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Objectifs

Part I

I The motivation and the rationale of sparse representations
I Linear decompositions (Fourier, DCT, wavelets. . . )
I Sparsity and compression, estimation and other inverse problems
I (X-lets)

Part II

I Compressive sensing : The main idea
I Linear algebra formulation (an invertible ill-posed problem)
I Projection on Random Matrices
I Some striking examples
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Signal processing trends

DSP: sample first, ask questions later

Explosion in sensor technology/ubiquity has caused two trends:

Physical capabilities of hardware are being stressed,
increasing speed/resolution becoming expensive

I gigahertz+ analog-to-digital conversion
I accelerated MRI
I industrial imaging

Deluge of data
I camera arrays and networks, multi-view target databases, streaming

video...

Compressive Sensing: sample smarter, not faster



Classical data acquisition

Shannon-Nyquist sampling theorem (Fundamental Theorem of DSP):
“if you sample at twice the bandwidth, you can perfectly reconstruct
the data”

time space

Counterpart for “indirect imaging” (MRI, radar):
Resolution is determined by bandwidth



Sense, sample, process...
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Compressive sensing (CS)

Shannon/Nyquist theorem is pessimistic
I 2×bandwidth is the worst-case sampling rate —

holds uniformly for any bandlimited data

I sparsity/compressibility is irrelevant

I Shannon sampling based on a linear model,
compression based on a nonlinear model

Compressive sensing
I new sampling theory that leverages compressibility

I key roles played by new uncertainty principles and
randomness

Shannon

Heisenberg



Compressive sensing
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Essential idea:
“pre-coding” the signal in analog makes it “easier” to acquire

Reduce power consumption, hardware complexity, acquisition time



A simple underdetermined inverse problem

Observe a subset Ω of the 2D discrete Fourier plane

phantom (hidden) white star = sample locations

N := 5122 = 262, 144 pixel image
observations on 22 radial lines, 10, 486 samples, ≈ 4% coverage



Minimum energy reconstruction

Reconstruct g∗ with

ĝ∗(ω1, ω2) =

{
f̂(ω1, ω2) (ω1, ω2) ∈ Ω

0 (ω1, ω2) 6∈ Ω

Set unknown Fourier coeffs to zero, and inverse transform

original Fourier samples g∗



Total-variation reconstruction

Find an image that

Fourier domain: matches observations
Spatial domain: has a minimal amount of oscillation

Reconstruct g∗ by solving:

min
g

∑

i,j

|(∇g)i,j | s.t. ĝ(ω1, ω2) = f̂(ω1, ω2), (ω1, ω2) ∈ Ω

original Fourier samples g∗ = original
perfect reconstruction



Sampling a superposition of sinusoids

We take M samples of a superposition of S sinusoids:

Time domain x0(t) Frequency domain x̂0(ω)

Measure M samples S nonzero components
(red circles = samples)



Sampling a superposition of sinusoids

Reconstruct by solving

min
x
‖x̂‖`1 subject to x(tm) = x0(tm), m = 1, . . . ,M

original x̂0, S = 15 perfect recovery from 30 samples



Numerical recovery curves

Resolutions N = 256, 512, 1024 (black, blue, red)

Signal composed of S randomly selected sinusoids

Sample at M randomly selected locations

% success
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In practice, perfect recovery occurs when M ≈ 2S for N ≈ 1000



A nonlinear sampling theorem

Exact Recovery Theorem (Candès, R, Tao, 2004):

Unknown x̂0 is supported on set of size S

Select M sample locations {tm} “at random” with

M ≥ Const · S logN

Take time-domain samples (measurements) ym = x0(tm)

Solve

min
x
‖x̂‖`1 subject to x(tm) = ym, m = 1, . . . ,M

Solution is exactly f with extremely high probability

In total-variation/phantom example, S=number of jumps



Graphical intuition for `1
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Acquisition as linear algebra

= 
resolution/ 
bandwidth 

# samples 

data 

unknown 
signal/image 

acquisition 
system 

Small number of samples = underdetermined system
Impossible to solve in general

If x is sparse and Φ is diverse, then these systems can be “inverted”



Sparsity/Compressibility

pixels large
wavelet
coefficients

wideband
signal
samples

large
Gabor
coefficients

time
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Wavelet approximation

Take 1% of largest coefficients, set the rest to zero (adaptive)

original approximated

rel. error = 0.031



Linear measurements

Instead of samples, take linear measurements of signal/image x0

y1 = 〈x0, φ1〉, y2 = 〈x0, φ2〉, . . . , yM = 〈x0, φK〉

y = Φx0

Equivalent to transform-domain sampling,
{φm} = basis functions

Example: pixels

ym = 〈
,

〉



Linear measurements

Instead of samples, take linear measurements of signal/image x0

y1 = 〈x0, φ1〉, y2 = 〈x0, φ2〉, . . . , yM = 〈x0, φK〉

y = Φx0

Equivalent to transform-domain sampling,
{φm} = basis functions

Example: line integrals (tomography)

ym = 〈
,

〉



Linear measurements

Instead of samples, take linear measurements of signal/image x0

y1 = 〈x0, φ1〉, y2 = 〈x0, φ2〉, . . . , yM = 〈x0, φK〉

y = Φx0

Equivalent to transform-domain sampling,
{φm} = basis functions

Example: sinusoids (MRI)

ym = 〈
,

〉



Linear measurements

Instead of samples, take linear measurements of signal/image x0

y1 = 〈x0, φ1〉, y2 = 〈x0, φ2〉, . . . , yM = 〈x0, φK〉

y = Φx0

Equivalent to transform-domain sampling,
{φm} = basis functions

Example: coded imaging

ym = 〈
,

〉



Linear measurements

Instead of samples, take linear measurements of signal/image x0

y1 = 〈x0, φ1〉, y2 = 〈x0, φ2〉, . . . , yM = 〈x0, φK〉

y = Φx0

Equivalent to transform-domain sampling,
{φm} = basis functions

Example: DCT ?

ym = 〈
,

〉



Linear measurements

Instead of samples, take linear measurements of signal/image x0

y1 = 〈x0, φ1〉, y2 = 〈x0, φ2〉, . . . , yM = 〈x0, φK〉

y = Φx0

Equivalent to transform-domain sampling,
{φm} = basis functions

Example: wavelets ?

ym = 〈
,

〉



Sparsity and Linear Measurements

Since x0 is sparse in Ψ, why don’t we measure 〈x0, ψk〉 ?
Why not sample images in the wavelet domain?

We’d love to sample wavelet coeffs, but which ones?



= 
resolution/ 
bandwidth 

# samples 

data 

unknown 
signal/image 

acquisition 
system 

If x is sparse and Φ is diverse, then these systems can be “inverted”



Classical: When can we stably “invert” a matrix?

Suppose we have an M ×N observation matrix A with M ≥ N
(MORE observations than unknowns), through which we observe

y = Ax0 + noise

Standard way to recover x0, use the pseudo-inverse

solve min
x
‖y −Ax‖22 ⇔ x̂ = (ATA)−1AT y

Q: When is this recovery stable? That is, when is

‖x̂− x0‖22 ∼ ‖noise‖22 ?
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Classical: When can we stably “invert” a matrix?

Suppose we have an M ×N observation matrix A with M ≥ N
(MORE observations than unknowns), through which we observe

y = Ax0 + noise

Standard way to recover x0, use the pseudo-inverse

solve min
x
‖y −Ax‖22 ⇔ x̂ = (ATA)−1AT y

Q: When is this recovery stable? That is, when is

‖x̂− x0‖22 ∼ ‖noise‖22 ?

A: When the matrix A is an approximate isometry...

‖Ax‖22 ≈ ‖x‖22 for all x ∈ RN

i.e. A preserves lengths



Classical: When can we stably “invert” a matrix?

Suppose we have an M ×N observation matrix A with M ≥ N
(MORE observations than unknowns), through which we observe

y = Ax0 + noise

Standard way to recover x0, use the pseudo-inverse

solve min
x
‖y −Ax‖22 ⇔ x̂ = (ATA)−1AT y

Q: When is this recovery stable? That is, when is

‖x̂− x0‖22 ∼ ‖noise‖22 ?

A: When the matrix A is an approximate isometry...

‖A(x1 − x2)‖22 ≈ ‖x1 − x2‖22 for all x1, x2 ∈ RN

i.e. A preserves distances



Classical: When can we stably “invert” a matrix?

Suppose we have an M ×N observation matrix A with M ≥ N
(MORE observations than unknowns), through which we observe

y = Ax0 + noise

Standard way to recover x0, use the pseudo-inverse

solve min
x
‖y −Ax‖22 ⇔ x̂ = (ATA)−1AT y

Q: When is this recovery stable? That is, when is

‖x̂− x0‖22 ∼ ‖noise‖22 ?

A: When the matrix A is an approximate isometry...

(1− δ) ≤ σ2
min(A) ≤ σ2

max(A) ≤ (1 + δ)

i.e. A has clustered singular values



Classical: When can we stably “invert” a matrix?

Suppose we have an M ×N observation matrix A with M ≥ N
(MORE observations than unknowns), through which we observe

y = Ax0 + noise

Standard way to recover x0, use the pseudo-inverse

solve min
x
‖y −Ax‖22 ⇔ x̂ = (ATA)−1AT y

Q: When is this recovery stable? That is, when is

‖x̂− x0‖22 ∼ ‖noise‖22 ?

A: When the matrix A is an approximate isometry...

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22

for some 0 < δ < 1



When can we stably recover an S-sparse vector?

Now we have an underdetermined M ×N system Φ
(FEWER measurements than unknowns), and observe

y = Φx0 + noise

We can recover x0 when Φ is a restricted isometry (RIP)

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22 for all 2S-sparse x



When can we stably recover an S-sparse vector?

Now we have an underdetermined M ×N system Φ
(FEWER measurements than unknowns), and observe

y = Φx0 + noise

We can recover x0 when Φ is a keeps sparse signals separated

(1− δ)‖x1 − x2‖22 ≤ ‖Φ(x1 − x2)‖22 ≤ (1 + δ)‖x1 − x2‖22

for all S-sparse x1, x2

We can recover x0 when Φ is a restricted isometry (RIP)

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22 for all 2S-sparse x



When can we stably recover an S-sparse vector?

Now we have an underdetermined M ×N system Φ
(FEWER measurements than unknowns), and observe

y = Φx0 + noise

We can recover x0 when Φ is a restricted isometry (RIP)

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22 for all 2S-sparse x



When can we stably recover an S-sparse vector?

Now we have an underdetermined M ×N system Φ
(FEWER measurements than unknowns), and observe

y = Φx0 + noise

We can recover x0 when Φ is a restricted isometry (RIP)

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22 for all 2S-sparse x

To recover x0, we solve

min
x
‖x‖0 subject to Φx ≈ y

‖x‖0 = number of nonzero terms in x

This program is intractable



When can we stably recover an S-sparse vector?

Now we have an underdetermined M ×N system Φ
(FEWER measurements than unknowns), and observe

y = Φx0 + noise

We can recover x0 when Φ is a restricted isometry (RIP)

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22 for all 2S-sparse x

A relaxed (convex) program

min
x
‖x‖1 subject to Φx ≈ y

‖x‖1 =
∑

k |xk|

This program is very tractable (linear program)



Sparse recovery algorithms

Given y, look for a sparse signal which is consistent.

One method: `1 minimization (or Basis Pursuit)

min
x
‖Ψ[x]‖1 s.t. Φx = y

Ψ = sparsifying transform, Φ = measurement system
(need RIP for ΦΨT )

Convex (linear) program, can relax for robustness to noise

Performance has theoretical guarantees

Other recovery methods include greedy algorithms and iterative
thresholding schemes



Stable recovery

Despite its nonlinearity, sparse recovery is stable in the presence of
I modeling mismatch (approximate sparsity), and
I measurement error

Theorem (Candès, R, Tao ’06)

If we observe y = Φx0 + e, with ‖e‖2 ≤ ε, the solution x̂ to

min
x
‖Ψ[x]‖1 s.t. ‖y − Φx‖2 ≤ ε

will satisfy

‖x̂− x0‖2 ≤ Const ·
(
ε+
‖x0 − x0,S‖1√

S

)

where
I x0,S = S-term approximation of x0
I S is the largest value for which ΦΨT satisfies the RIP

Similar guarantees exist for other recovery algorithms
I greedy (Needell and Tropp ’08)
I iterative thresholding (Blumensath and Davies ’08)



What kind of matrices are restricted isometries?

They are very hard to design, but they exist everywhere!

Φ

!!"#$%&''!%(#)%("*+#,(-)!,'#
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M

N

For any fixed x ∈ RN , each measurement is

yk ∼ Normal(0, ‖x‖22/M)



What kind of matrices are restricted isometries?

They are very hard to design, but they exist everywhere!

Φ

!!"#$%&''!%(#)%("*+#,(-)!,'#

.+,%'&),+,(-'/#
M

N

For any fixed x ∈ RN , we have

E[‖Φx‖22] = ‖x‖22

the mean of the measurement energy is exactly ‖x‖22



What kind of matrices are restricted isometries?

They are very hard to design, but they exist everywhere!

Φ

!!"#$%&''!%(#)%("*+#,(-)!,'#

.+,%'&),+,(-'/#
M

N

For any fixed x ∈ RN , we have

P
{∣∣‖Φx‖22 − ‖x‖22

∣∣ < δ‖x‖22
}
≥ 1− e−Mδ2/4



What kind of matrices are restricted isometries?

They are very hard to design, but they exist everywhere!

Φ

!!"#$%&''!%(#)%("*+#,(-)!,'#

.+,%'&),+,(-'/#
M

N

For all 2S-sparse x ∈ RN , we have

P
{

max
x

∣∣‖Φx‖22 − ‖x‖22
∣∣ < δ‖x‖22

}
≥ 1− ec·S log(N/S)e−Mδ2/4

So we can make this probability close to 1 by taking

M & S log(N/S)



What other types of matrices are restricted isometries?

Four general frameworks:

Random matrices (iid entries)

Random subsampling

Random convolution

Randomly modulated integration

Note the role of randomness in all of these approaches

Slogan: random projections keep sparse signal separated



Random matrices (iid entries)

Φ

!"#$%&&
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S

-!*.'(&
%*+-/%,&

±1

0"'()-%,,%.&
(%!,1-%(%*+,2&

M
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Random matrices are provably efficient

We can recover S-sparse x from

M & S · log(N/S)

measurements



Rice single pixel cameraRice Single-Pixel CS Camera

random
pattern on
DMD array

DMD DMD

single photon 
detector

image
reconstruction

or
processing

(Duarte, Davenport, Takhar, Laska, Sun, Kelly, Baraniuk ’08)



Georgia Tech analog imager
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Georgia Tech Analog Imager

• Bottleneck in imager arrays is data readout

• Instead of quantizing pixel values, take CS 
inner products in analog

• Potential for tremendous (factor of 10000) 
power savings



Compressive sensing acquisition
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(Robucci, Chiu, Gray, R, Hasler ’09)



Random matrices

Example: Φ consists of random rows from an orthobasis U

Can recover S-sparse x from (Rudelson and Vershynin ’06, Candès and R ’07)

M & µ2 S · log4N

measurements, where

µ =
√
N max

i,j
|(UTΨ)ij |

is the coherence



Examples of incoherence

Signal is sparse in time domain, sampled in Fourier domain

time domain x(t) freq domain x̂(ω)

S nonzero components measure m samples

Signal is sparse in wavelet domain, measured with noiselets
(Coifman et al ’01)

example noiselet wavelet domain noiselet domain



Accelerated MRI
SPIR-iT with Wavelet CS

ARC SPIR-iT

(Lustig et al. ’08)



Empirical processes and structured random matrices

For matrices with this type of structured randomness, we simply
do not have enough concentration to establish

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22

“the easy way”

Re-write the RIP as a the supremum of a random process

sup
x
|G(x)| = sup

x
|x∗Φ∗Φx− x∗x| ≤ δ

where the sup is taken over all 2S-sparse signals

Estimate this sup using tools from probability theory
(e.g. the Dudley inequality) — approach pioneered by Rudelson and
Vershynin



Random convolution

Many active imaging systems measure a pulse convolved with a
reflectivity profile (Green’s function)

pulse 

(known)  
rcvr  

txmt  

profile 

(unknown)  

return 

(sample this)  

Applications include:
I radar imaging
I sonar imaging
I seismic exploration
I channel estimation for communications
I super-resolved imaging

Using a random pulse = compressive sampling
(Tropp et al. ’06, R ’08, Herman et al. ’08, Haupt et al. ’09, Rauhut ’09)



Coded aperture imaging



Random convolution for CS, theory

Signal model: sparsity in any orthobasis Ψ

Acquisition model:
generate a “pulse” whose FFT is a sequence of random phases (unit
magnitude),
convolve with signal,
sample result at M random locations Ω

Φ = RΩF∗ΣF , Σ = diag({σω})

The RIP holds for (R ’08)

M & S log5N

Note that this result is universal

Both the random sampling and the flat Fourier transform are needed
for universality



Randomizing the phase

local in time local in freq not local in M

sample here



Why is random convolution + subsampling universal?




F






σ1

σ2

. . .

σn






ψ̂1(ω) ψ̂2(ω) · · · ψ̂n(ω)




One entry of Φ′ = ΦΨ̂ = FΣΨ̂:

Φ′t,s =
∑

ω

ej2πωtσωψ̂s(ω)

=
∑

ω

σ′ωψ̂s(ω)

Size of each entry will be concentrated around ‖ψ̂s(ω)‖2 = 1
does not depend on the “shape” of ψ̂s(ω)



Super-resolved imaging
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(Marcia and Willet ’08)



Seismic forward modeling

Run a single simulation with all of the sources activated
simultaneously with random waveforms

The channel responses interfere with one another, but the randomness
“codes” them in such a way that they can be separated later
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Related work: Herrmann et. al ’09



Restricted isometries for multichannel systems

G1 G2 · · · Gp

...

=yk h1,k

h2,k channels(of((
length(N!

convolu/on(with(pulse( pj

hc,k

M!

yk = Φhk

With each of the pulses as iid Gaussian sequences,
Φ obeys

(1− δ)‖h‖2 ≤ ‖Φh‖22 ≤ (1 + δ)‖h‖22 ∀s-sparse h ∈ RNC

when (R and Neelamani ’09)

M & S · log5(NC) + N

Consequence: we can separate the channels using short random
pulses (using `1 min or other sparse recovery algorithms)



Seismic imaging simulation

(a) Estimated
(16x faster, SNR=9.6 dB).

(b) Estimation error
(Figure 2b minus 5(a))

(c) Cross-correlation
estimate.

Figure 5: Simulation results for the more complex Green’s function and the random
impulsive-source approach

37

Result produced with 16× “compression” in the computations

Can even take this example down to 32×



Randomly modulated integration
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input signal x(t) input signal X(ω)

pseudorandom
sequence p

c
(t)

pseudorandom sequence
spectrum P

c
(ω)

modulated input
modulated input and

integrator (low−pass filter)

∫ tk

tk−1

678$

Uses a standard “slow” ADC preceded by a “fast” binary mixing

Mixing circuit much easier to build than a “fast” ADC

In each sampling interval, the signal is summarized with a random
sum

Sample rate ∼ total active bandwidth



Random modulated integration in time and frequency
2

input signal x(t) input signal X(ω)

pseudorandom
sequence p

c
(t)

pseudorandom sequence
spectrum P

c
(ω)

modulated input
modulated input and

integrator (low−pass filter)

Fig. 2. The demodulation process multiplies the continuous-time input signal
by a random square wave. The action of the system on a single tone is
illustrated in the time domain (left) and the frequency domain (right). The
dashed line indicates the frequency response of the lowpass filter. See Figure 3
for an enlargement of the filter’s passband.

Y
(!
)

!

Fig. 3. The random demodulator furnishes each frequency with a unique
signature that can be discerned by examining the passband of the antialiasing
filter. This image enlarges the pass region of the demodulator’s output for
two input tones (solid and dashed). The two signatures are nearly orthogonal
when their phases are taken into account.

f(t) is encoded into the measurements in a more subtle
manner; the reconstruction process is highly nonlinear, and
must carefully take advantage of the fact that the signal is
sparse. As a result, signal recovery becomes more compu-
tationally intensive. In short, the random demodulator uses
additional digital processing to reduce the burden on the
analog hardware. This tradeoff seems acceptable, as advances
in digital computing have outpaced those in analog-to-digital
conversion.

B. Results

Our simulations provide striking evidence that the ran-
dom demodulator performs. Consider a periodic signal with
a bandlimit of W/2 Hz, and suppose that it contains K
tones with random frequencies and phases. Our experiments
below show that, with high probability, the system acquires
enough information to reconstruct the signal after sampling
at just O(K log(W/K)) Hz. In words, the sampling rate is
proportional to the number K of tones and the logarithm of the
bandlimit W . In contrast, the usual approach requires sampling
at W Hz, regardless of K. In other words, the random
demodulator operates at an exponentially slower sampling
rate! We also demonstrate that the system is effective for
reconstructing simple communication signals.

Our theoretical work supports these empirical conclusions,
but it results in slightly weaker bounds on the sampling

rate. We have been able to prove that a sampling rate of
O(K logW + log3 W ) suffices for high-probability recovery
of the random signals we studied experimentally. This analysis
also suggests that there is a small startup cost when the number
of tones is small, but we did not observe this phenomenon in
our experiments. It remains an open problem to explain the
computational results in complete detail.

The random signal model arises naturally in numerical
experiments, but it does not provide an adequate description
of real signals, whose frequencies and phases are typically
far from random. To address this concern, we have proved
that the random demodulator can acquire all K-tone signals—
regardless of the frequencies, amplitudes, and phases—when
the sampling rate is O(K log6 W ). In fact, the system does not
even require the spectrum of the input signal to be sparse; the
system can successfully recover any signal whose spectrum
is well-approximated by K tones. Moreover, our analysis
shows that the random demodulator is robust against noise
and quantization errors.

This work focuses on input signals drawn from a specific
mathematical model, framed in Section II. Many real signals
have sparse spectral occupancy, even though they do not meet
all of our formal assuptions. We propose a device, based on
the classical idea of windowing, that allows us to approximate
general signals by signals drawn from our model. Therefore,
our recovery results for the idealized signal class extend to
signals that we are likely to encounter in practice.

In summary, we believe that these empirical and theoretical
results, taken together, provide compelling evidence that the
demodulator system is a powerful alternative to Nyquist-rate
sampling for sparse signals.

C. Outline

In Section II, we present a mathematical model for the
class of sparse, bandlimited signals. Section III describes the
intuition and architecture of the random demodulator, and it
addresses the nonidealities that may affect its performance. In
Section IV, we model the action of the random demodulator
as a matrix. Section V describes computational algorithms
for reconstructing frequency-sparse signals from the coded
samples provided by the demodulator. We continue with an
empirical study of the system in Section VI, and we offer
some theoretical results in Section VII that partially explain
the system’s performance. Section VIII discusses a windowing
technique that allows the demodulator to capture nonperiodic
signals. We conclude with a discussion of related work in
Section IX. Finally, Appendices I, II and III contain proofs of
our signal reconstruction theorems.

II. THE SIGNAL MODEL

Our analysis focuses on a class of discrete, multitone signals
that have three distinguished properties:

• Bandlimited. The maximum frequency is bounded.
• Periodic. Each tone has an integral frequency in Hz.
• Sparse. The number of active tones is small in compar-

ison with the bandlimit.



Multichannel modulated integration
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This architecture is being implemented as part of DARPA’s
Analog-to-Information program
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The pipelined structure and unknown structure have the
best overall performance, so that they are best suited for
applications with high performance requirements, such as
wireless transceiver applications and military use [3]. SAR
ADCs have widely ranging sampling rates, though they are
not the fastest devices. Still, these devices are popular for
their range of speeds and resolutions as well as low cost and
power dissipation. It can be seen that there is a borderline of
sampling rate at around 30 Ms/s separating the sigma-delta
and flash ADCs. Sigma-delta ADCs have the highest resolu-
tion with relatively low sampling rates from kilosamples per
second to megasamples per second, while flash ADCs have
the highest sampling rates up to
Gsps due to their parallel structure
but with a resolution limited to no
more than 8 b due to nonlinearity.
Between these two structures are
unknown structures compromising
speed and resolution. 

We are also interested in the
envelope of the sample distributions
in this plot since such an envelope
indicates the performance limita-
tions. It is reasonable to extract the
envelope information based on the
ADCs with the highest performance
to postulate the design challenges
and technology trends.

In Figure 1, if Walden’s claim that P
is relatively constant is true, according
to (1), the envelope line should show
that a 3 dBs/s increment in fs corre-
sponds to a 1-b reduction in resolution.
However, Figure 1 shows that the real
tradeoff is 1 b/2.3 dBs/s. Compared to
the 1 b/3 dBs/s slope hypothesis, there
is an improvement in P at low sam-
pling rates and degradation at high
sampling rates. This trend indicates
that the ADC performance boundary is
varying with sampling rate, as illustrat-
ed by Figure 2 where ENOB is plotted
versus the sampling rate.

As stated previously, noise and dis-
tortion cause most of the performance
degradation in practical ADCs. The
internal sample-hold-quantize signal
operations are nonlinear, and those
effects are represented as equivalent
noise effects so that they can be unified
into noise-based equations to simplify
the performance analysis. Therefore,
besides thermal noise, we have two
additional noise sources, quantization
noise [2] and aperture-jitter noise [1].

THERMAL NOISE
Thermal noise by itself [1] has a 1 b/6 dBs/s relationship to sam-
pling frequency assuming Nyquist sampling [2]. However, it is
usually overwhelmed by the capacitance noise since the S/H stage,
as the input stage of an ADC, shows strong capacitive characteris-
tics. Therefore, the capacitance noise (modeled as kT/C noise [4],
where k is Boltzmann’s constant, T is the temperature, and C is
the capacitance) is usually assumed as the input noise floor.

QUANTIZATION NOISE
The signal distortion in quantization is modeled as quantization
noise with a signal-to-quantization-noise ratio (SQNR) definition of

[FIG1] Stated number of bits versus sampling rate.
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[FIG2] ENOB versus sampling rate.
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The bad news starts at 1 GHz (Le et al ’05)
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From 2008...

(Lots of RF signals have components in the 10s of gigahertz...)
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Figure IIIC 3-1 Sparse spectrum populated by a small number of active communications channels. The 

positions of the active channels must first be estimated from the NUS data in order to facilitate 

reconstruction via L2 reprojection. Our proposed algorithm for detecting the active channels involves 

energy detection over each candidate frequency bin. 

 

To employ a NUS reconstruction algorithm such as L2 reprojection, however, it is necessary to first 

determine the occupied frequencies, that is, to determine a set !  of occupied frequency channels 
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where MHz150|| !" . The diagram below illustrates the required information flow. 
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Figure: NUS samples are first used to identify the active channel locations. The subsequent L2 

reprojection uses NUS samples to reconstruct only the active portions of the spectrum. 

 

This presents a technical challenge since the occupied spectrum may be unknown a priori, and the 

NUS sample rate is below the apparent rate needed to perform spectral analysis of a 1.2GHz band. 

 

2. Proposed Solution: 
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Figure 1.  Top-level block diagram of the RMPI front-end with eight parallel channels. 

 

1.1.1 CMOS Implementation 

In the proposed RMPI architecture, with eight channels in parallel, we need to choose a chip 

fabrication technology that not only can support the target modulation rate of 5.0 Gbps, but also 

facilitates very low-power consumption per channel. Considering the speed and power requirements of 

the design, we plan to design and implement our first prototype in a 90 nm bulk CMOS 

(complementary metal-oxide-semiconductor) technology.  Some of the advantages of using standard 

CMOS technologies are: very low area and power consumption, potential for mass-production (low 

cost), possibility of full integration of the front-end with both the ADCs and the digital processing 

units.  We plan to use the 90 nm CMOS process that is offered by TAPO (via DoD).  Our team 

member, Azita Emami, has an ongoing research project using the IBM CMOS9sf technology through 

TAPO, sponsored by DARPA (FCRP). This FCRP-funded research is focused on clocking and 

synchronization for a 10 Gbps data communication system. Our ongoing and previous work on precise 

clock generation and signaling in the 90nm technology will be extremely beneficial to the RMPI 

implementation effort.  

  

As part of this project, we will also investigate and explore scalability of our design to 65 nm and 

beyond, which will allow higher modulation rates, lower power consumption and a smaller design. In 

Random demodulator being
built at part of DARPA A2I
program
(Emami, Hoyos, Massoud)

Multiple (8) channels, operating
with different mixing sequences

Effective BW/chan = 2.5 GHz
Sample rate/chan = 50 MHz

Applications: radar pulse
detection, communications
surveillance, geolocation



Sampling correlated signals

M

Goal: acquire an ensemble of M signals

Bandlimited to W/2

“Correlated” → M signals are ≈ linear combinations of R signals
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Low-rank matrix recovery

Given P linear samples of a matrix,

y = A(X0), y ∈ RP , X0 ∈ RM×W

we solve
min
X
‖X‖∗ subject to A(X) = y

where ‖X‖∗ is the nuclear norm: the sum of the singular values of X.

If X0 is rank-R and A obeys the mRIP:

(1− δ)‖X‖2F ≤ ‖A(X)‖22 ≤ (1 + δ)‖X‖2F ∀ rank-2R X,

then we can stably recover X0 from y. (Recht et. al ’07)

An ’generic’ (iid random) sampler A (stably) recovers X0 from y
when

#samples & R ·max(M,W )

& RW (in our case)
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CS for correlated signals: modulated multiplexing

modulator

modulator

modulator

modulator

+

...

ADC

code p1
rate ϕ

code p2

code p3

code pm

rate ϕ

rate ϕ

rate ϕ

rate ϕ y

...

If the signals are spread out uniformly in time, then the ADC and
modulators can run at rate

ϕ & RW log3/2(MW )

Requires signals to be (mildly) spread out in time



Summary

Main message of CS:

We can recover an S-sparse signal in RN from
∼ S · logN measurements

We can recover a rank-R matrix in RM×W from
∼ R ·max(M,W ) measurements

Random matrices (iid entries)
I easy to analyze, optimal bounds
I universal
I hard to implement and compute with

Structured random matrices (random sampling, random convolution)
I structured, and so computationally efficient
I physical
I much harder to analyze, bound with extra log-factors



Compressive sensing tells us ...

Sensing...

... we can sample smarter not faster

... we can replace front-end acquisition complexity with back-end
computing

... injecting randomness allows us to super-resolve high-frequency
signals (or high-resolution images) from low-frequency
(low-resolution) measurements

... the acquisition process can be independent of the types of signals
we are interested in



Compressive sensing tells us ...

Sensing...

... we can sample smarter not faster

... we can replace front-end acquisition complexity with back-end
computing

... injecting randomness allows us to super-resolve high-frequency
signals (or high-resolution images) from low-frequency
(low-resolution) measurements

... the acquisition process can be independent of the types of signals
we are interested in

Mathematics...

... there are unique sparse solutions to underdetermined systems of
equations

... random projections keep sparse signals separated

... a seemlingly impossible optimization program (subset selection)
can be solved using a tractable amount of computation


