It turns out that under the condition of linearity only, one
gets in terms of the ordinary residuals:

FCV(λ) =
1

n

n

∑
i=1

(yi − η̂λ(xi))
2 · (1 + hii(λ))2,

where

hii(λ) =
1

n ∑
k

φ2
j0,k(xi) +

N

∑
j=j0

∑
k

1

1 + λ22νj
ψj,k(xi)

2

Following the same idea, as for GCV one defines the
generalized FCV (GFCV) by replacing hii(λ) by

n−1 ∑
n
i=1 hii(λ). . – p.31/55



Asymptotics again

Denote λ̂ = argminλE(GFCV(λ)) and

λ⋆ = argminλER(λ). One can then show that

If η ∈ Bν′

2,2 ∩ Bν1
∞,∞ where 0 < ν1 ≤ ν′ < ν < r, if j0 = O(1),

2N = O(n/ log n), then for n large enough,

λ̂ and λ∗ exist and ER(λ̂)
ER(λ⋆) ↓ 1 as n → ∞. Moreover,

E(GFCV(λ)) ≃ ER(λ) + σ2

holds for large n, in a neighborhood of λ∗, uniformly in λ ≥ 0.
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An example

Simulated fit

True curve: solid line; the penalized estimator: dashed line;
soft thresholded estimator: dotted line. n = 1024, j0 = 1,

N = 6, σ2 = 0.2. . – p.33/55



Other penalties

The wavelet estimation procedure described before is
controlled by a quadratic penalty and as such produces
linear estimates that have good rates for smooth
functions only. Moreover, it does not take into account
that most functions have usually a sparse wavelet
representation.

In order to deal with such problems a variety of other
type of penalties have been proposed in the recent
literature, see for example Solo (1998), McCoy (1999),
Moulin and Liu (1999), Belge et al. (2000), Antoniadis
and Fan (2001) to cite only a few.
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In Solo (1998), the penalized least-squares with an
L1 penalty is modified to a weighted least squares in
order to deal with correlated noise and an iterative
algorithm is discussed for its solution. The choice of
the regularization parameter is not discussed.

By analogy to smoothing splines, E. J. McCoy (1999)
uses a penalty function which simultaneously
penalizes the residual sum of squares and the
second derivative of the estimator at the design
points. For a given regularization parameter, the
solution of the resulting optimization problem is
found using simulated annealing, but there is no
suggestion on a possible method of chosing the
smoothing parameter in her work. . – p.35/55



In Moulin and Liu (1999), the soft and hard
thresholded estimators appear as MAP estimators in
the context of Bayesian estimation under zero-one
loss, with generalized Gaussian densities serving as
a prior distribution for the wavelet coefficients (see
also Leoporini & Pesquet (1998)).

A similar approach is also used by Belge (2000) in
the context of wavelet domain image restoration.
The smoothing parameter in Belge (2000) is selected
by the L-curve criterion (see Hansen and
O’Leary (1993)). It is however known (see
Vogel (1996)) that such a criterion can sometimes
lead to nonconvergent solutions when the function
to be recovered presents some irregularities. . – p.36/55



Setup

Assume again that the design points are ti = i/2N for
i = 0, . . . , n− 1 and N = log2 n.

Let η be the underlying regression function collected at

all dyadic points {i/2J, i = 0, . . . , 2J − 1}.

Apply the Wavelet Transform on η: θ = Wη and

η = WTθ, to get an

Overparametrized linear model:

Yn = WTθ + ǫ.
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The Wavelet basis on which η is projected is chosen by
fixing the resolution N. The estimate of θ and therefore
of η is recovered by penalized least-squares

2−1‖Yn −WTθ‖2 + ∑
i∈IN

pλ(|θi|)

Since W is an orthonormal matrix this is equivalent in
minimizing componentwize

2−1
n

∑
i=1

(zi − θi)
2 + λ ∑

i≥i0

p(|θi|),

where zi is the ith row of z = WYn. . – p.38/55



General types of Penalties

Several penalty functions have been used in the literature.

The L2 penalty p(θ) = |θ|2 yields a ridge type

regression.

The L1 penalty p(θ) = |θ| results in soft thresholding

rule introduced by Bickel (1983) and used by Donoho

and Johnstone (1994) in the wavelet setting.

The penalty pλ(|θ|) = λ2 − (|θ| − λ)2 I(|θ| < λ), leads

to the hard-thresholding rule (Antoniadis, 1997).

The mixture penalty pλ(|θ|) = λ min(|θ|, λ).

More generally, the Lq (0 ≤ q ≤ 1) penalty leads to

bridge regression (see Frank and Friedman (1993)).. – p.39/55



Conditions on p

Usually, the penalty function p is chosen to be symmetric

and increasing on [0, +∞). Furthermore, p can be convex

or non-convex, smooth or non-smooth.

In the wavelet setting, Antoniadis and Fan (2001) provide

some insights into how to choose a penalty function. A

good penalty function should result in

unbiasedness,

sparsity ,

stability.
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Examples

Penalty function Convexity Smoothness at 0 Authors

p(β) = |β| yes p′(0+) = 1 (Rudin 1992)

p(β) = |β|α , α ∈ (0, 1) no p′(0+) = ∞ (Saquib 1998)

p(β) = α|β|/(1 + α|β|) no p′(0+) = α (Geman 92, 95)

p(0) = 0, p(β) = 1, ∀β 6= 0 no discontinuous Leclerc 1989

p(β) = |β|α , α > 1 yes yes Bouman 1993

p(β) = αβ2/(1 + αβ2) no yes McClure 1987

p(β) = min{αβ2, 1} no yes Geman 1984

p(β) =
√

α + β2 yes yes Vogel 1987

p(β) = log(cosh(αβ)) yes yes Green 1990

p(β) =







β2/2 if |β| ≤ α,

α|β| − α2/2 if |β| > α.
yes yes Huber 1990

Examples of penalty functions
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Discussion

Some neccessary conditions for unbiasedness, sparsity
and stability have been derived by Antoniadis and Fan
(2001).

unbiasedness↔ ṗ(|θ|) = 0 for large |θ|

sparsity← |θ|+ λ ṗ(|θ|) ≥ 0

stability↔ argmin{|β|+ λ ṗ(|θ|)} = 0

From the above, a penalty satisfying the conditions on
sparsity and stability must be non-smooth at 0. In the
two extremes, the hard thresholding rule is
discontinuous (instable), while the soft thresholding rule
shifts the estimator by an amount of λ even when |zi|
stands way out of noise level, which creates unnecessary
bias when θ is large. . – p.42/55



SCAD penalty

To ameliorate these drawbacks, we may use the SCAD
penalty introduced by Fan (1999),

p′λ(θ) = I(θ ≤ λ) +
(aλ− θ)+

(a− 1)λ
I(θ > λ),

for θ > 0 and a > 2 (usually a = 3.7), wich leads to

θ̂j =











sgn(zj)(|zj| − λ)+ when |zj| ≤ 2λ
(a−1)zj−aλsgn(zj)

a−2 when 2λ < |zj| ≤ aλ

zj when |zj| > aλ

which is concave on [0, ∞) and does not intend to over
penalize large |θ|. . – p.43/55



Illustration
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Thresholding functions
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Performance of thresholding rules

To compare the thresholding rules we apply the tool of

exact risk analysis. The closed forms for the L2 risk

functions R(θ, λ, σ2) = E(θ̂ − θ)2, for the hard and
soft-thresholding rules have been derived by Donoho
and Johnstone (1994). It is easy to show that

R(θ, λ, σ2) = σ2R(θ/σ, λ/σ, 1)

For simplicity we denote by R(θ, λ) the risk function for

σ = 1. If interested, you can find the expressions of the

risk for most of the penalties reviewed above in Anto-

niadis and Fan (2001) when Z ∼ N(θ, 1). . – p.46/55



Risk functions under quadratic loss
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Risk functions of three thresholding rules

To make the scale roughly comparable, we took λ = 2 for
the hard-thresholding rule and adjusted the values of λ
for the other rules so that their estimated values are the
same when θ = 3.
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Choosing λ

The performance of the penalized least-squares estimator
depends on the regularization parameter λ. Again a
convenient way to get a data based estimate of λ is by
using generalized cross validation. However the
minimization problem we are dealing with is not
quadratic and it is not obvious how such a method may
be applied.
Tibshirani (1996) proposed a GCV-type criterion for
choosing the tuning parameter for the LASSO through a
ridge estimate approximation. Of course, this
approximation ignores some variability in the estimation
process but the simulation study in Tibshirani (1996)
suggests that it is a useful approximation.
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Choosing λ–cont.

The smoothly clipped L1 penalty pλ is not differentiable.
However it can be locally approximated by a quadratic
function as follows. Let θ0 be a given initial value that is
close to the solution of the minimization problem. When
|θ0| > 0, we use

pλ(|θ|) ≃ pλ(|θ0|) +
1

2
ṗλ(|θ0|)(θ2 − θ2

0), θ ≃ θ0

and 0 if θ0 = 0. The figure that follows shows the above

approximations for two different values of θ0.

. – p.49/55



Quadratic approximation
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(c) SCAD penalty

The penalty and its quadratic approximations

Setting the Σλ(θ) = diag( ṗλ(θi); i ∈ IN) the solution can
be found iteratively computing a ridge regression
problem at each iteration. At convergence, one then uses
the usual GCV criterion for ridge regression type
problems.
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Asymptotic properties

Assume that the signal η is in a Besov ball. Because of
simple characterization of this space via the wavelet
coefficients of its members, the Besov space ball Bν

p,q(C)

can be defined as

Bν
p,q =

{

f ∈ Lp : ∑
j

(

2j(ν+1/2−1/p)‖θj·‖p

)q
< C

}

,

where θj· is the vector of wavelet coefficients at the reso-

lution level j. Here, ν indicates the degree of smoothness

of the underlying signal η.
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Note that the wavelet coefficients θ in the definition of

the Besov space are continuous wavelet coefficients. They

are approximately a factor of n1/2 larger than the discrete

wavelet coefficients Wη. This is equivalent to assume that

the noise level is of order 1/n.
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Suppose that the penalty function pλ(·) is a nonnegative,

nondecreasing and differentiable function in (0, ∞). Fur-

ther, assume that the function −θ − ṗλ(θ) is strictly uni-

modal on (0, ∞) and that p′λ(0+) > 0. Assume also that

ν + 1/2− 1/p > 0. Then, the maximum risk of the penal-

ized least-squares estimator η̂λ over the Besov ball Bν
p,q(C)

is of rate O(n−2ν/(2ν+1) log n) when the universal thresh-

olding
√

2n−1 log n is used.
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The overheads of this lecture are available at:
http://www-lmc.imag.fr/lmc-sms/Anestis.Antoniadis/

Software in Matlab implementing theses methods (and
many more) has been developed by Antoniadis, Bigot
and Sapatinas and is available at

http://www-lmc.imag.fr/SMS/software/wavden

Thank you for your attention.
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