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From Rainbows to Spectras

Von Freiberg, 1304: Primary and secondary rainbow

Newton and Goethe
ISITO4 4



Signal Representations

1807: Fourier upsets the French Academy....
ft) 4

=/\/\/+/\/\/+’\/\/

Fourier Series: Harmonic series, frequency changes, fy, 2fy, 3fg, ...

But... 1898: Gibbs’ paper 1899: Gibbs’ correction

Orthogonality, convergence, complexity
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1910: Alfred Haar discovers the Haar wavelet
“dual” to the Fourier construction

£(t)

Haar series:
« Scale changes Sgp, 2SS, 4S5, 8Sg ...
 orthogonality

m=1
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Theorem 1 (Shannon-48, Whittaker-35, Nyquist-28, Gabor-46)

If a function f(t) contains no frequencies higher than W cps, it is com-
pletely determined by giving its ordinates at a series of points
spaced 1/(2W) seconds apart.

[if approx. T long, W wide, 2TW numbers specify the function]

It is a representation theorem:
* {sinc(t-n)}, in 7z, is an orthogonal basis for BL[-r,x]
e f(t) in BL[-m,x] can be written as f(t)) = Ef(n)-sinc(t—n)

.. Slow...!

Note:
« Shannon-BW, BL sufficient, not necessary.
* many variations, non-uniform etc
 Kotelnikov-33!
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Representations, Bases and Frames

Ingredients:
e as set of vectors, or “atoms’’, {cpn}

* an inner product, e.g. (¢, f) :f(cpn-f)
* a series expansion

f(t) = 3 (Pp ) - p(1)

Many possibilities:
« orthonormal bases (e.g. Fourier series, wavelet series)
* biorthogonal bases

« overcomplete systems or frames
€ 1~ @
P P1

Co

P, ~
OB BOB

Note: no transforms, uncountable
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Approximations, aproximation...

The linear approximation method

Given an orthonormal basis {g,} for a space S and a signal
f = E(ﬁ gn> .gn’
n

the best linear approximation is given by the projection onto a fixed sub-
space of size M (independent of f!)

tm= Y (feg) g
ne€ly

The error (MSE) is thus

2 2
g = ||If— = f, g,
M H f” n; ‘< g >‘

M

Ex: Truncated Fourier series

project onto first M vectors corresponding to largest expected inner
products, typically LP
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The Karhunen-Loeve Transform: The Linear View

Best Linear Approximation in an MSE sense:
Vector processes., i.i.d.:

T T
X = [Xg X1 eoes Xy 1] E[X.] =0 E[X X ] = Ry

Consider linear approximation in a basis
M -1
Xy = Y (X.g)g  M<N
n=0

Then:
N-1

Eflsp] = Y (Rxgp gy
n=M

Karhunen-Loeve transform (KLT):
For 0<M<N, the expected squared error is minimized for the basis {g,}
where g,, are the eigenvectors of Ry ordered in order of decreasing
eigenvalues.

Proof: eigenvector argument inductively.

Note: Karhunen-47, Loeve-48, Hotelling-33, PCA, KramerM-56, TC
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Geometric intuition: Principal axes of distribution:

Shapes: ellipsoids

To first approximation, keep all coefficients above a threshold:

A )
\ N N
\/ N——

» N

This can be used in many settings, classification, denoising,
and compression (inverse waterfilling thm)
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Compression: How many bits for Mona Lisa?
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A few numbers...

D.Gabor, September 1959 (Editorial IRE)

"... the 20 bits per second which, the psychologists assure us, the
human eye is capable of taking in, ..."

Index all pictures ever taken in the history of mankind
e 100 years - 10"’ ~ 44 bits

Huffman code Mona Lisa index
 a few bits (Lena Y/N?, Mona Lisa...), what about R(D)....

Search the Web!
* http://www.google.com, 5-50 billion images online, or 33-36 bits

JPEG
« 186K... There is plenty of room at the bottom!
- JPEG2000 takes a few less, thanks to wavelets...

Note: 2(296x256x8) s5gsible images (D.Field)
Homework in Cover-Thomas, Kolmogorov, MDL, Occam, DNA, etc

(from a contemporary: 0 bits, | don’t care for this modern stuff)
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Source Coding: some background

Exchanging description complexity for distortion:
* rate-distortion theory [Shannon:58, Berger:71]
« known in few cases...like i.i.d. Gaussians (but tight: no better way!)

A distortion

N(0,02) D(R)=o 2% or -6dB/bit

complexity
e

» typically: difficult, simple models, high complexity (e.g. VQ)
* high rate results, low rate often unknown
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Limitations of the Standard Models

“Splendeurs et miséres de la fonction débit-distortion” (after Balsac)

Precise results
 beautiful (maybe too much for its own good)
e upper and lower bounds
e constructive

Problems
« complexity: exponential in code length
« code construction: finding good codes is hard

Paradox:
- Best codes used in practice are suboptimal (Effros)
« transform codes dominate the scene of ““real’” compression

Audio/lmage/Video: distortion measures?

So: unlike in lossless compression, lossy compression
uses IT in a limited way;)
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New image coding standard ... JPEG 2000

Old versus new JPEG: D(R) on log scale

old JPEG (DCT)

-6 dB/bit ol

AN N
AN
\\\\\
AN N
S N

new JPEG

N~ swavel ets)

\\\‘\
A J

Main points:
« improvement by a few dB’s
* lot more functionalities (e.g. progressive download on internet)
« at high rate ~ -6db per bit: KLT behavior
* low rate behavior: much steeper: NL approximation effect?

* is this the |limit?
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The Swiss Army Knife Formula of Transform Coding [Goyal00]

Model: iid vector process of size N, u=0, R,, MSE, high rate
 vector quantizer, entropy code

X o —»y—>y—1—> B - > %

 transform and scalar quantizers, entropy code

— Yi 111 i Y |
| —= Ol —» [ > |
| | O |
| | 1y | Yo |
| — A, bits Y‘l — Py -1 |! .
X — T | | v . 0l | T > X
| I L I | |
! L e |
I I I | | I I I I
| ! ! by ! |
I - ON —.»BN B, |
| YN 1IN N y |
2
~Zh(y;))
1 -1,.—.T <N ! —2R
D(R) = — -tr(T (T -2 -2
(R) = o tr(T(T7))

Trace min: ortho; diff. entropy min: independence
« Gaussian case: coincide! but in general not...
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Representation, Approximation and Compression:
Why does it matter anyway?

Parsimonious or sparse representation of visual information is key in
» storage and transmission
* indexing, searching, classification, watermarking
- denoising, enhancing, resolution change

But: it is also a fundamental question in
* information theory
* signal/image processing
« approximation theory
e vision research

Successes of wavelets in image processing:
« compression (JPEG2000)
« denoising
« enhancement
» classification

Thesis: Wavelet models play an important role

Antithesis: Wavelets are just another fad!
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Interaction of topics

harmonic
analysis

information
theory

approximatio

signal
theory

processing

AT: deterministic setting, large classes of fcts
HA: function classes, existence, embeddings
IT: boundings, converses, stochastic setting
SP: bases, algorithms, complexity

The interaction is the fun!
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2. Fourier and Wavelet Representations: Spaces

0

1/p 1/p
Norms: x|, = (Elx[n]lp) Il = (flf(t)lpdt)

Hilbert spaces: 1,(Z) = {x:(|lx[, <)} L,(R) = {f:([fll, <)}
Inner product: (x,y) = EX*[n]y[n] (f, g)sz*(t)g(t)dt

Orthogonality: xly < (x,y) =0

Banach spaces:

X, f s.t. ||x||p, ||ﬂ|p < ® p general
X[Al]

v P

p-norm = 1 r b= 2
—————Dp = 1

o >X[O]

@ﬁ . 0<p<l
1SIT04 21




A Tale of Two Representations: Fourier versus Wavelets

Orthonormal Series Expansion

f= 3 oae, 0 =(0ph  <0pe,> =0, iy = ol
ne”Z
Time-Frequency Analysis and Uncertainty Principle

f(t) < F(w) At = ftzlf(t)ldt Ao = foole((n)Idm

Then
At- Aozl
2
()]

7 2z

% / not arbitrarily sharp

% é in time and frequency

/
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Local Fourier Basis?

The Gabor or Short-time Fourier Transform
—jmo(t—nT)

o) = W(t=nT)e " °
Time-frequency atoms localized at (nT, mw,)
frequency

A

_>
time

When T, w, “small enough”
f(t)zC'Fm,nCPm,n(t) where F . = <¢, ,, >

Example: Spectrogram
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The Bad News...

Balian-Low Theorem
$m o 1S @ short-time Fourier frame with critical sampling (Tw, = 2x)
then either
Azt:ooorAzoo:oo
or: there is no good local orthogonal Fourier basis!

Example of a basis: block based Fourier series

A SINM

TN\ e R || O

T OU U vT 2T

Note: consequence of BL Thm on OFDM, RIAA
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The Good News!

There exist good local cosine bases.

t
Replace complex modulation (ejmwo) by appropriate cosine modulation
1 T
t) = w(t—nT (7_‘ +1 (t— T+
@ n(t) = w(t—nT)cos 2(m 2) n 2)) |AVV(t)|2
where w(t) is a power complementary window
EIW(t—nT)| =1
n
Result: MP3!
Many generalisations... 1 T
5 ; : —
¢

/XX T

S EVERVERW |1ll]| .-
[i] 20 &0 &0 Bl 100 120 140 160 180 200
tima [rres]
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Another Good News!

Replace (shift, modulation)
by (shift, scale)

or

m
W (1) = 2‘m/2lp(t‘2 n) n,meZ
5 2m

then there exist “good” localized orthonormal bases, or wavelet bases

frequency
W\ ‘
/\/\/\ _

time
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Examples of bases

35

0 5 10 15 20 25 30 35 40
h® |
T T T T T T T T
- 1 I ! ! ! L ! ' '
0 5 10 15 20 25 30 35 40 45
@)
g 1 T T T T T T T T
0
>
- T1 ! ! ! ! L ' ' '
0 5 10 15 20 25 30 35 40 45
Haar Daubechies, D,
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Wavelets and representation of piecewise smooth functions

Goal: efficient representation of signals like:

bof() Scaling functions
I
\
= time
T Noise

VY Urapiiants
D,

Wavelets

where:
- Wavelet act as singularity detectors
 Scaling functions catch smooth parts
« “Noise” is circularly symmetric

Note: Fourier gets all Gibbs-ed up!
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Key characteristics of wavelets and scaling functions

Wavelets derived from filter banks, ortho-LP with N zeroes at mx,
[Daubechies-88],

G(z) = (1+27) R(2)

Scaling function: ¢(w) = 1—[ G<ej(co/(2 )))
i=1

Orthonormal wavelet family: vy () = Z_m/zxp(z_mt—n)

Scaling function and approximations

« Strang-Fix theorem: if $(w) has N zeros at multiples of 2x (but the or-
igin), then {@(t—n)},=, spans polynomials up to degree N-1

Ecn-cp(t—n) = k=0,1,..N—-1
n

« Two scale equation:
1
J2

e smoothness: follows from N, a = 0,203 N

¢(t) = —=- g, ¢(2t—n)
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Lowpass filters and scaling functions reproduce polynomials
» [terate of Daubechies L=4 lowpass filter reproduces linear ramp

0.2F T T T T =
0.15 . scaling
function
0.1 _
0.05 .
0
~0.05 ! .
200 250
500 T T T T T T T T .
400l linear
300 | ramp
200 | .
100} .
° ~  \J/
-100F V .
_200 | | | | | | | |
0 50 100 150 200 250 300 350 400 450

Scaling functions catch “trends’’ in signals
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Wavelet approximations
- wavelet v has N zero moments, kills polynomials up to deg. N-1

- wavelet of length L= 2N-1, or 2N-1 coeffs influenced by singularity at
each scale, wavelet are singularity detectors,

- wavelet coefficients of smooth functions decays fast,
e.g. fincPm<<0 1
m(p—)

(Y ) = €2

Note: all this is in 1 dimension only, 2D is another story...

2 T

1.5
1k
05
ok
-05F
1+

-15
0
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How about singularities?

If we have a singularity of order n at the origin
(0: Dirac, 1: Heaviside,...), the CWT transf?rm behaves as

n——

X(a,0) = c,-a

large

i

s y

7
%%
Iz
4 / /// , / /A_’é '/-.// )
>0
. ) a7
- e

7 /4

_ .
"

Y

e
o
// //// Y Scal e

In the orthogonal wavelet series: same behavior, but only L=2N-1 co-
efficients influenced at each scale!

- e.g. Dirac/Heaviside: behavior as 2™™*

m/?2

nd 2 ., m<<0

Wavelets catch and characterize singularities!
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Thus: a piecewise smooth signal expands as:

T0.5

T0.2

0 100 200 300 400 500 600 700 800 900 1000

 lowpass catches trends, polynomials
« a singularity influences only L wavelets at each scale
- wavelet coefficients decay fast
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More Spaces

CP spaces: p-times diff. with bounded derivatives
-> Taylor expansions

Holder/Lipschitz a: locally o smooth (non-integer)
Sobolev Spaces W'(R)
FEFR) [ lo*F(0) do <o

| f s>n+% théoﬁ f is n-times continuously differentiable

1 f(t) F(o)]

Equivalently F(w) decays at -
(1+]w])* 1727 /T\ PN I&

| * |

Besov Spaces Bp(I) with respect to a basis (typically wavelets)

Fe1*(1)

1/
Iflg, , = (Ez‘dpm’n, f>‘P> P
n

m
or wavelet expansion has finite 1p norm
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From linear to non-linear approximation theory

The non-linear approximation method

Given an orthonormal basis {g,} for a space S and a signal

f= E(fagn> 'gn,

n

the best nonlinear approximation is given by the projection onto an
adapted subspace of size M (dependent on f!)

M= 3 (fg)-g,

nEIM

Iy (£, gn>‘n€IMZ‘<f’ gm>‘m6€IM set of M largest ( , )

The error (MSE) is thus
-2
ey = =17 = 3 I e’
n &Iy,
and gy =s8y.

Difference: take the first M coeffs (linear) or
take the largest M coeffs (non-linear)
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Nonlinear approximation
« This is a simple but nonlinear scheme
« Clearly, if Ay(.) is the NL approximation scheme:

Ap(x)+ A (y) = Ay (x+y)

This could be called ‘““adaptive subspace fitting”’

From a compression point of view, you ‘““pay’ for the adaptivity

* in general, this will cost
log( N) bits
k

which cannot be spent on coefficient representation anymore
A A

LA: pick a subspace a priori NLA pick after seeing the data
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Non-Linear Approximation Example

Nonlinear approximation power depends on basis
Example:

A f(1)

cst

| >t
1/sqrt2 1
Two different bases for [0,1]:
- Fourier series {e*™ s
« Wavelet series: Haar wavelets

Linear approximation in Fourier or wavelet bases

Nonlinear approximation in a Fourier basis

Nonlinear approximation in a wavelet bl\?sis
gy~ 1/2
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Fourier versus Wavelet bases, LA versus NLA

1
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

1 4

0.5 A
0 AN

1
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

1
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

N= 1024, M=64
Fourier (left): LA versus NLA does not matter

Wavelets (right): NLA does orders of magnitude better!
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Nonlinear approximation theory and wavelets
b f(t)

Approximation results for piecewise smooth fcts

* between discontinuities,
behavior by Sobolev or Besov regularity

. k derivatives = coeffs ~2"%*"" when m«o0
- Besov spaces can be defined with wavelet bases. If

1/
G, = (g™ "< 0<p<2

then [DeVoredL92]:

8y = O(M1—2/p)
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Approximation in Sobolev and Besov Spaces

Nonlinear Approximation Error for Piecewise Smooth Functions
H T H T

Linear Approximation, W®5[0,N]
» Sobolev-s: uniformly smooth
« Fourier: g, = M 2570 5>0

—25—9§ o]
- Wavelets: sy, = M S >0 2 ol

Non-Linear Approximation

e Besov-s: smooth between a finite # of
discontinuities & "

_1 Number of retained coefficients (N)
* Fourier: does not work, &, =M
« Wavelets: approximation power given by the smoothness!

 Key: effect of discontinuities limited, because wavelets are
concentrated around discontinuties

 f(t) in W%(0,N) between finite # of discontinuities,
then f(t) in B,(0,N) (wavelet of compact support)
* Then:
(-
p 1

gy = M 5<S

d

« result can be refined to get &, = M2 d>0
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4. Wavelets and Compression

Compression is just one bit trickier than approximation...
A small but instructive example:

Assume
* X[n] = a 8[n-k], signal is of length N, k is U[O,N-1] and a is N(0,1).
« This is a Gaussian RV at location k

A ~N(0,1)
A
k N

- Note: Ry = I!

Linear approximation:

Non-linear approximation, M > O:

ISITO4 43



Given budget R for block of size N:

1. Linear approximation and KLT: equal distribution of R/N bits
D(R) = . g2 2(RN)

This is the optimal linear approximation and compression!

2. Rate-distortion analysis [Weidmann:99]

High rate case:
- Obvious scheme: pointer + quantizer

D(R) - - 0_2 _ 2—2(R—10gN)

* This is the R(D) behavior for R >> Log N
« Much better than linear approximation

Low rate case:

- Hamming case solved, inc. multiple spikes:
- there is a linear decay at low rates

- Lo, case: upper bounds that beat linear approx.
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Example 1: Binary, Hamming, 1 and k spikes

Single Spike in N =2, 3, 4, 6, 10, 20 Positions ; K =16, 12, 8, 4, 2 Spikes in N = 32 Positions
1 T T T T T T T T T T T T T T
09 4 09 i
08+ 4 08+ N - 3 2 i
N=20 ]
c 07+ — 4 o K—4
o a —
E 06 i 5 06 : : i
a S 05F : 4
05+ ; » . il =
2 2
€ = L i
041 i £ 04
5 £
T 5 oo 7
03+ il s o
02k N—2 il 02k K_1 6 i
01+ 4 01+ i
0 L I L L 1 i i Il i 0 L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 03 04 R/%s 0.6 07 0.8 0.9 1
R/log(N) max

Example 2: Bernoulli-Gaussian

Bernoullit0.11 x Gaussian Spike

— - BlahutTArimoto
Upper Bound
5 ~ N — - Asymptote

T25 . N N . 4

p=0.11

T30 NS 4

Distortion [MSE dB]
7,
?,

T35 7

40 “ 4

45 : : N

Y50 I I I I
0 0.2 0.4 0.6 0.8 1 1.2 14

Rate [bits]
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Piecewise smooth functions: pieces are Lipschitz-a

bof(1) Scaling functions
I
\
=~ time
T Noise

VW e
A

Wavelets

The following D(R) behavior is reachable [CohenDGO0O:02]:

D(R) = ¢, -R™

There are 2 modes:
. R corresponding to the Lipschitz-a pieces

. Jﬁ-z_c'ﬁ corresponding to the discontinuities
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Lipschitz-a pieces: Linear Approximation

The wavelet transform at scale j decays as (j << 0)
szzj(oc+1/2)
Keep coefficients up to scale J, or choose a stepsize A for a quantizer

A ol 1/2)

Therefore, M ~ 2Y coefficients
Squared error:

_EJ Z_j . 22j(oc+ 1/2) B 2—2](1 B M—20c
j=—o
Rate:
* number of coefficients c-M
Thus
D(R)~c- R

Just as good as Fourier (~R"?%), but local!
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Rate-distortion bounds for piecewise polynomial functions

D(R) behavior of nonlinear approximation with wavelets

Consider the simplest case: Haar!

Af(t) uniformly distributed
Recall that
random constant
K\ GMEZ_M C; 52]/2
} >t and consider describing the
\ 1 significantcoefficients

Choose a stepsize A for a quantizer.
Therefore

e number of scales J before coefs
set to zero ~log(1/A)

A * number of bits per Coeff|C|ent
~log(1/A), thus R~ I
=
] Distortion: num%oer of
scales times ‘A" ~]-2
Thus

—, - /R
D (R) = Cy-J/R-2 °
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Rate-distortion behavior using an oracle

An oracle decides to optimally code a piecewise polynomial
by allocating bits ‘“where needed’’:

Consider the simplest case

A 0. P

Y
7 !

Two approximation errors
* A quantization of step location
* A,: quantization of amplitude

Rate allocation: R, versus R,
Result:

D,(R) = C;-27"
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Piecewise polynomial, with max degree N

A. Nonlinear approximation with wavelets having N+1 zero moments

D (R)=C'-(l+a /CWR)-Z_m

B. Oracle-based method

Thus
- wavelets are a generic but suboptimal scheme
« oracle method asymptotically superior but dependent on the model

Conclusion on compression of piecewise smooth functions:
D(R) behavior has two modes:
D(R) = ¢,"R~

 1/polynomial decay: cannot be (substantially) improved

« exponential mode: can be improved, important at low rates
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Can we improve wavelet compression? Footprints!

Key: Remove depencies accross scales:
« dynamic programming: Viterbi-like algorithm
* tree based algorithms: pruning and joining
- wavelet footprints: wavelet vector quantization

Theorem [DragottiV:03]:

Consider a piecewise smooth signal f(t), where pieces are Lipschitz-
o. There exists a piecewise polynomial p(t) with pieces of maximum
degree | o | such that the residual r (t) = f(t) —p(t)

is uniformly Lipschitz-a.

This is a generic split into piecewise polynomial and smooth residual

A A A
> > I~ /Iv/{\_/l /\\/\\/‘
function f(t) piecewise polynomial Lipschitz-a.
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Footprint Basis and Frames

Suboptimality of wavelets for piecewise polynomials is due
to independent coding of dependent wavelet coefficients

DW(R)~C-J§-2_J§

Compression with wavelet footprints

Theorem: [DragottiV:03]

Given a bounded piecewise polynomial of deg D with K discontinui-
ties. Then,a footprint based coder achieves

(¢, R)
DR) = ¢,-2 °

This is a computational effective method to get oracle performance

What is more, the generic split “piecewise smooth” into
“uniformly smooth + piecewise polynomial” allows to fix
wavelet scenarios, to obtain

g —03 -R

D(R) = ¢, R " +¢, -2

This can be used for denoising and superresolution
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Denoising (use coherence across scale)

Original signal

Hard-Thresholding (SNR=21.3dB)

Denoising with Footprints (SNR=27.2dB)

L
500

Noisy Signal (SNR=15.62dB)

Cycle-Spinning (SNR=25.4dB)

This is a vector thresholding
method adapted to wavelet
singularities
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5. Going to Two Dimensions: Non-Separable Constructions

Going to two dimensions requires non-separable bases

Objects in two dimensions we are interested in

texture .

/lull I ‘

* textures: D(R) = C, .7 per plxel
« smooth surfaces: D(R) =C,-2 2R per object!

‘ smooth boundary c?
/

smooth surface, polynomial
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Models of the world:

Gauss-Markov Piecewise polynomial the usual suspect

Many proposed models:
* mathematical difficulties
« one size fits all...
« Lena is not PC, but is she BV?

But: Fourier, DCT, wavelets use a
separable approach (line/column...)

=> geometry based image processing
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Recent work on geometric image processing

Long history: compression, vision, filter banks
Current affairs:

Signal adapted schemes

- Bandelets [LePennec & Mallat]: wavelet expansions centered at
at discontinuity as well as along smooth edges

* Non-linear tilings [Cohen, Mattei]: adaptive segmentation
 Tree structured approaches [Shukla et al, Baraniuk et al]

Bases and Frames
« Wedgelets [Donoho]: Basic element is a wedge
 Ridgelets [Candes, Donoho]: Basic element is a ridge

 Curvelets [Candes, Donoho]
Scaling law: width ~Iength2
L(R2) set up
 Multidirectional pyramids and contourlets [Do et al]
Discrete-space set-up, I(Zz)
Tight frame with small redundancy
Computational framework

This is where the action is!
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Nonseparable schemes and approximation

Approximation properties:

- wavelets good for point singularities
* ridgelets good for ridges
e curvelets good for curves

Consider c? boundary between two csts

F

# wavelet coeffs O(2j)

X

—
=N

Rate of approximation, M-term NLA in bases, c? boundary
 Fourier: O(M'”Z)
- Wavelets: O(M'1)
« Curvelets: O(M?) STod 8



Compression of non-separable objects

Objects we know how to compress....

Approximation
- Wavelets Ey ~M
- Ridgelets EM~2_M

-1

Rate/distortion
« Oracle D(R) = c-2R
« Wavelets....poor
 Ridgelets....suboptimal
« adaptive schemes: close to oracle
» fixed basis: under investigation

Basis element
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Tree Based Geometric Compression [ShuklaDDV:03]

Idea

 tree and quadtree algorithms popular, many pruning algorithms
optimality proofs for wedgelets [Donoho:99]

* new pruning and joining algorithm

Intuition: full tree dyadic tree pruned & joined tree

1'ﬁ_{

_ —C _
N,~2 D®R)~R™ N;~J D(R)~.JR-2 N,~1" DR)~272"

Results: Rate-distortion optimal for piecewise polynomials

—(c, *R)
D(R) =¢;-2 . that is, like an oracle method (up to constants)
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Extension to Quadtree:

« Example

Results:

« consider a piecewise polynomial 2D signal, with polynomial
boundaries, the following rate-distortion behavior is achieved

D(R) = ¢y-2

* this is like an oracle method, and >> than prune algorithms
which have a /R penalty
« complexity: polynomial
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The prune-join quadtree algorithm

 polynomial fit to surface and to boundary on a quadtree
* rate-distortion optimal tree pruning and joining

il

quadtree with R(D) pruning R(D) Joining of “’similar” leaves

Note: careful R(D) optimization!
ISITO4 62




Geometric Compression versus JPEG2000 at 0.11 bits/pixel, PSNR:

28.95 27.75

30.01 29.22

pruned-joined quadtree
JPEG2000 STod 63



Behavior of tree algorithms on piecewise smooth fcts

ppf: piecewise polynomial functions

psf: piecewise smooth functions, a-smooth

Signal Oracle Wavelet Prune tree Prune-join
Class Coder Coder Coder tree Coder
1-D PPF 7—R 2_"1Jﬁ 2_"2Jﬁ 7 ¢3R
5D PPF 7—dR logR 2—C4J§ 705k
R
2
1.D PSF R-2a R-2a (logR> a <logR> 2a
R R
2-D PSF R logR <log R) ! (10g R) !
R R R

at most log penalty with polynomial complexity
(and a bit more work gets rid of logs...)

Interesting scaling laws, good behavior in practice!
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Directional bases and contourlets [M.Do]

Goal: find a discrete-space construction that has good approximation
properties for smooth functions with smooth boundaries

» directional analysis as in a Radon transform
* multiresolution as in wavelets and pyramids
« computationally easy

 bases or low redundancy frames

Background:

 curvelets [Candes-Donoho] indicate that “"good’ fixed bases
do exist for approximation of piecewise smooth 2D functions

- a frequency-direction relationship indicates a scaling law d~j1/2

Idea:
e directional analysis: directions are key
* multiresolution analysis

Result:
e one-more-let: contourlets!

ISITO4 65



Directional Filter Banks [BambergerS:92, DoV:02]
« divide 2-D spectrum into slices with iterated tree-structured f-banks

w2 (pi,pi)

o\ 1] 2/3

4 7
5 6
6 5 | W1
7 4

(-pi,-pi)
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Example of directional basis functions
« 64 channels, elementary filters are Haar filters
« orthonormal directional basis
« 64 equivalent filters, the 32 “mostly horizontal’ ones are shown

This ressembles a “’local Radon transform’, or radonlets!
« changes of sign (for orthonormality)
« approximate lines (discretizations)
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Multiresolution directional pyramid

> -——-

bandpass
— @> > directional
channels

_ bandpass
Image directional
1 > channels

Result:
» “tight” pyramid and orthogonal directional channels => tight frame

 low redundancy < 4/3, computationally efficient
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A directional multiresolution analysis

heorem [Do: 01] For a finite number of directions, this generates a tight
frame for L (R ) with frame bound equal

ethod: Define embedded lowpass directional spaces V,
and directional bandpass spaces W;

w2

V_2k

4
<24
]
it
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wi

his defines contourlets: how do they compare to wavelets?

proximation: M-term NLA satisfies Contourlet\

— [CandesD:00]

ossible with sinc filters
... open problem if compact support contourlets exist....
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Basis functions: wavelets versus contourlets
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Expansion Example

Pepper image and its expansion

i

Compression, denoising, inverse problems:
if it is sparse, it is a good start!
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Example: denoising with contourlets

original noisy

wavelet contourlets
13.8 dB 15.4 dB

“
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Shift-Invariance and Multiresolution Analysis

Most sampling results require shift-invariant subspaces
e ft)EVef(t—nT)EV ne”zZ

Wavelet constructions rely in addition on scale-invariance
- fH)eEV, = f2 )EV_ meZ

Multiresolution analysis (Mallat, Meyer) gives a powerful framework.
Yet it requires a subspace structure...

Example: uniform or B-splines

(1)
A A (1)

ot /N L

Question: can sampling be generalized beyond subspaces?

Note: Shannon BW sufficient, not necessary!
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A Variation on a Theme by Shannon

Shannon, BL case: f(t) = E f(nT)sinc(t/T—n) or 1/T degrees of freedom
per unit of time n€z

But: a single discontinuity, and no more sampling theorem...

L Fw)

AN /\(\ /o 7 /\/\x

7T~ N <« - T g

t w

Q: Are there other signals with finite number of degrees of freedom per
unit of time that allow exact sampling results?
=> Finite rate of innovation

Usual setup:
2,00t nT)

y(t) ys(t) Yo =y(nT) =< h(t nT) x(t) >

r(t) —— h(t) > ~ C/D |——

x(t): signal, h(t):sampling kernel, y(t):filtering of x(t) and y :samples._.



A Toy Example

K Diracs on the interval: 2K degrees of freedom. Periodic case:

K-1 K-1 j2rnm(t—t,)
x(t) = c.O0(t—t, —ntT =\ ¢, — ¢ T
> Y cd(t=t, —nT) D Sk
n&EZ k=0 k=0 mé&Z

Key: The Fourier series is a weighted sum of K exponentials

K—1 —j2nmty
X[m] = - E c e T

A re=

Result: Taking 2k+1 samples from a lowpass version of BW-(2K+1)
allows to perfectly recover x(t)

Method: Yule-Walker system, annihilating filter, Vandermonde system

Note: Relation to spectral estimation and ECC (Berlekamp-Massey)
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A Representation Theorem [VMB:02]

For the class of periodic FRI signals which includes
« sequences of Diracs
* non-uniform or free knot splines
 piecewise polynomials

there exist sampling schemes with a sampling rate of the order of the
rate of innovation with perfect reconstruction at polynomial cost.

x(t) | h(t) y(t), ¥y,

0.15

011
0.05-

0.05-

o —_— ] 10p
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-01F
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Variations:
» finite length signals, local kernels
« Two-dimensions
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and the noisy case....

Use subspace methods (I.Maravic)

Noisy nonuniform spline and reconstructed signal Noisy piecewise linear signal and reconstructed signal
5 T T T T T T T 5 T T T T T T T

—— original noisy signal —— original nmsy;sgnall ‘
— reconstructed signal 4| [ == reconstructed signal NG

3 I I I I I I I I I 5 I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

Application example: UWB (low rate of innovation...but lots of noise!)

Transmitted sequence of UWB pulses & Received signal
0.025 T T T

0.02
0.015

0.01
Il

0.005

—0.005 H

—0.01

—-0.015

—0.02 I I I I I
o 2000 4000 6000 8000 10000 12000
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A local algorithm for FRI sampling [DVB:04]

The return of Strang-Fix!

/ao (trt) a, (fTt)

0 t

local, polynomial complexity reconstruction, for diracs and piecewise

polynomials
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Conclusions

Wavelets and the French revolution

 too early to say?
 from smooth to piecewise smooth functions

Sparsity and the Art of Motorcycle Maintenance

* sparsity as a key feature with many applications
« denoising, inverse problems, compression

LA versus NLA:
« approximation rates can be vastly different!

To first order, operational, high rate, D(R) >
« improvements still possible W

* low rate analysis difficult

Two-dimensions:
* really harder! and none used in JPEG2000...
« approximation starts to be understood, compression mostly open
« contourlet leads to efficient algorithms

Beyond subspaces:
* FRI results on sampling, many open questions! 1SITO4 80



Outlook

Do we understand image representation/compression better?
* high rate, high resolution: there is promise
* low rate: room at the bottom?

New images
* plenoptic functions (set of all possible images)

* non BL images (FRI?)
 manifolds, structure of natural images

Distributed images
* interactive approximation/compression
« SW, WZ, DKLT...
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Why Image Representation Remains a Fascinating Topic...

A lone student standing
In front of four tanks.
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