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Univariate Approximation

f(x), x ∈ [0, 1]

Approximate f by piecewise constants

Types of approximation: Linear, Nonlinear

Select a metric/norm ‖ · ‖ to measure distortion

‖f‖Lp(Ω) := (

∫

Ω
|f(x)|p dx)1/p, 0 < p <∞

‖f‖L∞(Ω) := supx∈Ω |f(x)|, p = ∞
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Linear approximation

Divide [0, 1] into n equal length intervals

Πn := {[ kn ,
k+1
n ), k = 0, . . . , n− 1}

Sn := {S : S is constant on each I ∈ Πn}

Sn is a linear space
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Typical function in Sn

…

…0 1
N

2
N

N−1
N 1
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Linear approximation

Divide [0, 1] into n equal length intervals

Πn := {[ kn ,
k+1
n ), k = 0, . . . , n− 1}

Sn := {S : S is constant on each I ∈ Πn}

Sn is a linear space

Given f ∈ Lp[0, 1], define error

En(f)p := inf
S∈Sn

‖f − S‖Lp
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Nonlinear: Free Knot Splines

Divide [0, 1] into n intervals Ii = [ξi, ξi+1],
0 = ξ0 < ξ1 < · · · < ξn = 1

Σn := {S : S is constant on each Ii, i = 1, . . . , n}

Σn is not a linear space: S1, S2 ∈ Σn but S1 + S2 ∈ Σ2n

Given f ∈ Lp[0, 1], define error

σn(f)p := inf
S∈Σn

‖f − S‖Lp
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Nonlinear: Adaptive

For each interval I, E(I) the local Lp error in
approximating f by constants

E(I) := inf
c
‖f − c‖Lp(I)

Given error tolerance ε > 0 generate partition Pε such
that E(I) ≤ ε for all I ∈ Pε

I is good if E(I) ≤ ε

I is bad if E(I) > ε
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Nonlinear: Adaptive

Initially if E([0, 1]) ≤ ε then algorithm terminates and
Pε := {[0, 1]}

if E([0, 1]) > ε then set Bε := {[0, 1]} and Gε := ∅

Recursion: For each I ∈ Bε put child J of I in Gε if it is
good, put it in Bε if it is bad. Remove I from Bε

Stop when Bε = ∅, Pε := Gε, Nε := #(Pε)
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Nonlinear: Adaptive

ANε
(f) best approximation to f by piecewise constants

on Pε

an(f)p := inf{ε : Nε ≤ n}
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Adaptively generated partition

0 1
4

3
8

1
2 1
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Tree associated to adaptive partition

[0,1]

[0,1/2] [1/2,1]
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Comparison

Approximation classes: α > 0
defineAα(Lp, linear splines) as the set of all f ∈ Lp[0, 1]
such that

En(f)p ≤ Cn−α, n ≥ 1

Similarly define Aα(Lp) for the other forms of
approximation

Aα
q (Lp) finer scaling: same approximation order α

|f |Aα
q (Lp) := (

∞
∑

n=1

[nαEn(f)p]
q)1/q
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Approximation Classes: Linear

Fix the Lp space to measure error

As(Lp, linear) = Bs
∞(Lp)

Proved by Scherer +

good and bad news
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Linear Approximation: As
∞(Lp) Besov space of smoothness s
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Approximation Classes: free knot splines

Fix the Lp space to measure error

As
τ (Lp, nonlinear) = Bs

τ (Lτ ), 1
τ = s+ 1

p

Petrushev, DeVore-Popov (splines);
DeVore-Jawerth-Popov (wavelets)
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Approximation class: free knot splines
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Adaptive approximation
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Example: Approximation in L∞

p = ∞ approximation order O(n−1)

Linear approximation f ′ ∈ L∞
Nonlinear approximation (free knot splines) f ′ ∈ L1 or
f ∈ BV

Adaptive approximation f ′ ∈ LlogL: for example f ′ ∈ Lp

for some p > 1
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Example: f (x) = xα, 0 < α < 1− 1/p

x

y

En(f)p ≈ Cn−(α+1/p) σn(f)p ≤ Cn−1

Break points/ wavelets concentrate near singularity at 0
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Example: piecewise smooth

En(f)p ≥ Cn−1/p σn(f)p ≤ Cn−1

Breakpoints/wavelets concentrate near singularities
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Wavelets: Haar Wavelet

H(x) :=

{

−1, x ∈ [0, 1/2)

+1, x ∈ [1/2, 1] ,
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Wavelets: Haar Basis

HI(x) := 2j/2H(2jx− k), I = [k2−j , (k + 1)2−j ]

D+ := {I ∈ D : |I| ≤ 1}

{χ[0,1]} ∪ {HI}I∈D+
is a complete orthonormal system in

L2[0, 1]
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Haar Basis

0 1ϕ

0 1

ψ

0 1

ψ
[0,1/2)

ψ
[1/2,1)
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Wavelet tree
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Linear Approximation with Haar Basis

Natural ordering of dyadic intervals

Xn span of first n Haar functions

Xn is a linear space

Ew
n (f)p := infg∈Xn

‖f − g‖Lp[0,1]

This is linear approximation because Xn is a linear
space

The approximation classes for linear approximation with
Haar wavelets are identical to those with piecewise
constants.
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Linear Wavelet: As
∞(Lp) = Bs

∞(Lp)
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n-term approximation
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Nonlinear Approximation with Haar Basis

n-term approximation

Σn := {S =
∑

I∈Λ cIHI : #(Λ) ≤ n}

Σn is not a linear space

σw
n (f)p := infS∈Σn

‖f − S‖Lp[0,1]

This is nonlinear approximation because decisions are
made dependent on f

The approximation classes for nonlinear approximation
with Haar wavelets are identical to those with piecewise
constants.
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Approximation class n-term Haar approximation
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So Why Wavelets??

Simplicity of numerical implementation

How can we find best n-term approximation??

In L2 take n terms with largest coefficients

DJP: Same strategy works in Lp, 1 < p <∞, and other
spaces (Sobolev)

Cargese – p.30/49



So Why Wavelets??

Simplicity of numerical implementation

How can we find best n-term approximation??

In L2 take n terms with largest coefficients

DJP: Same strategy works in Lp, 1 < p <∞, and other
spaces (Sobolev)

Cargese – p.30/49



So Why Wavelets??

Simplicity of numerical implementation

How can we find best n-term approximation??

In L2 take n terms with largest coefficients

DJP: Same strategy works in Lp, 1 < p <∞, and other
spaces (Sobolev)

Cargese – p.30/49



So Why Wavelets??

Simplicity of numerical implementation

How can we find best n-term approximation??

In L2 take n terms with largest coefficients

DJP: Same strategy works in Lp, 1 < p <∞, and other
spaces (Sobolev)

Cargese – p.30/49



Greedy Approximation in X = Lp

Write f =
∑

I∈D cI(f)ψI with ‖ψI‖X = 1

Λn(f) indicies of n largest coefficients |cI(f)|

Gn(f) :=
∑

I∈Λn(f) cI(f)ψI

Temlyakov:

‖f −Gn(f)‖X ≤ CXσn(f)X

Greedy strategy is near optimal
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Thresholding is near optimal in Lp

Λ(f, η) := {I : |cI(f)| > η}, N := #(Λ(f, η))

Tη(f) :=
∑

I∈Λ(f,η) cI(f)ψ

‖f − Tη(f)‖Lp
≤ CpσN (f)p
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Generalizations

X a Banach space: {ψj} basis

f =
∑∞

j=1 cj(f)ψj

Λn(f) set of indices of n largest |cj(f)|

Gn(f) :=
∑

j∈Λn(f) cj(f)ψj

When do we have ‖f −Gn(f)‖X ≤ CXσn(f)X?

Konjagin-Temlyakov: Near optimal equivalent to the
basis is unconditional and democratic

Democratic
‖
∑

I∈Λ ψI‖X

‖
∑

I∈Λ′ ψI‖X
≤ C

whenever #(Λ) = #(Λ′)
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Wavelet Bases

Wavelet bases are democratic in Lp, 1 < p <∞, in Hp,
p ≤ 1

‖
∑

I∈Λ ψI‖Lp
≈ #(Λ)1/p

C1 min
j∈Λ

|cj(f)|(#(Λ)1/p ≤ ‖
∑

j∈Λ

cj(f)ψj‖Lp

‖
∑

j∈Λ

cj(f)ψj‖Lp
≤ C2 max

j∈Λ
|cj(f)|(#(Λ)1/p
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When do we get σn(f )p = O(n−α)

`τ : ‖(cj)‖`τ
:= (

∑∞

j=1 |cj |
τ )1/τ

rearrangement of (cj):
c∗n the n-th largest of |cj |, j ∈ {1, 2, . . . , }

weak-`τ :
c∗n ≤Mn−1/τ

smallest M gives |(cj)|w`τ

X = Lp, 1 < p <∞, {ψj} greedy basis.
(cj) ∈ w`τ , 1/τ = α+ 1/p↔

σn(f)p, ‖f −Gn(f)‖Lp
≤ CMn−α, n = 1, 2, . . .

∑∞

n=1[n
α‖f −Gn(f)‖Lp

]τ 1
n ≈ ‖(cj(f)‖τ

`τ
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Tree Approximation with Haar Basis

n-term approximation not numerically implementable:
wavelet positions scattered and uncontrolled

Require that the wavelet positions chosen in the
approximation lie on a tree with n-nodes

Σt
n := {S =

∑

I∈Λ cIHI : Λ a tree #(Λ) ≤ n}

σt
n(f)p := infS∈Σt

n
‖f − S‖Lp[0,1]

Numerical algorithm Λη(f) as before - complete Λη(f) to
a tree Λt

η

T ∗η (f) :=
∑

I∈Λt
η(f)

cI(f)ψI

Approximation properties analogous to adaptive
approximation
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Tree approximation
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Extensions

Can replace Haar wavelets by biorthogonal wavelets

Approximation results now hold provided α < r where ψ
has r vanishing moments and smoothness Cr,

Multidimensional: Results hold in R
d with basis ψe

I

Coefficients in w`τ , 1/τ = α+ 1/p equivalent to

σn(f)p ≤ Cn−α

f ∈ Bs
τ (Lτ ) gives approximation order σn(f)p ≤ CN−α/d

Note Sobolev embedding line has slope d
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Multidimensional results

Multidimensional: Results hold in R
d with basis ψe

I

Wavelet Tree Approximation equivalent to adaptive
triangulation with isotropic partitioning

Aα/d(Lp) = Bα
∞(Lp)

Nonlinear Approximation?

No analogue of free knot splines: general triangulation

n-term approximation using multivariate wavelets the
same

A
α/d
τ (wavelets, Lp) = Bα

τ (Lp), 1
τ = α

d + 1
p
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Compression/Encoding

How can we evaluate encoders

Experimental:

Encoders designed on heuristics

Precise Mathematical Formulation

Understand rules of game; what it means to be a winner

Two essential ingredients

a. metric ρ to measure distortion

b. Precise definition of classes Kα to be compressed
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Mathematical Formulation

Distortion: ρ(S,DnEn(S))

Evaluate Performance on a set K of surfaces

δ(K;Dn, En) := sup
S∈K

ρ(S,DnEn(S))

Given bit budget n

δn(K) := inf
En,Dn

δ(K,DnEn(S))

smallest distortion for the given bit budget

near optimal

δ(K,DnEn(S)) ≤ Cδn(K)
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(Near) Optimal Encoding for K

optimal
δ(K,DnEn(S)) = δn(K)

near optimal

δ(K,DnEn(S)) ≤ Cδn(K)

Typically: δn(K) ≈ n−s for some s > 0

Game: Find encoder/decoder E/D: for all values of n
and all classes Kα, encoder is near optimal
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Mathematical Description of Optimal Encoding: Kolmogorov Entropy

Given ε > 0

Minimal ε cover: K ⊂ ∪Nε

i=1B(Si, ε)

Kolmogorov Entropy Hε(K) := log2Nε(K)

Cargese – p.43/49



Mathematical Description of Optimal Encoding: Kolmogorov Entropy

Given ε > 0

Minimal ε cover: K ⊂ ∪Nε

i=1B(Si, ε)

Kolmogorov Entropy Hε(K) := log2Nε(K)

Cargese – p.43/49



Mathematical Description of Optimal Encoding: Kolmogorov Entropy

Given ε > 0

Minimal ε cover: K ⊂ ∪Nε

i=1B(Si, ε)

Kolmogorov Entropy Hε(K) := log2Nε(K)

Cargese – p.43/49



Covering
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Kolmogorov Entropy

Given ε > 0

Minimal ε cover: K ⊂ ∪Nε

i=1B(Si, ε)

Kolmogorov Entropy Hε(K) := log2Nε(K)

δn(K) = inf{ε : Hε(K) ≤ n}
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Mathematical Description of Optimal Encoding: Kolmogorov Entropy

Given ε > 0

Minimal ε cover: K ⊂ ∪Nε

i=1B(xi, ε)

δn(K) = inf{ε : Hε(K) ≤ n

Kolmogorov entropy of K gives our benchmark

Usually not practical encoder
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The Issues

1. The metric: least squares

2. The classes

3. Determine Entropy of Classes

4. Build near optimal Encoders/Decoders
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Wavelet Encoding

Tree approximation can be turned into an encoder

Tree with n nodes can be encoded with n bits

Cohen-Dahmen-Daubechies-DeVore
(Cohen-Daubechies-Gulleryuz-Orchard) This encoder
is optimal on all Besov classes compactly embedded
into L2

EZW, Said-Pearlman,
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