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The motivation and the rationale of sparse representations
Linear decompositions (Fourier, DCT, wavelets. . .)

Sparsity and compression, estimation and other inverse problems
(X-lets)

Compressive sensing : The main idea

Linear algebra formulation (an invertible ill-posed problem)
Projection on Random Matrices

Some striking examples
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Signal processing trends

DSP: sample first, ask questions later

Explosion in sensor technology/ubiquity has caused two trends:

@ Physical capabilities of hardware are being stressed,
increasing speed/resolution becoming expensive
> gigahertz+ analog-to-digital conversion
> accelerated MRI
» industrial imaging
@ Deluge of data

» camera arrays and networks, multi-view target databases, streaming
video...

Compressive Sensing: sample smarter, not faster



Classical data acquisition

e Shannon-Nyquist sampling theorem (Fundamental Theorem of DSP):
“if you sample at twice the bandwidth, you can perfectly reconstruct
the data”

time space

@ Counterpart for “indirect imaging” (MRI, radar):
Resolution is determined by bandwidth



Sense, sample, process...

Data
Converter
@ ADS5485

*i3 Texas
INSTRUMENTS

sensor “fast” ADC data compression



Compressive sensing (CS)

@ Shannon/Nyquist theorem is pessimistic

» 2Xxbandwidth is the worst-case sampling rate —
holds uniformly for any bandlimited data

> sparsity/compressibility is irrelevant

> Shannon sampling based on a linear model,
compression based on a nonlinear model

Shannon

o Compressive sensing
» new sampling theory that leverages compressibility

> key roles played by new uncertainty principles and
randomness

Heisenberg



Compressive sensing

Data
Converter
ADS5485

{; Texas
INSTRUMENTS

“compressive” “slow” ADC
sensor

o Essential idea:
“pre-coding” the signal in analog makes it “easier” to acquire

@ Reduce power consumption, hardware complexity, acquisition time



A simple underdetermined inverse problem

Observe a subset () of the 2D discrete Fourier plane

phantom (hidden)

N := 5122 = 262, 144 pixel image
observations on 22 radial lines, 10,486 samples, ~ 4% coverage



Minimum energy reconstruction
Reconstruct ¢g* with

flwr,we)  (wi,w2) €0

G (w1,we) = {0 (wi,w2) € Q

Set unknown Fourier coeffs to zero, and inverse transform

original Fourier samples g



Total-variation reconstruction

Find an image that

@ Fourier domain: matches observations

@ Spatial domain: has a minimal amount of oscillation
Reconstruct g* by solving:

myinz [(Vg)isl st glwr,wa) = flwr,wa), (wi,w2) €Q
ij

original Fourier samples g* = original
perfect reconstruction



Sampling a superposition of sinusoids

We take M samples of a superposition of S sinusoids:

Time domain x¢(¢) Frequency domain Zo(w)
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Measure M samples S nonzero components
(red circles = samples)




Sampling a superposition of sinusoids
Reconstruct by solving

min ||#]l¢, subject to x(tm) = zo(tm), m=1,..., M
T

ALl

original Zog, S =15 perfect recovery from 30 samples




Numerical recovery curves

@ Resolutions N = 256,512,1024 (black, blue, red)
@ Signal composed of S randomly selected sinusoids

o Sample at M randomly selected locations
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@ In practice, perfect recovery occurs when M ~ 25 for N ~ 1000



A nonlinear sampling theorem

Exact Recovery Theorem (Candes, R, Tao, 2004):
@ Unknown g is supported on set of size S

@ Select M sample locations {¢,,,} “at random” with

M > Const - Slog N

Take time-domain samples (measurements) ¥, = xo(t)

Solve

min ||£|lg, subjectto z(tm) =ym, m=1,...,M
x

Solution is exactly f with extremely high probability

In total-variation/phantom example, S=number of jumps



Graphical intuition for ¢,

min, ||zl|s st. Pxr =y  min, ||z|; st. Pr=y

{z': y=d2'} {2': y= P2’}

RN




Acquisition as linear algebra

# samples y| = P resolution/
M bandwidth
X
|_'_J L Y J N
data acquisition
system
——
unknown
signal/image

@ Small number of samples = underdetermined system
Impossible to solve in general

o If x is sparse and @ is diverse, then these systems can be “inverted”



Sparsity /Compressibility

S< N
large
wavelet
coefficients

S<N
large
Gabor
coefficients

/

signal
samples

videsana | 'J Mw” H M]




Wavelet approximation

Take 1% of largest coefficients, set the rest to zero (adaptive)

original approximated

rel. error = 0.031



Linear measurements

o Instead of samples, take linear measurements of signal/image z

y1 = (o, ¢1), Y2 = (o, P2), --.,ym = (20, PK)
y = ®xo

@ Equivalent to transform-domain sampling,
{¢m} = basis functions

@ Example: pixels




Linear measurements

o Instead of samples, take linear measurements of signal/image xg

y1 = (o, ¢1), Y2 = (o, P2), --.,ym = (20, Px)
y = Pxo

@ Equivalent to transform-domain sampling,
{¢m} = basis functions

e Example: line integrals (tomography)




Linear measurements

@ Instead of samples, take linear measurements of signal /image

y1 = (o, ¢1), Y2 = (o, P2), --.,ym = (20, Px)
y = Pxo

@ Equivalent to transform-domain sampling,
{¢m} = basis functions

e Example: sinusoids (MRI)




Linear measurements

o Instead of samples, take linear measurements of signal /image x

y1 = (o, ¢1), Y2 = (o, P2), --.,ym = (20, PK)
y =Pz

o Equivalent to transform-domain sampling,
{¢m} = basis functions

@ Example: coded imaging




Linear measurements

o Instead of samples, take linear measurements of signal /image x

y1 = (o, ¢1), Y2 = (o, P2), --.,ym = (20, PK)
y =Pz

o Equivalent to transform-domain sampling,
{¢m} = basis functions

@ Example: DCT 7




Linear measurements

o Instead of samples, take linear measurements of signal /image x

y1 = (o, ¢1), Y2 = (o, P2), --.,ym = (20, PK)
y =Pz

o Equivalent to transform-domain sampling,
{¢m} = basis functions

o Example: wavelets 7




Sparsity and Linear Measurements

@ Since ¢ is sparse in ¥, why don't we measure (g, ) ?
Why not sample images in the wavelet domain?

o We'd love to sample wavelet coeffs, but which ones?




# samples - P resolution/
M bandwidth
xr
L . J N
data acquisition
system
——
unknown
signaliimage

o If x is sparse and @ is diverse, then these systems can be “inverted”



Classical: When can we stably “invert” a matrix?

@ Suppose we have an M x N observation matrix A with M > N
(MORE observations than unknowns), through which we observe

y = Axg + noise



Classical: When can we stably “invert” a matrix?

@ Suppose we have an M x N observation matrix A with M > N
(MORE observations than unknowns), through which we observe

y = Azg + noise
@ Standard way to recover z, use the pseudo-inverse

solve min |y — Az|3 & 2= (ATA)"1ATy
xr



Classical: When can we stably “invert” a matrix?

@ Suppose we have an M x N observation matrix A with M > N
(MORE observations than unknowns), through which we observe

y = Axg + noise
@ Standard way to recover z, use the pseudo-inverse
solve minlly — Az|} & & =(ATA)"'ATy
@ Q: When is this recovery stable? That is, when is

12 = o3 ~ |[noisel3 ?



Classical: When can we stably “invert” a matrix?

@ Suppose we have an M x N observation matrix A with M > N
(MORE observations than unknowns), through which we observe

y = Axg + noise
@ Standard way to recover x, use the pseudo-inverse
solve min ly — Az|3 o i=(ATA) ATy
@ Q: When is this recovery stable? That is, when is

12 = o3 ~ [[noisel3 ?

@ A: When the matrix A is an approximate isometry...
| Az||2 ~ ||z||2 for all z € RV

i.e. A preserves lengths



Classical: When can we stably “invert” a matrix?

@ Suppose we have an M x N observation matrix A with M > N
(MORE observations than unknowns), through which we observe

y = Axg + noise
@ Standard way to recover x, use the pseudo-inverse
solve min ly — Az|3 o i=(ATA) ATy
@ Q: When is this recovery stable? That is, when is
12 — 2|3 ~ [Inoisel3  ?
@ A: When the matrix A is an approximate isometry...
|A(z1 — 22)|13 = ||z1 — 2|3 for all z1, 25 € RY

i.e. A preserves distances



Classical: When can we stably “invert” a matrix?

@ Suppose we have an M x N observation matrix A with M > N
(MORE observations than unknowns), through which we observe

y = Axg + noise
@ Standard way to recover x, use the pseudo-inverse
solve min ly — Az|3 o i=(ATA) ATy
@ Q: When is this recovery stable? That is, when is

12 = o3 ~ [[noisel3 ?

@ A: When the matrix A is an approximate isometry...
(1-0) < omin(A) < omax(A) < (140)

i.e. A has clustered singular values



Classical: When can we stably “invert” a matrix?

@ Suppose we have an M x N observation matrix A with M > N
(MORE observations than unknowns), through which we observe

y = Axg + noise
@ Standard way to recover xg, use the pseudo-inverse
solve min ly — Az|3 o &= (ATA) ATy
@ Q: When is this recovery stable? That is, when is

12 = o3 ~ [[noisel3 ?

@ A: When the matrix A is an approximate isometry...
1 =08)l=ll} < [Az]3 < (1+0)][3

forsome 0 < <1



When can we stably recover an S-sparse vector?

@ Now we have an underdetermined M x N system &
(FEWER measurements than unknowns), and observe

y = ®x¢ + noise



When can we stably recover an S-sparse vector?

o Now we have an underdetermined M x N system &
(FEWER measurements than unknowns), and observe

y = ®xg + noise
o We can recover xg when ® is a keeps sparse signals separated
(1= 08)[le1 — 22l < [|®(z1 —a2)[3 < (1+6)lwr — zaf3

for all S-sparse x, x2



When can we stably recover an S-sparse vector?

@ Now we have an underdetermined M x N system &
(FEWER measurements than unknowns), and observe

y = ®xg + noise

@ We can recover zyp when @ is a restricted isometry (RIP)

(1=0)|zl3 < [®x[3 < (1+0)|z||3 for all 2S-sparse x



When can we stably recover an S-sparse vector?

@ Now we have an underdetermined M x N system &
(FEWER measurements than unknowns), and observe

y = ®xg + noise

@ We can recover zg when @ is a restricted isometry (RIP)

(1=0)|zl3 < [®x[3 < (1+0)|z||3 for all 2S-sparse x

@ To recover g, we solve

min ||z||p subjectto Pr~y
x
lz|]lo = number of nonzero terms in x

o This program is intractable



When can we stably recover an S-sparse vector?

o Now we have an underdetermined M x N system &
(FEWER measurements than unknowns), and observe

y = ®xy + noise

@ We can recover xg when ® is a restricted isometry (RIP)

(1-9)zl3 < [®2]3 < (1483 for all 25-sparse =

o A relaxed (convex) program

min ||z||; subjectto Pr A~y
x

1l = > ]

@ This program is very tractable (linear program)



Sparse recovery algorithms

@ Given y, look for a sparse signal which is consistent.

o One method: ¢; minimization (or Basis Pursuit)
min ||¥[z]l; st Pzr=y
x
U = sparsifying transform, ® = measurement system
(need RIP for ®WT)
Convex (linear) program, can relax for robustness to noise

Performance has theoretical guarantees

@ Other recovery methods include greedy algorithms and iterative
thresholding schemes



Stable recovery

@ Despite its nonlinearity, sparse recovery is stable in the presence of
> modeling mismatch (approximate sparsity), and
» measurement error

@ Theorem (Candes, R, Tao '06)

If we observe y = &g + €, with |le]|2 < ¢, the solution & to
mzin [Plz]lln st fly—Pxf2 <e

will satisfy

|& — zoll2 < Const - (e + M)
Vs
where

> 29,5 = S-term approximation of
» S is the largest value for which ®¥7 satisfies the RIP

@ Similar guarantees exist for other recovery algorithms
> greedy (Needell and Tropp '08)
> iterative thresholding (Blumensath and Davies '08)



What kind of matrices are restricted isometries?

@ They are very hard to design, but they exist everywhere!
Yy
M

“measurements” -

iid Gaussian random entries

o For any fixed x € RN, each measurement is

yx ~ Normal(0, ||$||§/M)



What kind of matrices are restricted isometries?

@ They are very hard to design, but they exist everywhere!
Yy P T
M

“measurements” -

iid Gaussian random entries

o For any fixed z € RN, we have
E[]| @3] = |l=II3

the mean of the measurement energy is exactly ||z||3



What kind of matrices are restricted isometries?

@ They are very hard to design, but they exist everywhere!
Yy
M

“measurements” -

iid Gaussian random entries

o For any fixed z € RN, we have

P{|[®z|3 - |=]3| < Sll|3} > 1—e M/



What kind of matrices are restricted isometries?

@ They are very hard to design, but they exist everywhere!

Y P T
M

“measurements” -

iid Gaussian random entries

o For all 25-sparse x € RY, we have
P {mQX’H‘I)ng — ||| < 5||$||§} > 1 — eoSlog(N/8) —Ms%/4
So we can make this probability close to 1 by taking
M Z Slog(N/S)



What other types of matrices are restricted isometries?

Four general frameworks:
o Random matrices (iid entries)
o Random subsampling
@ Random convolution

@ Randomly modulated integration

Note the role of randomness in all of these approaches

Slogan: random projections keep sparse signal separated



Random matrices (iid entries)

Y d T
M N |

“compressed
measurements” n 1 ’S
| | active
components
random 1
entries

total resolution/bandwidth = N

@ Random matrices are provably efficient
@ We can recover S-sparse x from
M z S-log(N/S)

measurements



Rice single pixel camera

single photon
detector

image
reconstruction
or
processing
random <<(
pattern on
DMD array DSP

Revr

(Duarte, Davenport, Takhar, Laska, Sun, Kelly, Baraniuk '08)



Georgia Tech analog imager

1mm

.9mm




Compressive sensing acquisition

50 100 150 200 250 50 100 150 200 250

10k DCT measurements 10k random measurements

(Robucci, Chiu, Gray, R, Hasler '09)



Random matrices

Example: ® consists of random rows from an orthobasis U
Yy o} T
Can recover S-sparse x from (Rudelson and Vershynin ‘06, Candes and R '07)
M > p28-log?N
<
measurements, where

p = VNmax|(UT0)
2Y)

is the coherence



Examples of incoherence

@ Signal is sparse in time domain, sampled in Fourier domain

time domain z(¢) freq domain #(w)

.QM 2

S nonzero components measure m samples

@ Signal is sparse in wavelet domain, measured with noiselets
(Coifman et al '01)
example noiselet wavelet domain noiselet domain




Accelerated MRI

SPIR-iT

(Lustig et al. '08)



Empirical processes and structured random matrices

@ For matrices with this type of structured randomness, we simply
do not have enough concentration to establish

(L= d)ll=l3 < [P2l3 < (1+8)|xl3

“the easy way"

@ Re-write the RIP as a the supremum of a random process

sup |G(z)| = sup [z*®* Pz — 2¥z| < §
T x

where the sup is taken over all 2S5-sparse signals

@ Estimate this sup using tools from probability theory
(e.g. the Dudley inequality) — approach pioneered by Rudelson and
Vershynin



Random convolution

o Many active imaging systems measure a pulse convolved with a
reflectivity profile (Green's function)

W m |
— b — L — i —
pulse profile return revr
txmt (known) (unknown) (sample this)

@ Applications include:

radar imaging

sonar imaging

seismic exploration

channel estimation for communications
super-resolved imaging

v vYyvyyVvyy

@ Using a random pulse = compressive sampling
(Tropp et al. '06, R '08, Herman et al. '08, Haupt et al. '09, Rauhut '09)



Coded aperture imaging

_
oe—-me
S




Random convolution for CS, theory

@ Signal model: sparsity in any orthobasis ¥
@ Acquisition model:
generate a “pulse” whose FFT is a sequence of random phases (unit
magnitude),
convolve with signal,
sample result at M random locations 2
=5 O = RoF*YXF, ¥ =diag({ou})

@ The RIP holds for (R '08)

M > Slog’ N

Note that this result is universal

@ Both the random sampling and the flat Fourier transform are needed
for universality



Randomizing the phase

local in time local in freq not local in M

sample here



Why is random convolution 4 subsampling universal?
a1 . N
F P Pi(w) | Po(w) | | Un(w)

On,

o One entry of & = &0 = FYU:
B, =D o (w)
w
= Z 0—:.;'42’5 (w)
w

o Size of each entry will be concentrated around s (W)l =1
does not depend on the “shape” of 1s(w)



Super-resolved imaging

Uncoded observation
(1/16 as many pixels)

Ground truth

Coded observation
(1/16 as many pixels)

CS Reconstruction

(Marcia and Willet '08)



Seismic forward modeling

@ Run a single simulation with all of the sources activated
simultaneously with random waveforms

@ The channel responses interfere with one another, but the randomness
“codes” them in such a way that they can be separated later

N
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il =
Mm’”"“ w
adior
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s
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i
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i
i
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®
~ Time(s) o

5

i

candidate model receiver

set
Related work: Herrmann et. al '09



Restricted isometries for multichannel systems

h channels of
— length N

convolution with pulse

|

yr = Phy, .
o With each of the pulses as iid Gaussian sequences,
® obeys
(L=d)IA2 < [®hl3 < (1+8)[Al3 Vs-sparse h € RNC
when (R and Neelamani '09)
M > S-log®(NC) + N
o Consequence: we can separate the channels using short random
pulses (using £1 min or other sparse recovery algorithms)



Seismic imaging simulation

(a) Estimated () Estimation error (') Cross orrelation
(16x aster N = .6d ) (' igure 2 minus 5(a)) estimate

@ Result produced with 16x “compression” in the computations

@ Can even take this example down to 32x



Randomly modulated integration

inputsignal 1\ oqulate

ADC 1=l ]|

sum and sample (slow)
at fixed locations

(fast)
i / — W“
IR

1

Uses a standard “slow” ADC preceded by a “fast” binary mixing

Mixing circuit much easier to build than a “fast” ADC

@ In each sampling interval, the signal is summarized with a random
sum

Sample rate ~ total active bandwidth



Random modulated integration in time and frequency

input signal x(t) input signal X(w)

X *
pseudorandom pseudorandom sequence
sequence pc(t) spectrum PC(m)

(T A

modulated input and
modulated input integrator (low—pass filter)

LN R e




Multichannel modulated integration

—)(})F)—)%»» ‘MU'

S

3

k T
T

]

T

This architecture is being implemented as part of DARPA's
Analog-to-Information program

L




Analog-to-digital converter state-of-the-art

The bad news starts at 1 GHz

25

20

0

Slope = 1b/2.3dBsps g\ # Flash
¥ Folding
A Half-Flash
[ ] X Pipelined
SAR Group Slope X SAR
° X~ ® Sigma-Delta
5 Unknown
m? ¥ X
X sS4, Slope = 1b/3.3dBsps
* & o
* X X 3 M A 3‘ Moot s
e oo
10 20 30 40 50 60 70 80 90 100

10log(fs) (dBsps)

(Le et al '05)



Analog-to-digital converter state-of-the-art

From 2008...

Industry’s fastest 16-bit
ADC at 200 MSPS

Converter

£
c
°
3
o
@
@
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(Lots of RF signals have components in the 10s of gigahertz...



Spectrally sparse RF signals

Gabor Spectrogram

P
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Frequercy [t

active channels

candidate channels




Randomly modulated integration receiver

Random

soquence @ Random demodulator being
built at part of DARPA A2I
program

(Emami, Hoyos, Massoud)

Reset/sample

modulator I .
f N

e i @ Multiple (8) channels, operating

r with different mixing sequences

'%
inpm’ 1 v > « o Effective BW/chan = 2.5 GHz
| e Sample rate/chan = 50 MHz
. : @ Applications: radar pulse
| detection, communications
surveillance, geolocation

.
.




Sampling correlated signals

@ Goal: acquire an ensemble of M signals
o Bandlimited to TW/2
o “Correlated” — M signals are = linear combinations of R signals



Sampling correlated signals

D»\/\/\/\/\/\
M N\~ TV
O

-0.82 -1.31]
10 02
105 181
—0.4 -0.31
-0 0.4
(112l |

@ Goal: acquire an ensemble of M signals

o Bandlimited to TW/2

o “Correlated” — M signals are ~ linear combinations of R signals



Sensor arrays




Low-rank matrix recovery

@ Given P linear samples of a matrix,
y=AXo), yeRF, X,eRMW

we solve
rrgn IX|l« subject to A(X) =y

where || X||. is the nuclear norm: the sum of the singular values of X.



Low-rank matrix recovery

@ Given P linear samples of a matrix,
y=AXo), yeRF, X,eRMW
we solve

rrgn IX|l« subject to A(X) =y

where || X||. is the nuclear norm: the sum of the singular values of X.

o If Xy is rank-R and A obeys the mRIP:
L=IX[F < AX)E < (L+)IX|F ¥ rank-2R X,

then we can stably recover X from y. (Recht et. al '07)



Low-rank matrix recovery

@ Given P linear samples of a matrix,
y=AX,), yeR” XoeRMW
we solve

rrgn IX|l« subject to A(X) =y

where || X||« is the nuclear norm: the sum of the singular values of X.

o If Xy is rank-R and A obeys the mRIP:
L=IX[F < AX)E < (L+)IX|F ¥ rank-2R X,

then we can stably recover X from y. (Recht et. al '07)

@ An 'generic’ (iid random) sampler A (stably) recovers X, from y
when

#samples > R - max(M, W)
> RW  (in our case)



CS for correlated signals: modulated multiplexing

/\W

A
A aadViy

VaZ2AValava

o If the signals are spread out uniformly in time, then the ADC and
modulators can run at rate

© > RWlog®?(MW)

@ Requires signals to be (mildly) spread out in time



Summary

@ Main message of CS:

We can recover an S-sparse signal in RY from
~ S -log N measurements

We can recover a rank-R matrix in RM*W from
~ R - max(M,W) measurements

@ Random matrices (iid entries)
» easy to analyze, optimal bounds
> universal
> hard to implement and compute with
@ Structured random matrices (random sampling, random convolution)
» structured, and so computationally efficient
> physical
» much harder to analyze, bound with extra log-factors



Compressive sensing tells us ...

Sensing...
@ ... we can sample smarter not faster
@ ... we can replace front-end acquisition complexity with back-end
computing
@ ... injecting randomness allows us to super-resolve high-frequency
signals (or high-resolution images) from low-frequency
(low-resolution) measurements

@ ... the acquisition process can be independent of the types of signals
we are interested in




Compressive sensing tells us ...

Sensing...
@ ... we can sample smarter not faster
@ ... we can replace front-end acquisition complexity with back-end
computing
@ ... injecting randomness allows us to super-resolve high-frequency
signals (or high-resolution images) from low-frequency
(low-resolution) measurements

@ ... the acquisition process can be independent of the types of signals
we are interested in

Mathematics...

@ ... there are unique sparse solutions to underdetermined systems of
equations

@ ... random projections keep sparse signals separated

@ ... a seemlingly impossible optimization program (subset selection)
can be solved using a tractable amount of computation




