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Agenda

1. Motivation: adaptive wavelet discretizations and PDE’s

2. Adaptive space refinement for operator equations

3. Adaptive multiresolution processing for evolution equations

.




\ Basic example: the Haar system /
\/\,\/ 1
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ﬂby c= Mu\wﬂbAMu ) |\Avg A= Cv \Avv iv,_ — ,w
More general wavelets are constructed from similar multiscale
approximation processes, using smoother functions such as splines

/OH, finite elements. K




4 N

Approximating functions by wavelet bases

- Linear approximation at resolution level 5 by taking the truncated
sum f — P;f = Mu_y_m.w. Iavx.

- Nonlinear (adaptive) approximation obtained by thresholding

feTaf =) Hin, A=Am) ={X st [fa] =70}
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Applications to image compression

digital picture decomposition 103 largest coefficients




-

Linear approximation results
- V},: finite element space discretizing a domain Q ¢ R.
- N :=dim(V},) ~ vol(Q)h ™4
-WeP .= {f € LP(Q) st. D*f € LP(Q), |a| < s}

Classical finite element approximation theory (Bramble-Hilbert,
Ciarlet-Raviart, Strang-Fix): provides with the classical estimate

\ c S\ﬁi&% — inf :,\ o Q:S\m% m wa ~ QZIN\&u
geVy

assuming that V3, has enough polynomial reproduction and is
contained in W}
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\ Nonlinear approximation results
N-terms approximations: Xy 1= {> ,cp dxt¥r ; #(A) < N}

with 1/g =1/p+t/d

feWwsthd = inf ||f — g|lwer < CN7V4,
geEXN

- For most error norm X (e.g. LP, W*P?, B} ), a near optimal
approximation is obtained by thresholding : if f =), dy®, and

N =2 xn largest [|dx s || x d 1y, we then have

If = fyllx <C inf ||f —gllx

gEXN

with C independent of f and V.

@ N adaptive triangles is still to be completed.

Rate of decay governed by weaker smoothness conditions (DeVore):

- Remark: a similar theory for piecewise polynomial approximation

~

/
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Pictorial interpretation of approximation results

Embedding  (goped)
C mmn%8 inX -
No embedding
in X
st ot
Nonlinear
ST X : measurement of the error
(sderivativesin LP)
Up 1/g=Lp+/d LP spaces
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General program for PDE’s

- Theoretical: revisit regularity theory for PDE’s. Solutions of
certain PDE’s might have substantially higher regularity in the
scale governing nonlinear approximation than in the scale
governing linear approximation. Examples : hyperbolic
conservation laws (DeVore and Lucier 1987), elliptic problems on
corner domains (Dahlke and DeVore, 1997).

- Numerical: develop for the unknown u of the PDE F(u) =0
appropriate adaptive resolution strategies which perform essentially
as well as thresholding : produce uy with IV terms such that

| — || has the same rate of decay N ™% as ||u — uy|| in some

prescribed norm, if possible in O(N) computation.

- /
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\ Two approaches toward adaptive wavelet methods /

- First approach (mostly applied to steady steate problems

F(u) = 0) : iterative space refinement techniques to access
appropriate discretization sets {1y} eca, , based on a variational
formulation of the problem. (Bertoluzza, Perrier, Liandrat, Canuto,

Dahlke, Hochmuth, Urban, Masson, Dahmen, DeVore, AC).

- Second approach (mostly applied to evolution problems

Oru = E(u)) : multiresolution adaptive post-processing, i.e. start

from a classical and reliable scheme on a uniform grid and use a
discrete multiresolution decomposition in order to compress
computational time and memory size, while preserving the accuracy
of the initial scheme (Harten, Abgrall, Arandiga, Chiavassa, Donat,
/U&BB@F Mueller, Farge, Schneider, Kaber, Postel, AC) K
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H Hilbert space, F : H — H’ continuous mapping, u nonsingular
solution of F(u) = 0, i.e. DF(u) is an isomorphism from H to H’'.

General variational problems

Variational formulation : find © € 'H such that
(F(u),v) =0
for all v € H.
Simple linear examples: F(u) = Au — f
- Laplace: A := —A and H := H}
- Stokes: A(u,p) := (—Au+ Vp,—Divu) and ‘H := (Hj)> x L3.
- Single layer potential Au(z) := [, 3 W) gy and H = H-L/2.

dmlz—y|
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\ Standard (FEM) approach to discretisation /
1. Well posed problem in infinite dimension F(u) = 0.

2. Finite dimensional discretization H — V}, by a Petrov-Galerkin
type method ((F(up),vr) = 0 for all v, € Wy,).

Difficulties: not always well-posed (compatibility conditions, e.g.
. Div
LBB for Stokes : inf,, cp, Sup,, ¢y, __@M _N_umm__yzh_:mp > Br > 0).

3. Tterative solver u) — uj -+ — up,.

Difficulties: ill-conditionning and dense matrices

4. Adaptivity: derive local error indicators by a-posteriori analysis
of residual F(uy), and apply local mesh refinement based on these

indicators V;, = V¥ - V! — ... uy =u) — ul — -

Difficulties: hanging nodes, convergence analysis of such refinement

/mi@d@mwmm (Dorfler 1996, Morin-Nocetto-Siebert 2000). K
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\ Wayvelet adaptive discretizations: new paradigm

1. Well posed problem in infinite dimension F(u) = 0.

2. Equivalent discrete problem in infinite dimension by
wavelet-Galerkin: find U = (uy)xev such that

FU) = (F(S urthn), ) s = 0.

Well-posed : F : £? — (2 if (1) rev is a Riesz basis for H after

renormalization, i.e. ||ul3, ~ Y |uxl? and |[ull5, ~ > |[{u, ¥a)|?.

4. Adaptive approximation of this iteration up to prescribed
tolerances in finite dimension: U™ supported by finite wavelet set

A, C V.

= allows to establish optimal accuracy and complexity results in

@a energy ||ul|s ~ ||U]| norm.

3. Converging iteration in infinite dimension U° — U! — ... — U.

/
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\ The linear elliptic case /

Assume A is an H-elliptic operator. Equivalent problem :
AU = F
where A is ¢?-elliptic. For a suitable s the iteration,
Ut = U™ + k[F — AU",
converges with fixed error reduction rate p < 1.

Approximate iteration with prescribed tolerance € > 0,
U™t = U™ 4+ k|[APPROX(F,¢) — APPROX(AU™, ¢)],

with ||APPROX(AU",¢) — AU|| < € and ||[APPROX(F,e) — F|| < e.
converges with reduction rate p until error is of order «.

The procedure APPROX(F, ¢) amounts in thresolding F in £?, or
@E/&HEQ the data f in the H’ norm. K
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Matrix-vector approximation

The procedure APPROX(AU™, ¢) is made possible by matrix
compression: one can build Ay with N coefficients per rows and
colums such that ||A — Ay|| < CN™"

Analysis : based on the Schur lemma, using esimates of the type

[(Ax, )] < C[1 + dist (A, )] 7271l

~

@H?@& from the smoothness and vanishing moments of the ). \
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\ The role of thresholding /

Lemma : if U is such that |[U — Uy|| < CN~% and V is such that

|V —U|| <e, then with a > 1 fixed and W the smallest subvector
of V' such that ||V — W/|| < age, one has

[U=W || < (14+a)e and #(W) < Ce™'*, ie. [U-W| < C[#(W)]~*

log(N), log(#(A\))
Thresholding
ensures
optimalit IlU-Up |
P M loge) N\ lU-Un|l n
N} log(error) [lU-U \ll optima

Problem : intermediate memory size and computational time
should also be optimal, i.e. O(¢~1/9).

N /
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\ Geometric tolerances

3 log(N), log(#(A,))
Idea: decrease =2\
-3
tolerances g =1, [
AN
— L1 . . =97
£1 = 99 “mm — TN
TO D __C|C>_T optimal
N2 log(error)

Fixed number of iteration at each step 5 — j+ 1 involving sparse
matrix-vector product: W = APPROX(AV, ¢) obtained by

decomposing V = Vi 4+ [Vo — V4| + [V — V5] + - -+, and taking
W= Ao Vi + Agsa [V = Vi + -+ A1 [Vou — Voua]

with J large enough such that
J
/::\ — AV < [[A[I[IV = Vas || + 2251 |4 = Agr—s [[[|Vas = Vai || <

~

-
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Results

Theorem (Dahmen, DeVore, AC - Math. Comp. 2000) : if V is
such that |V — V|| < CN7* and if |A — An|| < CN™" with
r > s, then [Supp(W)| < Ce~'/% and therefore

W — AU|| < C|Supp(W)|~*.

Theorem (Dahmen, DeVore, AC - FoCM 2002) : The general
strategy for linear operator equations based on the above
ingredients (thresholding, adaptive matrix vector multiplication)

achieves the ultimate goal, namely production of U™ and
A, = Supp(U™), such that if ||U — Uyn|| < CN~%, then

IU =U"[] < C7(An) 7,

with O(#(A,,)) computational cost.

-
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4 N

Remarks on practical aspects

All wavelet properties are exploited : Sobolev norm equivalences,

smoothness (not always available) and vanishing moments.

Coarsening is not needed in all practical cases studied so far, yet
seems necessary in the proof of the optimality theorem ! Similar
optimality results recently obtained for adaptive FEM by Binev,
Dahmen and DeVore, using the Morin-Nocetto-Siebert algorithm

combined with coarsening.

Complexity is dominated by assembling matrix elements, numerical
quadratures, addressing the indices in A,, (key role of efficient data
structures). Practical comparison between adaptive FEM and
wavelets based on the same FE spaces : for a given error, wavelets
may win for Ng..¢. but lose (by a factor > 4) for computational
cost.

N /
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\ Extension to more general problems /

Saddle point problems AU + BT'P = F and BU = G, e.g. based
on adaptive approximation of the Uzawa iteration (Dahlke,
Hochmuth and Urban 1999) :

AU = F — B"P" ! and P" = P" ! + x(BU" - G)

No LBB is needed here, adaptivity stabilizes Similar result for
adaptive FEM algorithm : Nocetto 2002. Question : do the same
concepts apply to convection dominated problems, such as

—eAu 4+ a.Vu = 0 with convergence rate independent of ¢ ?

Extension to nonlinear problems : DeVore, Dahmen, A.C. 2002
(need specific adaptation of fast evaluation of F'(U)), no available

numerical results yet.

Problem dependent tuning seems unavoidable in order to optimize

/dEm type of algorithms. \
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-

-T;,7=0,---,J: sequence of discretisations at scales 277.

A discrete multiresolution framework

- Uj = (Uj(7))er, discretisation of a fonction w on I';, i.e. vector
of ,Ku. = Eﬁ. .

- Restriction operator P/ ; from V; onto V;_;: computes coarser

discretization U;_; = .ﬁm.LQ ; from the next finer.

Basic example 1: point values on nested grids I';_; C I';, 1.e.
Uj—1(7) = Uj(y) fory € I';_1.

—@ ® ® ® ® ® ® @ ® ® ® @
—@ ® @ @ ® ®

Basic example 2: cell averages on nested partitions, i.e.

-

Uj—1(7) = vol(7) ™1 Y er pey Ol Uj(p) 2o NS

/
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-

- Prediction operator ﬁm. ~! from V;_; into V;: reconstructs an
approximation U; = ﬁNLSL of Uj.
- Consistancy assumption: NU,NLN% Lo

Point value example: U;(y) = U;_1(7) for v € T';_1, and U;(y)
obtained par local interpolation for y € I'; \ I';_1.

A

Cell avergage example: U,;(y) obtained by “interpolating” the

averages in a consistant way, e.g. via polynomial reconstruction.

B

-
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\ Multiscale decomposition /

Prediction error E; :=U; —U; € W;_| = N@H.Qumlb. Detail vector
D;_1: coordinates of I/; in a basis of W,_;.
Point value example: D;_1(A) = E;(A), v € I'; \ I';_1 interpolation
error at intermediate point. Cell average example: on each coarse
cell of I';_; the prediction error E; has null average = define D;
by removing for each coarse cell v one fine cell p C ~.

Uy < Uj-1,D5-1) (Uj—2,D52,D51) & -+

< (Uo, Do, -+ ,Dj—1) = MUy = (dr)rev,

Physical grid I';

. . s - . . Multiscale grid (point values) V;

/QOHB@_@&@ of M and M~ O(Card(T)) \
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\ Compression /

Thresholding: given a level dependent threshold n = (ng, - ,7ns-1)
set to zero all coefficients |dy| < 7)) < approximation of U; by

T,U; = TaUy = M~ 'RAyMUy,
Ra: restriction of Vy to A = A(n) ={A €V t.q. |dxr| =7z}

sosseseeesioesisecesseesse  Adaptive mesh I'(A)

. . . Adaptive set A

Compressed representation (dy)yeca to the data of point values or
cell averages U;() on an adaptive physical mesh I'(A) associated to
A, (need to impose that A has a tree structure up to enlarging it).

Complexity of adaptive decomposition and reconstruction

K&moiﬁrgm” O(Card(A)) \
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Reference scheme on I';: approximation of u(x,nAt) by
7= (U}(7)yer, with Uy = E;Uf

U™ () =Uj(y) + F(UF (1) 5 1€ S(v)).

Adaptive multiresolution processing

S(7): local stencil (excludes implicit schemes).

In the case of F'V conservative schemes, F' has the form of a

balance over the edges surrounding the cell ~

Uyt =uim -+ Y,
po St Ty, ]#0

where F' = —F!_ is a function of the U} (v) for v in a local

stencil surrounding v and u.

-
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4 N

Adaptive algorithm

Goal: compute approximations of u(x,nAt) by (V;', A}), where
Vit = (V7 (7))ver, is represented by its coeflicients (df)xean or its
physical values (point values or cell averages) on the adaptive mesh
(V7' (¥))eran) (we always impose the graded tree structure on
A7)

Benchmark: an ideal choice would be A7 the smallest graded tree
containing {A, |dx(U7)| > n5} but it is not be accessible. The
adaptive solution V7 should still be comparable to 7,,U%, i.e. the
corresponding thresolding operator applied to the exact reference

solution.

Initialization: define A} the smallest graded tree containing
{X\, 1dr(U9)| = A} and set V) := T, U9,

- /
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Derivation of (V7 A1) from (V7 A,,)
Three basic steps:

- Refinement: predict a superset A C \wmt adapted to describe
the solution at time n + 1 (ideally such that |d\(E;V})| < )y if
\ ¢ .\wmiv and extend by d} =0 for \ € \wmi \ A7

- Evolution: compute the new value V' (v), for v € :.\wmtv
(ideally V'™ = Tini1 E5 V7).

- Coarsening: apply level dependent thresholding operator to the
computed vector vaym\wmt = new set >m+p C \z/m.I and a\ﬂwt.

-

/
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\Hv@ loss of accuracy with respect to the reference scheme Qm@msmm/
on each of the three steps.

- Coarsening: accuracy is controled by the level of the threshold 7
and the stability properties of the multiscale reconstruction

(existence of underlying continuous wavelet systems).

- Refinement: accuracy is controled by analyzing the action of the
discrete evolution operator E; on the size of the coefficients in the
multiscale decomposition.

- Evolution: need an accurate evolution step in the compressed

form. T'wo possible approaches:

(i) direct application of the numerical scheme on the adaptive grid
:\wmtv : loss of accuracy for low order schemes.

(ii) exact computation of 7 An+l E;V7} by local adaptive

/ﬁmnosmﬁcmﬁos on fine grid : more accurate but more costly. K
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\ Numerical illustration

In 1D: comparison of AMR and local reconstruction on Sod tube
test.

Flux computed with 1st order Roe scheme
eps=10E-4
1

1.2 :
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cpu X

For a low order reference scheme, only local reconstruction

preserves the accuracy with a substantial reduction of CPU time

ﬂpbm memory space (1/20 at best).
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\ Error Analysis

<3|TH \Nl\/BA_IH \Nl\/BA_IH mnNa\nN

Compare Qmil = E ;U with a\g:i = T\

n—+1

with d,, = |V} — E;V?| < t, + ¢, where

= || 7a

n+1 >:+H

@%Em with a prescribed precision ¢.

Remark: adaptive evolution with local reconstruction is given by

17: BV,
3+H
Cumulative error analysis between both solutions:

U — VI < ||E U — ESVE| + dy,

E,Vi=Tx, EsVil, en =13, EJVS—E;VS,

denote the thresholding and refinement errors. The analysis of
refinement and thresholding strategies should allow to control both

~

/
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4 N

Controling the thresholding error

Analysis based on underlying continuous wavelet system (1) ):

\U; = TaUs || <) lldaipall-
AEA

For the L! norm, this gives [|[U; — TpU;|| < C D rga 2-4M|dy |, and
therefore with n; = 2%,

WU, =T,us1<C > 27Wdy
2= dx|<no
- Crudest estimate: no# (V) ~ 1n92%/ = take ny = 279/,
- Better estimate: mo#(A" 1) = take ny = e/#(A"11).
- Even better: take largest 1o s.t. } 5-aixia,|<n, 274N |dy| < e.

- /
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4 N

Controling the refinement error

Harten’s refinement rule for hyperbolic equations (assuming CFL
condition for the reference scheme At < C277):

- If |dy| > n)5 include in \wmt the neighbors of A at the same level.
- If |dx| > 2" '), also include the childrens of A at the finer level.

Here r represents the order of accuracy of the prediction operator.
Not sufficient to prove that |dx(E;V})| <npa if A ¢ \wmt.

This can be proved by a more severe refinement rule: refine of n
level if 275~y < |dy| < 200Dy Cwith s the Holder
smoothness of the underlying wavelet system.

In practice, however, we observe that Harten’s rule is sufficient and

that the thresolding error dominates the refinement error.

- /
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\ A crude error estimate /

Assuming stability in the prescribed norm || - || for the reference
scheme in the sense that |E;U — E; V| < (1 4+ cAt)||U — V||, this
yields the cumulative (too pessimistic) estimate

U VP < T+ cAD)|UF =V +e < < C(T)ne ~ —

Main defects of this analysis :

- In most practical cases, we observe that thresholding and

refinement error does not accumulate linearly.

- No error bound available in terms of the number N. of wavelet
coefficients which is used to represent the adaptive solution (we are
not ensured that N << #(I'y)). Such a bound would require that
the relevant Besov-Sobolev smoothness which governs the nonlinear

approximation error in || - || is preserved under the action of

/QSESOS and thresholding. K
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