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Wavelet Based Methods
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Wavelet imagerepresentations

The ability of wavelets to localize position and frequency is very useful in representing
images.

This allows us to isolate a region of the image or to examine the image on different scales.

Decomposing an image in a wavelet basis tends to concentrate most of the energy of the
image into a few (large) coefficients. This is referred to as energy compaction.

One reason for this is that images tend to have large smooth regions. In these regions the
wavelet coefficients decay rapidly.

This also means that the places where the wavelet coefficients fail to decay rapidly (usually)
correspond to edges or texture.
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JPEG2000

The new JPEG2000 standard uses wavelet coding for image compression (both lossless and
lossy).

In the lossless mode, an integer-to-integer wavelet transform is used. This mode can also be
lossy if we cut the progressive bitstream at some point.

The coefficients are quantized and then each bitplane is coded independently.

When a particular bit (in a bitplane) is encoded depends on its “significance”. Thus, even
within a bitplane the stream can be progressive.

A context-dependent binary arithmetic coder is used for entropy coding.

The progressive local improvement data is collected in “packets” which form “layers” (a
global quality improvement).

The scale and resolution capability of wavelets is essential for this progressive encoding.
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Separable decomposition
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Non-separable wavelets

The scaling function for a non-separable wavelet satisfies a matrix dilation equation of the
form � ��� � �

� � � �	

� � �� � �  �

where

�

is a dilation matrix (expansive integer matrix).

The simplest examples of non-separable wavelets are Haar wavelets based on self-affine
tilings of

�� �

.
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Other self-affine tilings
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Non-separable subsampling
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Smoothnon-separablewavelets

The construction of continuous or smooth non-separable wavelets is considerably more
difficult than Haar wavelets.

There are several obstructions to using the one-dimensional techniques to construct such
wavelets.

At the present time, not many families of smooth non-separable wavelets are known. It is
known that arbitrarily smooth non-separable compactly supported wavelets exist.
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Truncation: separable vs. non-separable

Separable truncations 3,4,5,6 levels

Non-separable truncations 6,8,10,12 levels
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Truncation: separable vs. non-separable

Separable truncations 2,3,4,5 levels

Non-separable truncations 4,6,8,10 levels
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WaveletDenoising

Suppose we have an image

�

that is corrupted with noise

�

so we observe
� � �� �

.
We want to find an estimate

� �

for

�

.

The energy compaction property of wavelets means that

�

will have a few large coefficients
and many small coefficients.

The basic idea in wavelet denoising is to find these small coefficients and to shrink them
(either zero them or shrink them towards zero), thus reducing the noise.
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Hard vs. Soft Thr esholding

There are several different methods for setting the threshold. One basic distinction is hard
versus soft thresholding.

Soft thresholding has the advantage of being continuous (so as not to introduce artificial
discontinuities).

Soft thresholding has also been shown to achieve a near-optimal minimax rate over several
Besov spaces.

Soft thresholding also has some other theoretical advantages.
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Denoising(cont)

BayesShrink: the threshold is � �� �� . This threshold is derived by assuming that the
distribution of the wavelet coefficients in any scale is given by a Generalized Gaussian
Distribution (GGD). The problem is to estimate the GGD parameters for each subband.
These parameters are estimated for each subband from the noisy image data.

SureShrink: the threshold is computed as either a SURE threshold (derived from minimizing
Stein’s unbiased risk estimate) or the Universal threshold ( � �� ��� � �� �

, which is
asymptotically optimal in the minimax sense).

The SURE threshold can be viewed as another (and data-driven) way to minimize the Bayes
risk given a GGD prior on the coefficients.

NormalShrink: the threshold is

 � � � �! , where

 � � ��� � �"$# � % �

(

"$# is the length of the

&

th
subband and

%

is the number of subbands), � is the estimated noise variance (as before)
and � ! is the variance of the particular subband of the noisy signal.
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CycleSpinning

The discrete wavelet transform has a lattice of preferred locations. These locations might not
be the correct ones for denoising a particular image.

One way to deal with this problem is via cycle spinning – denoising shifted versions of the
image and then averaging the various shifts.

The idea is that the noise at different locations is independent, so the averaging will tend to
smooth out the noise.
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IFS Based Methods
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IFS Fractal Basics

We wish to formalize the notion of a set being self-similar.

Consider the three affine maps

'( ���) * � � � � � )
*

� �) '+ ���) * � � � � � ,
� ) *
� �) ' � ���) * � � � � � )

*� ,
� �.-

We see that if

/

is the Sierpinski gasket (above) then

/ � '( � / �0 '+ � / �0 ' � � / �-

In fact,

/

is the unique such set.
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Definition of IFS

Let

� �) 1 �

be a complete metric space.

An IFS on

�

is a finite set of contractive self-maps

2 '� 3 � 4 � 3  � 5) - - - � 6
.

The attractor of the IFS is a non-empty compact set

� 7 �

so that
� � 8� '� �� �

.

We endow the space 9 � � � � 2: 7 � 3 ;< � : is compact

6

with the Hausdorff metric

1>= making

� 9 � � �) 1= �
a complete metric space.

For our purposes, we usually take

� � ? 5) , @ �
.
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The map

A 3 9 � � � 4 9 � � �

defined by

A �B � �
�

'� � B �

is a contraction if

2 '� 6

is an IFS.

Thus B C 3 � A C � B � D �
for any non-empty compact set

B

.
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CollageTheorem

Theorem: (Collage Theorem) Let

E 3 � 4 �

be a contractive map with contractivity
factor F G ,

and � H be its fixed point. Then

1 � *) � H �I 1 � *) E � * � �

, � F -
In the context of an IFS

2 '� 6

, this says that if a set

B

almost self-tiles under

2 '� 6

then

B

is
“close” to the attractor of the IFS.

This is used in the inverse problem: Given a set
�

, find an IFS whose fixed point is

�

.

Often the quantity

1 � *) E � * � � is referred to as the collage distance.
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CollageTheorem(cont)

A collage of a leaf with copies of itself.

The attractor of the resulting IFS.
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IFS on Function Spaces (IFSM)

We consider an image as a function

J 3 � 4 ��

, so we need an IFS operator on functions.

Let

�� 3 �� 4 ��

be maps. We usually want them to be Lipschitz.

Define

E � J � �� � �
�

�� K J � ' L +� �� � � M

so

E

maps functions on
�

to functions on

�

.

Under suitable conditions on the '� ’s (contractivity) and on the

�� ’s we know that

E

will map"N � � �

to

"N � � �

.

Notice that the '� ’s perform a mapping on the “base space”

�

and the

�� ’s map on the
“vertical” space

��

. The

�� ’s are usually called the grey-scale maps.

Most often we take

'� �� � � O� � � F� and

�� �P � � Q� P �  � -
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IFSM example

There is one parent and four children.

The parameters are
Q 0.5 0.5 0.4 0.5 

80 40 132 0
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Another example

This is the same type of IFSM operation, except with a twist.

Here we have allowed non-linear maps '� .
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Fractal ImageCompression

Given a picture (a function

J

), the basic idea is to try to find an IFSM operator
E

whose fixed
point � H closely matches

J

.

If we can find a

E

so that

1 � E � J �) J �

is small, then we know (by the Collage Theorem) that1 � J) � H � will be small as well.

The standard fractal compression method is the Block-Encoding method.

The maps '� are found by the searching while the Q� and

 � are (usually) calculated to
minimize mean square error.
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Fractal CompressionasSelf-VQ

Vector Quantization (VQ) is one form of data compression for multi-dimensional data.

In basic VQ you map each data vector into an appropriate (usually closest) codevector from
a codebook.

This allows you to quantize vector data which might have dependencies between the
components.

IFS block-coding is like a Self-VQ in that the image acts as its own codebook.
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Why arewe interestedin compression?

Compression is approximation – we attempt to approximate the image by the fixed point of
an IFSM.

In doing this, we analyze the “fractal” nature of the image.

The starting point of the IFS-based methods for image processing is this fractal analysis.
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Local IFS

This type of IFS can be formalized as a Local IFS.
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BasicFractal Compression: example

Reconstruction: one, two, three, four, ten iterations and the original image.
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Extensions to the basicalgorithm

Many modifications and extensions to the basic algorithm have been proposed.

These include adaptive partitions (both top down and bottom up), more complicated
grey-level maps (the

�� ’s) and merging fractal and wavelet or other transform techniques.

A significant problem is the problem of searching for the best match. This has also been a
large focus of the research in this area.

Methods to speed up the search include classifying the blocks, limiting to a local search,
using transforms or convolution, and doing the search in a hierarchical fashion (multi-scale).
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Postprocessing

One problem with the iteration scheme is that edges (and noise) can get replicated to finer
scales.

One can either apply a smoothing filter to the end result or (better) apply some smoothing
operation for each iteration.
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Varying the partition

Many different types of partitions have been tried, including triangular partitions, rectangular
partitions and more general partitions.

Most of these partitioning schemes are also adaptive.

The benefit is the flexibility to match image features.

The cost is both the extra algorithmic complexity and the extra storage necessary for
encoding the partition.
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Examplesof thr eepartition s
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Quadtr eepartition

This is the simplest adaptive partitioning scheme.

Start with large(ish) child blocks and try to find a match, subdividing into four smaller blocks if
some error tolerance is not met.

The tree structure allows simpler storage of the partition.
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HV partition s (Hor izontal, Vertical)

There are several split criteria.
We could try to find an edge and split on the edge.
We could split to minimize the error (often mean-square).
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Triangular partition

Triangular partitions are very flexible but complex.
The partition requires a lot of information to encode.
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Region growing

In this approach, we start with a partition into small atomic regions, usually blocks. These
blocks function as the child regions.

We selectively merge two regions according to an error criteria.

We must also merge the corresponding parent regions.

Thus, we keep a list of active child and parent regions and possible candidates for merging.
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Regiongrowing example

Region growing and quadtree fractal compression

Region growing partition and quadtree partition
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Regiongrowing example

Variance based splitting criteria Two collage based splitting criteria
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Beyond collagecoding

The IFS image approximation usually uses the collage distance as a measure of error.

1 � *) � H �I 1 � *) E � * � �

, � F

This provides a sub-optimal solution, since we really want to minimize

1 � *) � H � .

This is done to simplify the computational problem.

There are various ways of trying to improve on this.

These usually involve starting with the collage solution and doing some type of “local” search.
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Gradient descent optimizing

Unfortunately, gradient descent doesn’t really pay off in terms of image quality and it is very

computationally expensive
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Fractal zoom
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Fractal Denoising

Most approaches to denoising involve some type of local smoothing, with the assumption
that the noise is additive and zero mean.

Using fractal compression as a basis for denoising is natural since fractal compression
involves some local smoothing.

This smoothing arises from two sources: the mean-square fit in the region matching and the
contractivity in the grey-scale maps,

�� .

We can also try to estimate the noise-free fractal parameters and use these in the fractal
denoising.

Any of the fractal compression schemes can be used for denoising.

For this application, we don’t really care about compression so approximation schemes
which expand are ok.
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Example: Fractal Denoising

Original Standard scheme, cycle spinning with 16 shifts

Noisy Quadtree scheme, cycle spinning with 16 shifts
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Mixing IFS and wavelets(IFSW)

The key observation in mixing IFS and wavelets is the fact that wavelets have a natural
notion of scale.

We expand our signal in some wavelet basis and then try to do an IFS type compression on
the wavelet coefficients.

For simplicity, we restrict our discussion to one dimension. The extension to two dimensions
is simple.

The type of transform considered is illustrated as
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Basically we are trying to extrapolate the fine resolution wavelet coefficients from the coarse
resolution wavelet coefficients.

Usually one will store all the expansion coefficients up to some level and then try to use an
IFS to predict the higher frequency ones.
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One of the main motivations for this is that the wavelets overlap, thus the “blocks” in the
“wavelet coefficient space” are overlapping in “picture space”.

However, since the wavelets are orthogonal, the different “blocks” still represent independent
information.

This helps to eliminate some of the blockiness from the fractal block algorithm.

Wavelets are localized in both frequency and space, thus different “blocks” correspond to
different parts (spatially) of the picture.

If we use the separable Haar basis, IFSW compression is exactly the same as IFS
compression.

For other wavelets, the relationship is more complicated.

One could also try to do an IFS-type compression scheme in other transform spaces (or
using other orthonormal basis).
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Comparison: Fractal/Fractal-Wavelet

Standard IFSM scheme

IFSW scheme
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Extensions to IFSW

There are several natural ways to generalize the basic IFSW transform.

The 2D wavelet coefficients are

We can picture a general 2D IFSW as
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Intr oduction to CBIR

Content Based Image Retrieval is an application where you query an image database and
the database returns the

�

most “visually similar” images.

Of course, the major difficulty is defining what “similar” means – this is an ill-posed problem.

The other problem is one of speed – the query should take only a couple of minutes even
with databases of 100 000 images or more. This speed restriction severely constrains the
possible image analysis.

The usual method is to calculate “image descriptors” – these are typically vectors of floating
point numbers.

These same descriptors are computed for the query image and compared to those for the
images in the database. A score is calculated for each image and the top

�

images are
returned.

The mathematical challenge is to discover descriptors and metrics to compare the
descriptors.
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Example: Color Histogram

As an example, a simple image descriptor is a color histogram.

To compute this descriptor, choose some number, say 24, of representative colors.

Map all the colors in an image to one of these representative colors.

Scan through all the pixels in the image and record how many times each representative
color is used.

We now must compare two color histograms to compute a distance between two images.
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We could use an

\N metric, but this has disadvantages. For some purposes, an
Earth-Movers distance is better.

All

\N metrics would measure these distances as the same, but in color space blue might be
closer to purple than yellow.

Thus, we want a metric that measures both the “horizontal” difference as well “vertical”
difference.

. – p.53/72



Fractal Descriptors

During fractal compression, a lot of data about the image is generated.

This information can be used to try to classify the image.

A very simple example of this would be an overall collage error. That is, once the final fractal
“code”

E

has been found for the image *, compute

1 � *) E � * � � .

This gives a measure of how self-similar the image is (at least under this class of IFS).

One could also compute a histogram of “local collage errors”– that is, the matchings for each
parent-child block matching.

Other possibilities include statistics of relative location of parent-child matchings, statistics ofQ and

 

parameters, etc.
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Fractal Descriptors (cont)

The meaning of these fractal descriptors is not completely clear, but they do provide one way
of measuring similarity.

Which metric to use for which descriptor is also not at all clear.

Edge information is partially stored in the parent-child matchings.

The

 

’s partially encode the “global look” of the image. They represent something like the
average value of the image over the child block.
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Meaning of IFS parameters

Fixed Q,  

, index,
random Q,  

, index, reconstructed.

. – p.56/72



IFS parameters(cont)

Fixed

� Q)  �

,

� Q,index), (

 

,index),
random

� Q)  �

,

� Q,index), (
 

,index), reconstructed
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Example: ImageMatching
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Example: ImageMatching
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Example: ImageMatching
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Example: ImageMatching
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Finding subimages
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Multifractal Based Methods
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Basics

“The multifractal analysis of images consists in defining a sequence of capacities on the
image, computing its multifractal spectrum, and classifying each point according to the
corresponding value of

� Q) J � Q � � , both in a geometric and a probabilistic fashion.” – Jacques
Levy-Vehel

A point on an edge (piecewise smooth curve) in the image belongs to a set

]_^ whose
dimension is

,

.

A point in a homogeneous region has

J � Q � � � .

The idea is that edge points should be relatively rare points – too many edge points in a
region should be classified as a texture, not a collection of edges.

This allows us to analyze the image in several ways.
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SomeExamplesof Capacities

Sum measure: For a set

`

we simply sum over the image grey level values in the set.

Max capacities: We can define these at different resolutions. Basically, we compute the
maximum of the pixels in a region

`

or the maximum block (at some resolution) which
intersects

`

.

Iso capacities: We can again define these at different resolutions. These are defined to be
the size of the largest level set in

`

at some resolution.

The max capacities depend only on the grey level values while the iso capacities depend
only on the grey level distribution. Thus, these give different information.
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EdgeDetection: Example

Original Image, Smooth Edges obtained with max capacity, Irregular Edges obtained with
max capacity.

We define a point to be on a “smooth” edge if it belongs to a set

]^ whose dimension is

,

.

We define a point to be on an “irregular” edge if it belongs to some set

]^ whose dimension
is between two values, say

,- ,
and

,- a
.

Edge points are defined using both local information ( Q ��� � �

and global information (

J � Q � ).
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Multifracta l Denoising

The basic idea in using multifractal analysis in image denoising is that we want to increase
the Hölder function Q of the image.

We want to do this in such a way as to preserve the important features of the image,
particularly edges.

The denoised signal

� �

is thus viewed as the image closest to

�
which has the desired

Hölder function, Q � .

Usually we take Q � � Q ! � b

, where

bdc 5

is some function (so that

� �

everywhere has
greater smoothness than

�

).
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An immediate problem arrises: if the noise is additive white noise then Q ! � � ,� �
a.s.

everywhere. Thus there is no way to extract information about Q � from Q ! .

The solution to this is that we have only a limited number of resolutions. We craft our
measures of regularity to agree with our intuition at these resolutions.

Given this, we still have to be able analyze and prescribe the local Hölder regularity.

One solution to both problems involves wavelets. There are simple estimates on the wavelet
coefficients which guarantee a certain local Hölder regularity:

e 1�gf h e I i � L h j^ k + l � m -

Thus, given the wavelet coefficents
1�gf h of

�

we modify them to obtain the coefficients 
� f h of� �

, hopefully with the desired local smoothness and still close to

�

.
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Prescribing the Hölder Function

Each wavelet coefficient at a “large” resolution influences many points. For this reason, the
minimization problem is a global one – we must solve simultaneously for all the wavelet
coefficients as one large optimization problem.

We obtain a system of constraint equations which is linear in the logarithm of the desired
wavelet coefficients. Our objective function is the risk

] �n � � � �n �
.

To simplify the situation, we could assume that 
�gf h � B h 1�gf h with

5 G B h G ,

. Thus, we
shrink the coefficients of

�

to get those of

�

. Notice we allow ourselves to shrink each
resolution by a different amount.
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Original SAR image, Kuan median filtering, wavelet shrinkage, local regularity based
denoising.
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Original SAR image and local regularity based denoised version.
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Resources

Fractal Image Compression, Yuval Fisher, editor, Springer-Verlag, 1995.

The Konstantz Paper Collection,
www.inf.uni-konstanz.de/cgip/fractal2/html/index.html

Waterloo Fractal Compression Project, links.uwaterloo.ca

Jacques Levy-Vehel’s web page at fractales.inria.fr.

“A wavelet tour of signal processing”, Stéphane Mallat, Academic Press.

“Introduction to the multifractal analysis of images”, Jacques Levy-Vehel.
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