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1 Motivation
Deterministic approaches fail at handling system of increasing complexity due to :
– usage exponential growth,

– system heterogeneity,
– applications diversity (P2P, VOiP, ftp, http, . . . ), . . .

Need for probabilistic / statistical tools for :
– performance analysis (queuing theory, graph theory),
– network modeling (stochastic geometry) [Lecture M1 by E. Fleury “Algorithme pour les Telecom”]
– a better characterization of traffic load (stochastic processes) ,. . .

Applied to networks, objectives of stochastic processes analysis and modeling are :
– to identify relevant indicators of the present system state : e.g., to instantaneously detect attacks,

deny of service, overloads,. . .
– to propose accurate predictors of short-term changes : to undertake preventive actions ;
– to design intelligent protocols that dynamically adapt to environment (e.g. at router scale) des-

cribed by real-time measurements : a data-driven protocol.

As an illustration, we consider the data flow corresponding to the packet (header) stream on an
aggregated link :
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timestamp Prot ip_src ip_dst sport dport length tcp_flags
4746909.842464 T 10.69.7.225 138.96.20.224 8649 47899 1500 A
4746909.842477 T 10.69.7.225 138.96.20.224 8649 47899 1500 A
4746909.849537 T 10.69.7.225 138.96.20.224 8649 47899 1500 A
4746909.849550 T 10.69.7.225 138.96.20.224 8649 47899 1471 FPA
4746909.988728 T 10.69.7.225 138.96.20.224 8649 47899 52 A
4746915.047051 T 10.69.7.227 129.88.70.61 22 36929 52 A
4746917.706674 2 192.168.4.13 224.0.0.22 - - 32 -
4746918.319298 T 10.69.7.227 129.88.70.61 22 36934 52 A
4746924.992842 T 10.69.7.225 138.96.20.224 8649 47910 60 SA
4746925.000186 T 10.69.7.225 138.96.20.224 8649 47910 1500 A
4746925.000198 T 10.69.7.225 138.96.20.224 8649 47910 919 PA
4746925.000206 T 10.69.7.225 138.96.20.224 8649 47910 97 PA
4746925.007549 T 10.69.7.225 138.96.20.224 8649 47910 1500 A
4746925.007561 T 10.69.7.225 138.96.20.224 8649 47910 1500 A

It is can be converted to different time series, or stochastic processes :

Fig. 1 – Conversion of a packet stream to different time series and stochastic processes.

The purpose of this lecture is then to introduce statistical signal analysis tools to characterize these
random processes. Hopefully, the estimated quantities will provide with a snapshot, image of the
current network state.

2 Probability, random variables and stochastic processes [5]
This section introduces basic concepts and usual notations.

2.1 Probability
2.1.1 Definitions

We shall pose the following notations :

Certain event Ω is a set of elements ;
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Experimental outcomes ωi are the elements of Ω

Event A is a subset of Ω. The empty set {∅} is the impossible event. The event {ωi} consisting of
the single element (experimental outcome) ωi is an elementary event.

Partition It is a collection of mutually exclusive subsets Ai of Ω whose union equals Ω.

Example 1 Let us consider a dice experiment interpreted by two players X, Y.
Player X says that the outcomes of his experiment are the 6 faces of the dice. The space Ω =
{f1, f2, f3, f4, f5, f6} has n = 6 elements, and 2n = 64 subsets. The event (subset) A = {even}
consists of the three experimental outcomes {f2, f4, f6}.
Player Y wants to bet on even or odd only. The certain event Ω = {even, odd} consists in only
two experimental outcomes and among the 2n = 4 possible subsets, the specific event A = {even}
is composed of a single outcome.

Definition 1 (Axiomatic definition) We assign to each event A a number P (A) called the
probability of the event A. This number must satisfy the three following axiomatic conditions :

I. P (A) ≥ 0 (1)
II. P (Ω) = 1 (2)

III. if AB = ∅ (mutually exclusive), then P (A+ B) = P (A) + P (B) (3)

Remark. In certain case of sets with infinitely many outcomes, it is not possible to assign a pro-
bability P satistfying all axioms of definition 1 to all possible subsets (events) of Ω. We are then
led to consider only a class U of subsets of Ω. A class U is a field :
– if it is non-empty,
– if A ∈U then A ∈U
– if A ∈U and B ∈U then A+ B ∈U
Moreover, suppose A1, . . . ,An, . . . is an infinite sequence of sets in U, whose union and intersection
also belong to U, then U is called a Borel field.

Frequency interpretation. If an experiment is performed n times and the event A occurs nA
times, then, with a high degree of certainty, the relative frequency nA/n of the occurrence of A is
close to P (A).

2.1.2 Properties.

— The probability of the impossible event is 0 : P (∅) = 0
— For any event A : P (A) = 1− P (A) ≤ 1 (because A+A = Ω and AA = {∅}).
— For any A and B : P (A+ B) = P (A) + P (B)− P (AB) ≤ P (A) + P (B)

Countable spaces. If the space Ω consists of N < ∞ experimental outcomes, the probability
of all events can be expressed in terms of the probabilities of the elementary events {ωi}, noted
P{ωi} = pi, with pi ≥ 0 and p1 + . . . + pN = 1. Hence, if event A is composed of r elements
{ω1, . . . , ωr}, then P (A) = P{ω1}+ . . .+P{ωr} (this relation holds even if Ω consists of an infinite
but countable number of elements).

Noncountable spaces. If Ω consists in a noncountable infinity of elements, then its probability
cannot be determined in terms of the probabilities of the elementary events.
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To fix the ideas, consider Ω the set of real numbers. It can be shown that it is not possible to assign
a probability P (satisfying axioms of definition 1) to all subsets of Ω. To construct a probability
space on the real line, we shall consider only events corresponding to intervals x1 ≤ x ≤ x2, and to
their countable unions and intersections. The resulting class is the smallest Borel field containing
all half-lines x ≤ xi, with xi any real number. This field contains all open and closed intervals,
all points, and most set of points on the real line that usually matter in applications (except e.g.
Cantor sets which are not countable unions and intersections of intervals).
It suffices now to assign a probability to the events x1 ≤ x ≤ x2 to determine all other probabilities
from the axioms. Suppose that p(x) is a function such that :∫ ∞

−∞
p(x) dx = 1 and p(x) ≥ 0.

We define the probabilty of the event {x ≤ xi} by the integral

P{x ≤ xi} =
∫ xi

−∞
p(x) dx,

which specifies the probability of all events of Ω. In paticular, considering event {x1 < x ≤ x2}
consisting of all the points in the interval (x1, x2), it is mutually exclusive with event {x ≤ x1},
and their union equals {x ≤ x2}. We then have,

P{x ≤ x1}+ P{x1 < x ≤ x2} = P{x ≤ x2}

⇔ P{x1 < x ≤ x2} = P{x ≤ x2} − P{x ≤ x1} =
∫ x2

−∞
p(x) dx−

∫ x1

−∞
p(x) dx =

∫ x2

x1

p(x) dx

Notice that if p(x) is bounded, then P{x1 < x ≤ x2} tends to zero as x1 → x2. This leads to the
conclusion that the probability of all elementary event {xi} of Ω is zero, although the probability
of their union equals 1 (this is so, because the total number of elements of Ω is not countable).
The experiment outcome {xi} is improbable but not impossible.

Conditional probability.
The conditional probability of an event A assuming the event M, denoted P (A | M), is defined
by the ratio

P (A | M) =
P (AM)
P (M)

.

Consequently :
if M⊂ A then P (A | M) = 1

if A ⊂M then P (A | M) =
P (A)
P (M)

≥ P (A)

Theorem 1 (Bayes’ theorem) Let U = [A1, . . . ,An] be a partition of Ω and B, an arbitrary
event, then

P (Ai | B) =
P (B | Ai)P (Ai)

P (B | A1)P (A1) + . . .+ P (B | An)P (An)
(4)

Independence. Two events A and B are called independent if

P (AB) = P (A)P (B).

As a corollary, if A and B are two independent events, so are events A and B and events A and B.
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2.2 Random variable
2.2.1 Definitions

A random variable (RV) is a number x(ω) assigned to every outcome of an experiment (e.g. the
gain in a dice game). It is thus a function x whose domain is the set Ω of experimental outcomes,
and the range a set of numbers (R,C,. . . )
It is then natural to relate the probability of a RV, to the probability of the corresponding generated
events. So, the notation {x ≤ x} represents a subset of Ω consisting of all outcomes ω such that
x(ω) ≤ x. Thus, {x ≤ x} is not a set of numbers, but a set of experimental outcomes.

Definition 2 (Random Variable) A RV x is a process of assigning a number x(ω) to every
outcome ω :

x :
{

Ω −→ R (C, . . .)
ω −→ x(ω) = x

Function x must satisfy the following two conditions :

I. The set {x ≤ x} is an event for every x.
II. The probability of the event {x = ∞} and {x = −∞} equals 0 :

P{x = ∞} = 0 P{x = −∞} = 0

As the elements of the set Ω contained in the event {x ≤ x} vary with x, the probability P{x ≤ x}
is a number that also depends on x.

Definition 3 (Distribution function) The (cumulative) distribution function of a RV x is the
function

Fx(x) = P{x ≤ x}, for all x from −∞ to ∞

Some properties.
1. F (−∞) = 0 ; F (∞) = 1
2. if x1 < x2 then F (x1) ≤ F (x2) : nondecreasing function
3. P{x > x} = 1− F (x)
4. P{x1 < x ≤ x2} = F (x2)− F (x1)
5. P{x = x} = F (x) − F (x−). In particular if F is continuous (i.e. RV x is of continuous-type),

then P{x = x} = 0.

Definition 4 (Density function) The derivative

p(x) =
dF (x)
dx

is called the density function of RV x.

Properties of p straightforwardly derive from those of F .
Remark. Often, we consider RV x having specific distribution or density functions without any
reference to a particular probability space Ω. For this, given a particular function F (or p), we need
to systematically consider as our space Ω the set of all real numbers, and as its events all intervals
on the real line and their unions and intersections. To each event (experiment outcome) {x ≤ x1}
is assigned the probability P{x ≤ x1} = F (x1), and the random variable is x(x) = x. Thus x is
the outcome of the experiment and the corresponding value of the RV x.
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2.2.2 Examples of common densities

Normal. A RV is called normal if or gaussian if its density is the normal curve,

p(x) =
1

σ
√

2π
e−

(x−m)2

2σ2

The corresponding distribution F (x) =
∫ x
−∞ p(x) dx is the Gauss error function (erf) noted Gm,σ(x).

Remark : Importance of normal RV stems from the Central Limit Theorem. Given n independent
RVs xi, we form the sum

x = x1 + · · ·+ xn

Under certain general conditions 1, the distribution of x of x approaches (equals in law) a normal
distribution with mean m = m1 + · · ·+mn and variance σ2 = σ2

1 + · · ·+ σ2
n, i.e. :

Fx(x) −→
n→∞

Gm,σ(x)

Uniform. A RV is called uniform between x1 and x2 if its density is constant and equal to
|x2 − x1|−1 on the interval (x1, x2) and 0 elsewhere. The corresponding distribution is a linearly
increasing function such that, F (x1) = 0 and F (x2) = 1.

Binomial (Bernoulli trial). In the experiment that consists in analyzing a length n binary
word, an outcome is a sequence w1 · · ·ωn of k on’es and n− k zero’s where k = 0, . . . , n. We define
the RV x equal to the number of one’s in the sequence

x(ω1 · · ·ωn) = k

If P{1} = p, the probability that x = k follows a binomial law :

P{x = k} = Cknp
k(1− p)n−k =

n!
k!(n− k)!

pk(1− p)n−k

and x is of discrete-type (lattice-type), its density is a sum of pulses :

p(x) =
k=n∑
k=0

Cknp
k(1− p)n−kδ(x− k)

and the corresponding distribution is a staircase function in the interval (0, n) :

F (x) =
k=m∑
k=0

Cknp
k(1− p)n−k, m ≤ x < m+ 1.

Remark. When n and np are both large, the binomial distribution can be approximated by a Gauss
error function (DeMoivre-Laplace theorem) : F (x) ' G0,1

(
(x− np)/

√
np(1− p)

)
1Sufficient conditions :

σ2
1 + · · ·+ σ2

n −→n→∞ ∞Z ∞
−∞

xαfi(x) dx < K < ∞, for all i and for some α > 2
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Poisson. A RV x is Poisson distributed with parameter a if it takes the values 0, 1 . . . , n, . . . with

P{x = k} = e−a
ak

k!
, k = 0, 1, . . .

Thus, x is of lattice-type with density

p(x) = e−a
∞∑
k=0

ak

k!
δ(x− k)

Interpretation. We place at random n points in the interval (−T/2, T/2) An outcome ω is a set
of points ti on the t axis, and we define the RV n such that its value n(ω) equals the number of
points ti lying in the interval (t1, t2) of length t2 − t1 = ta. We have

P{k in ta} = P{n = k} = Ckn
(
ta
T

)k (1− ta
T

)n−k
' e−nta/T (nta/T )k

k! when n� a and T � ta (DeMoivre-Laplace thm)
= Ppoisson(k) with a = nta/T

and moreover, if n→∞ and T →∞ but the density λ = n/T kept fixed then

P{k in ta} = P{n = k} = e−λta
(λta)k

k!
.

Exponential. (Exercise). In the Poisson points experiments, let us consider a fix event t0 and
we are interested in the first next point t1 occurring after t0. Let us pose x = t1 − t0, the RV, and
let us find p(x).

F (x) = P{x ≤ x} = P{there is at least one point in (t0, t0 + x)}
= 1− P{there is no point in (t0, t0 + x)}
= 1− P{0 in (t0, t0 + x)}
= 1− e−λx

and
p(x) =

dF (x)
dx

= λe−λxU[0,∞[

2.2.3 Function of a random variable

Let us consider x a RV and form the new RV y = g(x), where g is a function defined on the
support of x. Then, we have

Fy(y) = P{y ≤ y} = P{g(x) ≤ y}

We also know that

P{y < g(x) ≤ y + dy} = Fy(y + dy)− Fy(y) = py(y) dy

From the example depicted in figure 2, we get,

py(y)dy =
∑

i=1,...,n

Px{xi ≤ x < xi + dxi} =
∑

i=1,...,n

px(xi) dxi,

where the {xi, i = 1 . . . n} are the roots of g(x) = y. If g is a continuous function, dxi = dy/|g′(xi)|
and

py(y) =
n∑
i=1

px(xi)
|g′(xi)|

.
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Fig. 2 – Function of a RV.

Example. y ∼ N(m,σ) is a normal RV, determine the density of x = exp{y}.

px(x) =
1

xσ
√

2π
e−

(log(x)−m)2

2σ2 : Log-Normal

Inverse problem. Let us consider a uniform RV x in (0, 1). Determine the function g, such that
the distribution of the RV y = g(x) is a specific function Fy(y).
Let us pose x = Fy(y) ∈ (0, 1), then :

Fx(x) = P{x ≤ x) = P{Fy(y) ≤ Fy(y)}
= P{y ≤ y} (because Fy is monotonous)
= Fy(y) = x (by definition)

⇔ Fx(x) = x, for x ∈ (0, 1).

Hence, the solution y = g(x) = F−1
y (x).

2.2.4 Moments.

Mean. The expected value of a RV x is, by definition, the integral :

E{x} =
∫ ∞

−∞
x p(x) dx = mx

which can also be interpreted as a Lebesgue integral :

E{x} =
∫

Ω

x dF (x)

Mean of g(x) : Given a RV x and a function g(x), the mean of RV y = g(x) is equal to :

E{y} =
∫ ∞

−∞
y py(y) dy =

∫ ∞

−∞
g(x) px(x) dx

Variance. The variance of a RV x is by definition the intregral :

σ2 = E{(x− E{x})2} =
∫ ∞

−∞
(x−m)2 p(x) dx = E{x2} − E2{x}

The positive constant σ is called the standard deviation of x.
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Moments.
mn = E{xn} =

∫ ∞

−∞
xn p(x) dx

Remark : Two RV x and y are equal in law (or in distribution) if all their moments of finite order
are equal.

Central moments.

µn = E{(x− E{x})n} =
∫ ∞

−∞
(x−m)n p(x) dx

Binomial formula : µn =
n∑
k=0

Cknmk (−m)n−k and mn =
n∑
k=0

Ckn µk (m)n−k

Absolute moments.

E{|x |n} =
∫ ∞

−∞
|x |n p(x) dx and E{|x−m |n} =

∫ ∞

−∞
|x−m |n p(x) dx

Example : x ∼ N(m,σ) a normal RV, then

E{xn} =
{

0 n = 2k + 1
1 · 3 · · · (n− 1)σn n = 2k

E{|x |n} =
{

2k k!σ2k+1
√

2/π n = 2k + 1
1 · 3 · · · (n− 1)σn n = 2k

Inequalities.

Theorem 2 (Tchebycheff Inequality) For any ε > 0,

P{|x−m |≥ ε} ≤ σ2

ε2

This theorems bounds the probability that a RV x deviates from its mean.

Theorem 3 (Markov Inequality) If p(x) = 0 for all x < 0, then, for any α > 0,

P{x ≥ α} ≤ m

α

This theorem bounds the probability for large deviations of RV x.

Heavy-Tailed distribution. Markov inequality indicates that P{x ≥ x} can not decrease slo-
wer than 1/x as x → ∞, and in particular, if it decreases exponentially fast, then all moments
E{xn} of x are finite.

Definition 5 (Heavy-tailed distribution) A RV x is called heavy-tailed with tail parameter
α if

P{|x |> x} = x−α L(x)

with L(x) a slowly varying function2.
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Fig. 3 – Estimated density function of the flow size on a TCP/IP traffic link.

For these RV, it is clear that moments are finite exactly up to order α.
Examples of heavy-tailed distributions
– Pareto distribution ;
– Log-normal distribution ;
– Weibull distribution ;
– Burr distribution ;
– Log-gamma distribution. Those that are two-tailed include :
– Cauchy distribution, itself a special case of
– t-distribution ;
– Stable Distribution family, excepting the special case of the normal distribution within that

family.

2.2.5 Characteristic function

The characteristic function (or moment generating function) of a RV is by definition the integral :

Φ(ν) =
∫ ∞

−∞
p(x) eiνx dx =

∫
Ω

eiνxdF (x) = E
{
eiνx

}
Differentiation Φ n times, we obtain

Φ(n)(ν) = E
{
(iν)n eiνx

}
, and in particular, Φ(n)(0) = inmn

Then, expanding Φ into a series near the origin, we obtain

Φ(ν) =
∞∑
n=0

mn

n!
(iν)n

2L(tx)/L(x) → 1, as x →∞.
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thus the name “moment generating function” for Φ. Since p(x) can be entirely determined in terms
of Φ, the density of a RV is uniquely determined if all moments are known.

Remark : Sometimes, the second characteristic function Ψ(ν) = log Φ(ν) is prefered, and cumulants
of order n defined

λn = (−i)nΨ(n)(0)

which lead to3

Ψ(ν) = λ1(iν) +
1
2
λ2(iν)2 + · · ·+ 1

n!
λn(iν)n + · · ·

The second characteristic function is particularly interesting in the normal case, since then

Ψ(ν) = log
(
eimν−

1
2σ

2ν2
)

= imν − 1
2
σ2ν2

where we identify4

λ1 = m ; λ2 = σ2 and λn = 0, ∀n ≥ 3

Remark : Characteristic functions are positive-definite functions (as Fourier transform of a positive
function).

2.2.6 Two random variables

We briefly generalize notions defined for a random variable to the case of two (or several) RVs.

Joint distribution. Let x and y be two RV, we define the joint distribution

Fxy(x, y) = P{x ≤ x and y ≤ y}

Consequences :
– F (−∞, y) = F (x,−∞) = 0
– F (∞,∞) = 1
– P{x1 < x ≤ x2 and y ≤ y} = F (x2, y)− F (x1, y)
– P{x ≤ x and y1 < y ≤ y2} = F (x, y2)− F (x, y1)
– P{x1 < x ≤ x2 and y1 < y ≤ y2} = F (x2, y2)− F (x1, y2)− F (x2, y1) + F (x1, y1)

Joint density.

pxy(x, y) =
∂2

∂x∂y
Fxy(x, y)

Marginals. The marginal distributions and the marginal densities of two RV x and y are ex-
pressed in terms of their joint distribution (respectively their joint density) according to :

Fx(x) = Fxy(x,∞) ; Fy(y) = Fxy(∞, y)

and

px(x) =
∂Fxy(x,∞)

∂x
=
∫ ∞

−∞
pxy(x, y) dy ; py(y) =

∂Fxy(∞, y)
∂y

=
∫ ∞

−∞
pxy(x, y) dx

3Clearly, Ψ(0) = log Φ(0) = log(1) = 0.
4Edgeworth development of the Gaussian.

13



Independence.

p(x, y) = p(x)p(y) since P{x ≤ x and y ≤ y} = P{x ≤ x}P{y ≤ y}

Example : Joint normality. RV x and y are joint normal if their joint density takes on the form :

pxy(x, y) =
1

2πσxσy
√

1− r2
e
− 1

2(1−r2)

»
(x−mx)2

σ2
x

−2r
(x−mx)(y−my)

σxσy
+

(y−my)2

σ2
y

–

In this expression mx and my are the expected values of x and y, and σ2
x and σ2

y, their variance.
|r| < 1 is the correlation factor. When x and y are uncorrelated r = 0, and moreover independent
since :

pxy(x, y) =
1

σx
√

2π
e
− (x−mx)2

2σ2
x · 1

σy
√

2π
e
− (y−my)2

2σ2
y = px(x) · py(y)

where px and py are the marginal distributions.

Function of two RV. Let x and y be two RV, and let us form the RV z = g(x,y). The domain
Dz is the region of the xy plane such that g(x, y) ≤ z. Then

Fz(z) = P{z ≤ z} = P{(x,y) ∈ Dz} =
∫ ∫

Dz

p(x, y) dx dy

Also,

E{g(x,y)} =
∫ ∞

−∞

∫ ∞

−∞
g(x, y)p(x, y) dx dy =

∫
Ωx

∫
Ωy

g(x,y)dF (x,y)

Example : Let us consider x and y two independent RV, and form the new RV z = x + y.
The domain Dz such that x+ y ≤ z is defined by (x ≤ z − y, y), thus

Fz(z) =
∫ ∞

y=−∞

∫ z−y

x=−∞
pxy(x, y) dx︸ ︷︷ ︸

primitive of pxy(x, y) in x

dy

and
pz(z) dz = dFz(z) =

∫ ∞

y=−∞
pxy(z − y, y) dy dz =

∫ ∞

−∞
px(z − y) py(y) dy dz

⇔ pz(z) = px ∗
z
py

Joint moments.
mkr = E{xkyr} =

∫ ∫
xk yr pxy(x, y) dx dy

is a joint moment of the RV x and y of order n = k + r, and similarly for characteristic function,
cumulants. . .

First order – Expectation operator E is linear, then

E{x + y} = Exy{x}+ Exy{y}
= Ex{x}+ Ey{y}

Second order – In general E{xy} 6= E{x}E{y}, but

if x and y are independent ⇔ pxy(x, y) = px(x)py(y) ⇒ E{xy} = E{x}E{y}

E{xy} = E{x}E{y} ⇒ x and y are uncorrelated (but not necessarily independent)
E{xy} = 0 ⇒ x and y are orthogonal

14



Covariance.

cxy = E(x− E{x})(y − E{y})
= Exy − E{xEy} − E{yEx}+ E{ExEy}
= E{xy} − E{x}E{y}

Correlation coefficient.
r =

cxy

σxσy
and |r| < 1

Proof : form the quantity E
{

[a(x−mx) + (y −my)]
2
}

= a2σ2
x+2acxy+σ2

y ≥ 0, ∀a, which admits
no real roots. Hence, the (reduced) discriminant5 equals ∆ = c2xy − σ2

xσ
2
y ≤ 0 ⇒ cxy ≤ σxσy

Interpretation. E{xy} is equivalent to the inner product of x and y. Thus, x and y are orthogonal
iff E{xy} = 0.

Sequence of random variables Let x = [x1;x2; · · · ;xn] a column vector of RV xi.

Mean. E{x} = [Ex1; Ex2; · · · ; Exn]

Variances.

Vx = E{x� x} − E{x} � E{x} =
[
Ex2

1 −m2
1; Ex2

2 −m2
2 ; · · · ; Ex2

n −m2
n

]
=

[
σ2
x1

;σ2
x2

; · · · ;σ2
xn

]

Covariance matrix.

Cxx =

 C1,1 · · · C1,n

... · · ·
...

Cn,1 · · · Cn,n

 = E{xxt} − (E{x}) (E{x})t

and where Ci,j = Exixj − (Exi)(Exj).
The correlation matrix Rxx is similarly defined with elements Ri,j = Exixj .

5(∆ = b2 − ac)
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2.3 Processes
2.3.1 Deterministic signals as a guideline

We first need to define the functional space of signals with finite energy :

f(t) ∈ L2(R) iff Ef =
∫ ∞

−∞
|f(t)|2 dt <∞

L2(R) is an Hilbert space with inner product 〈f, g〉 =
∫
f(t) g∗(t) dt

Periodic signals. To handle periodic signals, which are not of finite energy, we introduce the concept
of power :

instantaneous power pf (t) = |f(t)|2

average power Pf (t, T ) =
1
T

∫ t+ T
2

t−T
2

pf (u) du

A signal f is of finite power iff Pf = lim
T→∞

Pf (t, T ) <∞. Note that Ef <∞ yields Pf = 0.

Fourier transform. If f(t) ∈ L2(R), the Fourier transform of f reads :

F [f ] = f̃(ν) =
∫ ∞

−∞
f(t) e−i2πνt dt, with f̃ ∈ L2(R)

and its inverse
f(t) = F−1[f̃ ] =

∫ ∞

−∞
f̃(ν) ei2πνt dt.

We can interpret the FT as the inner product of the analyzed signal with eν = ei2πνt the eigen-
function of all time invariant linear operators, and

f(t) =
∫
〈f, eν〉eν(t) dν

f̃(ν) =
∫
〈f, δu〉 δu(t) du where δu(t) = δ(t− u) = F [ei2πνu]

Moreover, it is an isometry relation (Parseval relation) :

Ef = 〈f, f〉 =
∫
|f(t)|2 dt =

∫
|f̃(ν)|2 dν ; Efg = 〈f, g〉 =

∫
f(t) g∗(t) dt =

∫
f̃(ν)g̃∗(ν) du.

Energy (Power) Density Spectrum.

Sf (ν) = |f̃(ν)|2

It is the frequency counterpart of instantaneous power pf (t), and
∫
Sf (ν) dν = Ef

Remark. For signals of finite power, we introduce the intermediary quantity Sf,T (ν) = 1/T |F [f(t) ΠT (t)]|2
and Sf (ν) = limT→∞ Sf,T (ν), so that

∫
Sf (ν) dν = Pf .
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Correlation.

Theorem 4 (Wiener-Khintchine) For finite energy signals f ∈ L2(R), we define the function

Cf (τ) :=
∫ ∞

−∞
Sf (ν) ei2πντ dν = F−1[Sf ] =

∫ ∞

−∞
f∗(t) f(t− τ) dτ.

Proof. ∫
Sf (ν) ei2πντ dν =

∫
f̃(ν)f̃∗(ν) ei2πντ dν

=
∫
f̃(ν)

(∫
f(t)e−i2πνt dt

)∗
ei2πντ dν

=
∫
f∗(t)

∫
f̃(ν) ei2πν(t+τ) dν dt

=
∫
f∗(t) f(t+ τ) dt

We check easily that :
– Cf (0) = Ef
– |Cf (τ)| ≤ Cf (0) (Schwarz’ inequality)
– Concentration of Cf implies a spread out Sf on the frequency axis, and reciprocally (Gabor-

Heisenberg principle)

Remark. For finite power signals,

Cx(τ) = lim
T→∞

1
T

∫
(f(t)ΠT (t))∗ (f(t+ τ)ΠT (t+ τ)) dt

= lim
T→∞

1
T

∫
Sf,T (ν) ei2πντ dν =

∫
Sf (ν) ei2πντ dν (Wiener-Khintchine)

Discussion. In a way, the correlation function Cx(τ) measures the averaged (along the time axis)
product of f(t) with f(t + τ). If t is considered an event of some probability space Ω and f(t) a
realization of some associated RV (with same distribution for all t ∈ Ω) , then Cf (τ) “resembles”
the ensemble average E{f(t)f(t+ τ)} defining the correlation of two RVs.
For this correspondence to make sense, RV f needs to be stationary, then

E for a RV ∼
∫
. . . dt for a continuous realization f(t) of f

More generally though, we now investigate how it is possible to transpose to stochastic processes,
notions such those of spectrum density and correlation function. . .

2.3.2 Stochastic processes

Definition 6 (Stochastic process)

A stochastic process is a rule that consist to assign to each event ω of a probability space Ω a
function of time

Ω 7→ S (some signal space)
ω 7→ x(t;ω) or x[n;ω] in discrete time

At a given time t, x(t, ω) is considered as a RV and the following properties derive :
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– First order properties

Distribution Fx(x, t) = P{x(t, ω) ≤ x} and similarly for px(x, t)

Mean m(t) = Ex(t, ω)

– Second order properties

Joint distribution F (x1, x2, t1, t2) = P{x(t1, ω) ≤ x1 and x(t2, ω) ≤ x2)

p(x1, x2, t1, t2) =
∂2F (x1, x2, t1, t2)

∂x1∂x2

Auto-correlation Rx = Ex(t1, ω)x∗(t2, ω)

Variance Rx(t, t) = E|x(t, ω)|2 − |m|2(t)

Auto-covariance Cx(t1, t2) = Ex(t1, ω)x∗(t2, ω)−m(t1)m∗(t2)

– High order properties

Joint distribution Fx(x1, · · · , xn ; t1, · · · , tn) = P{x(t1) ≤ x1 , · · · , x(tn) ≤ xn}

– Equality in distribution : x d= y ⇔ Fx(x, t) = Fy(y, t) ∀ t

– Equality in mean square (MS) : EΩ|x(t)−y(t)|2 = 0 ⇔ x = y almost surely (a.s.) or with probability 1
(which does not necessarily imply that for a given event ω, X(t, ω) = Y (t, ω) a.s.)

Example. Given a set of Poisson points ti with density λ, we form the process x(t) = {number of points ti}
within the period (0, t). Then, it can be shown (cf [5], p.108) that

Ex(t) = λt and Ex2(t) = (λt)2 + (λt)

Then
EX(t1)(X(t2)−X(t1)) = EX(t1).E{X(t2)−X(t1)} = λt1 · λ(t2 − t1)

since (0, t1) and (t1, t2) are two disjoint intervals. Therefore,

EX(t1)(X(t2)−X(t1)) = E{X(t1)X(t2)} − EX2(t1)) = Rx(t1, t2)−Rx(t1, t1)
⇔ Rx(t1, t2) = λt1 · λ(t2 − t1) +Rx(t1, t1) = λt1 · λ(t2 − t1) + (λt1)2 + (λt1) = λ2t1t2 + λt1

More generally tho, if t2 is not necessarily larger than t1 : Rx(t1, t2) = λ2t1t2 + λmin(t1, t2)

Autocorrelation properties. .

• Rx(t1, t2) = R∗x(t2, t1) : hermitic symmetry

• Average power (at t fixed) : Rx(t, t) = E|x(t)|2 ≥ 0

• The autocorrrelation function of a process is a definite positive function :

∀ai and ∀aj
∑
ai,aj

aia
∗
jRx(ti, tj) ≥ 0

(the converse is also true : given a positive definite function R(t, s) we can find a process x with
autocorrelation R(t, s).
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• In accordance with the correlation coefficient of two RV, C(t1, t2) ≤
√
C(t1, t1)C(t2, t2).

• Linear system theorem.

If Y (t) =
∫
g(t− u)X(u) du then Ry(t1, t2) =

∫ ∫
Rx(t1 − u1, t2 − u2) g(u1) g(u2) du1 du2

Example. Let z(t) = d
dtx(t) =

∑
i δ(t − ti) where x is a counting Poisson process and the ti’s

the corresponding Poisson instants. Thus applying the Linear System property above, it follows
that

Rz(t1, t2) =
∂2

∂t1∂t2
Rx(t1, t2) =

∂

∂t1
λ2t1 + λU(t1 − t2) = λ2 + λδ(t1 − t2)

2.3.3 Stationary processes

An important class of processes is the class of processes whose statistics properties are time-shift
invariant.

Strict-Sense Stationarity (SSS). A process x is strict-sense stationary if x(t) and x(t+ c) are
equal in distribution, i.e.

fx(x1, · · · , xn; t1, · · · , tn) = fx(x1, · · · , xn; t1 + c, · · · , tn + c) ∀c and ∀n

In particular, for the second order statistic :

fx(x1, x2; t1, t2) = fx(x1, x2; t1 − t1, t2 − t1) = fx(x1, x2; t2 − t1)

⇒ E{x(t1)x(t2)} = Rx(t2 − t1)

This property is in general very stringent on x and difficult to satisfy (and verify). Often then, the
concept of stationarity is soften.

Wide-Sense Stationarity (WSS). A process x(t, ω) is wide-sense stationary if its mean is
constant :

Ex(t) = m

and its autocorrelation depends only on τ = t2 − t1 :

E{x(t+ τ)x(t)} = R(τ)

In particular, the average power of x, E|x(t)|2 = R(0) and is independent of t.

A SSS process is also WSS. While the converse is false in general. it applies if x is a normal process.

Conversely, non-stationarity is a non-property which in practice is very difficult to characterize. It
comes to identifying any type of rupture, or smooth change in the statistics of a process, whereas
in most situations only one realization (observation) of the random process is available.

Application example : Sketches. We describe a stationarity versus non-stationarity test applied to
the detection of anomalies in Internet traffic flows6. The idea is to (artificially) generate, using
hashing functions, almost independent realizations of the stochastic process defined by the number
of new flows (or connections) arriving within a period ∆t.

6“Identification d’anomalies statistiques dans le trafic internet par projections aléatoires multirésolutions”, P.
Borgnat, G. Dewaele, P. Abry. Proceeding of the XXIème colloque GRETSI, Troyes, France, 2007.
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Analyzed signal – x(t) : Number of starting flows (SYN) appearing on an aggregated link, within
a time window of length ∆t. Observation duration is T � ∆t. Each flow is identified by an IPsrc
and an IPdest (plus possibly ports numbers).

Goal – To identify anomalous flows emitted by a specific source (IPsrc) or received by a specific
destination (IPdest). Both cases corresponding respectively to :

1. an intrusive scan
2. a deny of service

Difficulties – An exhaustive search of a pathological source or destination lies in a high dimensional
space (typically 296). Internet traffic is naturally non-stationary, which does not necessarily
correspond to any type of attack.

Overall idea – The approach works in two steps :
1. Partition the aggregated traffic into disjoint classes of flows. This allows for isolating the

anomalous flow into a trace that gathers less flow heterogeneity, and thus accentuates the
statistic discrepancy between normal traces (encompassing only regular flows) and irregular
traces (containing at least one abnormal flow).
Random projections (sketches) are used :

xm(t) = H[x](t), for m = 1, . . .M

The hashing function H is a projector that has m possible outputs, and it filters the aggre-
gated trace x(t) according to IPsrc or / and IPdest. Each of the outputs xm(t) represents
a particular realization of a stochastic process xm, all being equal in law if no anomalous
flow falls in the cluster Cm. If one (or more) anomalous flow is projected in the class Cm,
statistics of this latter should deviate form the common statistics of the standard classes.

2. Multiply the number of independent realizations of each stochastic process xm. For this,
use different orthogonal random projectors Hn, n = 1, · · · , N .

The statistical Gamma law of normal traffic :

Γα,β(x) =
1

βΓ(α)

(
x

β

)α−1

exp
(
−x
β

)
is inferred (i.e. parameters α̂ and β̂ are estimated) by time average and sketches average (view as
ensemble averages) of the xm,n(t) processes . Then, for each series xm,n(t), the following hypothesis
test is performed : {

Pα̂,β̂{x > xm,n(t)} ≤ λ : anomaly,
Pα̂,β̂{x > xm,n(t)} > λ : normal,

2.3.4 Power spectrum in the stationary case

In signal processing, a host of interesting properties are more easy to identify or to characterize with
the spectral representation in the frequency domain. Spectra are associated with Fourier transform,
which in the deterministic case, represents the signal as a superposition of complex exponential.
We shall introduce the concept of spectrum for stationary stochastic processes, starting with a
first approach which consists to apply Fourier transforms to average quantities (thus deterministic
for WSS processes). Later on, we shall rely on the case of non-stationary processes to illustrate
spectra as a superposition of complex exponentials.

Definition 7 (Power spectrum) The power spectrum (or spectral density) of a WSS process
x(t) is the Fourier transform S(ν) of its autocorrelation function R(τ) = E{(x+ τ)x(t)

S(ν) =
∫ ∞

−∞
R(τ) e−i2πντ dτ
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Because R(τ) = R∗(−τ) (hermitic property), S(ν) is a real function of frequency ν. Conversely,

R(τ) =
∫ ∞

−∞
S(ν) ei2πντ dν

Example. Let ti be a set of Poisson points, and denote n(t1, t2) the corresponding Poisson RV
within interval (t1, t2), for which we have P{n(t1, t2) = k} = e−λ(t2−t1)(λ(t2 − t1))k/k!. Form the
process

x(t) =
{

+1 if n(0, t) is even
−1 if n(0, t) is odd

x(t) is a binary signal (digital communication) which commutes between +1 and -1, with proba-
bilties

P{x(t) = 1} = P{n(0, t) = 0}+ P{n(0, t) = 2}+ . . .

= e−λt + e−λt(λt)2/2! + · · · = e−λt
(
1 + (λt)2/2! + · · ·

)
= e−λt cosh(λt)

P{x(t) = −1} = P{n(0, t) = 1}+ P{n(0, t) = 3}+ . . .

= e−λt sinh(λt)

We want to determine Rx(t1, t2), which reads :

Rx(t1, t2) = E{x(t1)x(t2)} = P{x(t1) = 1,x(t2) = 1} − P{x(t1) = 1,x(t2) = −1}
−P{x(t1) = −1,x(t2) = 1}+ P{x(t1) = −1,x(t2) = −1}

Let us assume t1 < t2, if x(t1) = +1, then x(t2) = 1 if and only if n(t1, t2) is even. Thus, by
independence of RV n(0, t1) and n(t1, t2), and posing t = t2 − t1,

P{x(t1) = 1,x(t2) = 1} = P{x(t1) = 1} · P{x(t) = 1} = e−λt1 cosh(λt1)e−λt cosh(λt)
P{x(t1) = 1,x(t2) = −1} = P{x(t1) = 1} · P{x(t) = −1} = e−λt1 cosh(λt1)e−λt sinh(λt)
P{x(t1) = −1,x(t2) = 1} = P{x(t1) = −1} · P{x(t) = −1} = e−λt1 sinh(λt1)e−λt sinh(λt)
P{x(t1) = −1,x(t2) = −1} = P{x(t1) = −1} · P{x(t) = 1} = e−λt1 sinh(λt1)e−λt cosh(λt)

Substituting in R(t1, t2), we get
R(t1, t2) = e−2λ|t1−t2|

The process x(t) is stationnary (at least WSS) with R(τ) = e−2λ|τ |. Then, by Fourier transform,
we obtain

S(ν) =
4λ

4λ2 + ν2

which gives the necessary channel bandwidth to transfer a random binary signal at rate λ.

Some properties.
– S(ν) ≥ 0 because R(τ) is a definite positive function. Moreover the average power R(0) =

E|x(t)|2 =
∫
S(ν) du.

– Given an arbitrary positive function S(ν), we can always find a process x(t) with power spectrum
S(ν).

– x(t) being a WSS process, the response y(t) =
∫

x(t− τ)h(τ) dτ of a linear system is such that

Ry(τ) = Rx(τ) ? h(τ) ? h∗(−τ)
Sy(ν) = Sx(ν)|H(ν)|2
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– The integrated spectrum is defined as the integral

F (ν) =
∫ ν

−∞
S(ν) dν

F (ν) is necessarily a non decreasing function of ν, and formally, it allows to express the auto-
correlation R(τ) as a Fourier-Stieltjes integral (integration on a measure)

R(τ) =
∫ ∞

−∞
ei2πντ dF (ν)

Moreover, F (ν) avoids the use of singularity fuctions in the spectral representation of R(τ). If
S(ν) contains pulses of the type δ(ν − νi), then F (ν) is simply discontinuous at νi.

2.3.5 Harmonic analysis of stochastic processes

Given a stochastic process x(t), its spectral representation is defined as follows

x(t) =
∫ ∞

−∞
e−i2πνtX(ν) dν and X(ν) =

∫ ∞

−∞
ei2πνtx(t) dt

whith equalities in MS.
Loève condition : The spectral representation of x(t) hold, if and only if

E{X(ν1)X∗(ν2)} := Γ(ν1,−ν2) is such that
∫ ∫ ∞

−∞
|Γ(ν1,−ν2)|dν1 dν2 <∞

Theorem 5 (Wiener-Khintchine) . If X(ν) satisfies the Loeve condition, then

Rx(t1, t2) =
∫ ∫

ei2πν1t1+i2πν2t2Γ(ν1, ν2)dν1dν2

In this relation, the spectral increment Γ(ν1, ν2) plays the role of a spectrum, similar to that of a
spectrum for WSS processes.
Formally, the equivalence holds, but in the general case, when no specific structure is imposed on
R(t1, t2) (such as stationarity), the notion of spectrum is of little use for non-stationary processes.
One solution to circumvent the difficulty arising with non-stationary processes, is to
resort to a decomposition of x on a more adapted basis than the Fourier basis, e.g.
wavelet bases.

We can show that if x is non-stationary with average power E|x(t)|2 = R(t, t) = p(t), then X(ν)
is a stationary process and its autocorrelation equals the Fourier transform Q(ν) of q(t), i.e.

E{X(ν + α)X(α)} = Γ(ν + α,−α) = Q(ν)

Conversely, going back to stationary processes, we shown that Γ(ν1, ν2) takes on a diagonal form,
localized on the frequency axis, since then

R(t1, t2) = R(t2 − t1) =
∫ ∫

R(t1 − t2) e−i2π(ν1t1+ν2t2) dt1 dt2

=
∫
e−i2π(ν1+ν2)t2

∫
R(τ)e−i2πν1τ dτ dt2

⇒ Γ(ν1, ν2) = S(ν1)
∫
e−i2π(ν1+ν2)t2 dt2 = S(ν1)δ(ν1 + ν2)

⇒ E{X(ν1)X∗(ν2)} = S(ν1)δ(ν1 − ν2)
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This shows that the Fourier transform of a stationary process is non-stationary white noise with
average power S(ν). The converse is also true, that is, a process x in the spectral representation is
WSS iff EX(ν) = 0 for ν 6= 0 and E{X(ν1)X∗(ν2)} = Q(ν1)δ(ν1 − ν2)

In order now to express the spectral representation of a WSS process in terms of a Fourier-Stieltjes
integral, let us introduce the integrated process

Z(ν) =
∫ ν

0

X(λ) dλ ⇔ dZ(ν) = X(ν)dν

It comes from the specific diagonal form of Γ(ν1, ν2), that the process Z(ν) has orthogonal (uncor-
related) increment : For any ν1 < ν2 < ν3 < ν4 :

E{[Z(ν2)− Z(ν1)][Z(ν4)− Z(ν3)]∗} = E{
∫ ν2

ν1

X(λ1)dλ1

∫ ν4

ν3

X∗(λ2)dλ2}

=
∫ ν2

ν1

∫ ν4

ν3

E{X(λ1)X∗(λ2)} dλ1 dλ2

=
∫ ν2

ν1

∫ ν4

ν3

S(λ1)δ(λ1 − λ2) dλ1 dλ2 = 0 (disjoint intervals)

and, similarly

E{|Z(ν2)− Z(ν1)|2} =
∫ ν2

ν1

S(ν) dν

Taking limits ν1 = ω1, ν2 = ω1 + dω1, ν3 = ω2, ν4 = ω2 + dω2, we get

E{dZ(ω1)dZ∗(ω2)} = E{X(ω1)X∗(ω2)} dω1dω2 = Γ(ω1,−ω2) dω1dω2 (= d2Γ(ω1,−ω2))

= S(ω1)δ(ω1 − ω2) dω1dω2 (for WSS processes)

= dF (ω1)δ(ω1 − ω2) dω2

The spectral representation of x(t) can be written with the following Fourier-Stieltjes intergral :

x(t) =
∫ ∞

−∞
ei2πνt dZ(ν)

A doubly orthogonal decomposition,

〈ei2πω1t, ei2πω2t〉 = δ(ω1 − ω2) orthogonal basis

and E{dZ(ω1)dZ∗(ω2)} = 0, for all ω 6= ω2 orthogonal spectral increments

and with
E{|dZ(ω)|2} = dF (ω)dω

It is this last relation that permits to define the spectrum S(ω) of WSS process x(t), in terms of
the increment process dZ(ω).

2.3.6 Symmetry properties of stochastic processes

Stationarity. Stationarity (strict- or wide-sense) is a type of symmetry property that compels
time invariance to the statistics (of all or restricted orders) of a process.
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Processes with independent increments.

Definition 8 x(t) is a stochastic process with independent increments z(t, τ) = x(t+ τ)− x(t) if

∀t and ∀τ > 0, z(t, τ) is independent of x(u), ∀u ≤ t.

Example 1. The counting Poisson process x(t) := n(0, t) has independent increments.

Example 2. A process M(t) is a martingale if

E{M(t)|{M(u), u ≤ s}} = M(s) ∀s ≤ t ⇒ E{M(t)−M(s)|{M(u), u ≤ s}} = 0, ∀s ≤ t

Consequently, a martingale has uncorrelated increments (and independent if M is moreover gaus-
sian).

Example 3. A process x(t) has infinitely divisible law if

x(t) =
N∑
i=0

Z(ui, τi)

where Z(ui, τi) are independent random variables satisfying :

∀ε > 0, ∀η > 0, P{|Z(ui, τi)| > ε} < η (continuity in probability)

and
{
τi = ui+1 − ui < µ (sufficiently small)
0 = u0 < u1 < · · · < uN = t

Examples of infinitely divisible laws are : Gaussian, α−stable laws, Poisson, . . .

Theorem 6 (Lévy) Any continuous time process x(t) can be decomposed as follows

x(t) = f(t) +
∑
n|tn≤t

ytn + x2(t)

where f(t) is a deterministic function, ytn a discrete process and x2(t) a process with infinitely
divisible law.

Processes with stationary increments.

Definition 9 x(t) is a stochastic process with stationary increments z(t, τ) = x(t+ τ)− x(t) if

∀t and ∀τ > 0, z(t, τ) is a (strict- or wide-sense) stationary process (with respect to t).

Example. Random Walk.

xn =
n∑
i=1

zi where the increments zi’s are i.i.d., zi =
{

+s with probabilit p
−s with probabilit q = 1− p

We then have xn = ks− (n− k)s = (2k − n)s = ms, and

P{xn = ms} = Cknp
k qn−k = Ckn

1
2n

if p=q=1/2
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and

Exn =
n∑
i=1

Ezi = 0 and E|xn|2 =
n∑
i=1

|zi|2 = ns2.

When n→ 0, Cknpkqn−k ' (2πnpq)−
1
2 e−(k−np)2/2npq (DeMoivre-Laplace thm), then

P{xn = ms} ' 2
√
n
√

2π
e−

m2
2n ∼ N (0,

√
n)

Now, posing t = nT (continuous time), xn  x(t), such that{
Ex(t) = 0, ∀t

E|x(t)|2 = ns2 = s2

T t ∀t (non-stationary)

The limit process x(t) when s→ 0, T → 0, with s2/T → 2D2 finite, is called Wiener process or
(ordinary) Brownian motion, and

P{x(t) ≤ x = ms} =
∫ x/s

−∞

2√
2πn

e−
m2
2n dm

=
∫ x

−∞

2√
2πs2t/T

e
− y2

2s2t/T dy (posing y = ms)

=
∫ x

−∞

2
√

2π
√

2D2t
e
− y2

2(2D2t) dy

Finally,
px(t)(x) ∼ N (0, D

√
2t).

Regarding autocorrelation of the process, considering that increments are independent (by construc-
tion) :

E{(x(t2)− x(t1))x(t1)} = E (x(t2)− x(t1)) Ex(t1)︸ ︷︷ ︸
=0

= 0,

it comes that
R(t2, t1) = E{x(t2)x(t1)} = E|x(t1)|2 = 2D2t1

and conversely, if t2 < t1,
R(t1, t2) = 2D2 min(t1, t2).
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3 Wavelet decompositions

3.1 Gabor transform : an impossible paradigm for orthogonal basis

3.2 Continuous wavelet transform and frames

3.3 Discrete wavelet transform
3.3.1 The Haar system : an introductory illustration

3.3.2 Multiresolution analysis

A multiresolution analysis consists of a sequence of successive approximation spaces Vj satisfying
the embedding relation

· · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · ⊂ Vj ⊂ Vj+1 ⊂ · · · (5)

with

(i)
m=∞⋂
m=−∞

Vm = {0}

(ii)
m=∞⋃
m=−∞

Vm is dense in L2(R)

(iii) x(t) ∈ Vm ⇔ x(2t) ∈ Vm+1

(iv) there exists a function φ(t) such that the collection {φ(t− n), n ∈ Z} constitutes a basis for V0.

∀x ∈ V0,

∫
|x(t)|2 dt =

∑
k

∣∣∣∣∫ x(t)φ(t− k) dt
∣∣∣∣2

From (iii) and (iv), we deduce that {φmn(t) = 2m/2φ(2mt − n), ∀n ∈ Z} is a basis for Vm. If we
denote Pj the orthogonal projection operator onto Vj ,

Pjx(t) =
∑
k

〈x, φjk〉φjk(t),

then, (ii) ensures that limj→∞ Pjx = x, for all x ∈ L2(R).

Let us know consider the orthogonal complement space Wm of Vm in Vm+1,

Vm+1 = Vm ⊕Wm.

The basic principle of multiresolution analysis is that there exists a function ψ such that

Pm+1x = Pmx+
∑
k

〈x, ψm,k〉ψm,k(t),

which means that the set {ψm,k(t) = 2m/2ψ(2mt − k), k ∈ Z} constitutes an orthogonal basis of
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space Wm. Directly inherited from the properties (i)–(iv), we get :

(i) Wj ⊥Wj′ for any j 6= j′

(ii) Vj = VJ +
m=J−j+1⊕

m=0

WJ−m

L2(R) =
⊕
j∈Z

Wj

(iii) x(t) ∈Wm ⇔ x(2t) ∈Wm+1

x(t) ∈Wm ⇔ x(2−mt) ∈W0

(iv) there exists a function ψ(t) such that the collection

{2m/2ψ(2mt− n), m ∈ Z, n ∈ Z} constitutes a basis for L2(R.

The scaling functions {2j/2φ(2j−k), f ∈ Z} is an orthonormal basis of Vj , the approximation space
at scale (or resolution) j, and the wavelet functions {2j/2ψ(2j − k), f ∈ Z} form an orthonormal
basis of Wj , the detail space at scale j.
We shall now give the generic construction of a wavelet system {φ, ψ} generating a multiresolution
analysis.

Let {φ0,n}n∈Z a basis of V0 ⊂ V1, then there exists a series of coefficients h[n] such that

h[n] =
∫
φ(t) 21/2φ(2t− n) dt ;

∑
n

|h[n]|2 = 1 (since φ is of norm 1)

leading to the so-called two-scales relation :

φ(t) = 21/2
∑
n

h[n]φ(2t− n) (as {φ1,n}n∈Z is a basis of V1).

Taking the Fourier transform, we get

Φ(ν) = 2−1/2
∑
n

h[n]Φ
(ν

2

)
ei2π

ν
2n

where we pose H(ν) = 2−1/2
∑
n h[n]ei2πνn the discrete Fourier transform of the series 2−1/2h[n],

a naturally one-periodic function. Then,

Φ(ν) = H
(ν

2

)
Φ
(ν

2

)
. (6)

and moreover

δ0,k =
∫
φ(t)φ(t− k) dt (orthogonality)

=
∫
|Φ(ν)|2 ei2πνk dν (Moyal isometry relation)

=
∫ 1

0

( ∞∑
n=−∞

|Φ(ν + n)|2
)
ei2πνk dν (partition of the real axis)

⇐⇒
∞∑

n=−∞
|Φ(ν + n)|2 = 1, ∀ν (because

∫ 1

0
ei2πνk dν = δk). (7)
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Therefore,

(6) ⇔
∑
n

|Φ(ν + n)|2 =
∑
n

∣∣∣∣Φ(ν + n

2

)∣∣∣∣2 ∣∣∣∣H (ν + n

2

)∣∣∣∣2 = 1, ∀ν

in particular for ξ = ν/2 and splitting the sum in the RHS into odd and even integers, we obtain∑
k |H(ξ + k)|2|Φ(ξ + k)|2 +

∑
k |H(ξ + k + 1

2 )|2|Φ(ξ + k + 1
2 )|2 = 1

|H(ξ)|2
∑
k

|Φ(ξ + k)|2︸ ︷︷ ︸
=1 (Eq.(7))

+|H(ξ + 1
2 )|2

∑
k

|Φ(ξ + k +
1
2
)|2︸ ︷︷ ︸

=1 (Eq.(7))

= 1

⇐⇒ |H(ξ)|2 + |H(ξ + 1
2 )|2 = 1, ∀ξ (8)

Similarly for ψ(t) ∈W0 ⊂ V1, we have

ψ(t) = 21/2
∑
n

g[n]φ(2t− n), where we have posed g[n] =
∫
ψ(t) 21/2φ(2t− n) dt.

Analogously, taking Fourier transforms of both sides of this relation,

Ψ(ν) = G
(ν

2

)
Φ
(ν

2

)
. (9)

As for H(ν), the frequency response G(ν) =
∑
n

√
2g[n]ei2πνn is a one-periodic function.

As, W0 ⊥ V0,

0 =
∫
ψ(t)φ(t− k) dt =

∫
Ψ(ν)Φ∗(ν) ei2πνk dν

=
∫ 1

0

( ∞∑
n=−∞

Ψ(ν + n)Φ∗(ν + n)

)
ei2πνk dν

⇐⇒
∞∑

n=−∞
Ψ(ν + n)Φ∗(ν + n) = 0 (10)

Substituting relations (6) and (9) into this sum, yields :∑
n

Φ
(
ν + n

2

)
G

(
ν + n

2

)
Φ∗
(
ν + n

2

)
H∗
(
ν + n

2

)
= 0

Posing ξ = ν/2 and splitting the sum according to odd and even indices,∑
k |Φ (ξ + k)|2 G (ξ + k)H∗ (ξ + k) +

∑
k

∣∣Φ (ξ + k + 1
2

)∣∣2 G (ξ + k + 1
2

)
H∗ (ξ + k + 1

2

)
= 0

G(ξ)H∗(ξ)
∑
k

|Φ (ξ + k)|2︸ ︷︷ ︸
=1 (Eq.7))

+G
(
ξ + 1

2

)
H∗ (ξ + 1

2

)∑
k

∣∣∣∣Φ(ξ + k +
1
2

)∣∣∣∣2︸ ︷︷ ︸
=1 (Eq.7))

= 0

⇐⇒ G(ξ)H∗(ξ) +G
(
ξ + 1

2

)
H∗ (ξ + 1

2

)
= 0, ∀ξ (11)

From this last relation, we conclude that, for {φ, ψ} to generate a multiresolution analysis scheme,
H and G have to form a pair of quadrature mirror filters (QMF).
Given H, the solution G of (11) is of the following general form

G(ν) = λ(ν)H∗
(
ν +

1
2

)
,
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where λ is an arbitrary one-periodic function verifying the condition

λ(ν) + λ

(
ν +

1
2

)
= 0.

A particularly interesting solution is given by the specific choice :

λ(ν) = −ei2πν , (12)

leading to :

G(ν) = ei2π(ν+
1
2 )H∗

(
ν +

1
2

)
g[n] =

∫ 1
2

− 1
2

ei2π(ν+
1
2 )H∗

(
ν +

1
2

)
e−i2πνn dν

= eiπ
∫ 1

2

− 1
2

H∗
(
ν +

1
2

)
ei2πν(1−n) dν = −

∫ 1

0

H∗(ξ) ei2π(ξ−
1
2 )(1−n) dξ

= −e−iπ(1−n)

∫ 1

0

H∗(ξ) ei2πξ(1−n) dξ = (−1)2−n
∫ 1

0

H∗(ξ) ei2πξ(1−n) dξ

g[n] = (−1)nh∗[1− n] (13)

Under these conditions, let us finally demonstrate that the resulting system {ψ(t − n), n ∈ Z} is
an orthogonal basis of W0.
We start with :
∞∑

n=−∞
|Ψ(ν + n)|2 =

∑
n

∣∣∣∣G(ν + n

2

)∣∣∣∣2 ∣∣∣∣Φ(ν + n

2

)∣∣∣∣2 (see relation (9))

=
∑
n

∣∣∣∣H (ν + n+ 1
2

)∣∣∣∣2 ∣∣∣∣Φ(ν + n

2

)∣∣∣∣2 (see 1st Eq. of relation (13))

=
∑
k

∣∣∣∣H (ν2 +
2k
2

+
1
2

)∣∣∣∣2 ∣∣∣∣Φ(ν2 +
2k
2

)∣∣∣∣2 +
∑
k

∣∣∣∣H (ν2 +
2k + 1

2
+

1
2

)∣∣∣∣2 ∣∣∣∣Φ(ν2 +
2k + 1

2

)∣∣∣∣2
=

∣∣∣∣H (ν2 +
1
2

)∣∣∣∣2∑
k

∣∣∣Φ(ν
2

+ k
)∣∣∣2︸ ︷︷ ︸

=1 (cf. (7))

+
∣∣∣H (ν

2

)∣∣∣2∑
k

∣∣∣∣Φ(ν2 + k +
1
2

)∣∣∣∣2︸ ︷︷ ︸
=1 (cf. (7))

∞∑
n=−∞

|Ψ(ν + n)|2 =
∣∣∣∣H (ν2 +

1
2

)∣∣∣∣2 +
∣∣∣H (ν

2

)∣∣∣2 = 1 (see Eq. (8))

Therefore ∫
ψ(t)ψ(t− k) dt =

∫
|Ψ(ξ)|2 ei2πξk dξ

=
∫ 1

0

( ∞∑
n=−∞

|Ψ(ξ + n)|2
)

︸ ︷︷ ︸
=1 (see equality above)

ei2πξk dξ

∫
ψ(t)ψ(t− k) dt = δk0.

29



Fig. 4 – Plots of the scaling functions φ(t) (top row) and wavelets ψ(t) (bottom row) for the com-
pactly supported Daubechies wavelets. Each column corresponds to a specific number of vanishing
moments : left Nψ = 2, center Nψ = 3 and right Nψ = 4.

Figure 4 displays some examples of compactly supported scaling functions and wavelets with dif-
ferent numbers of vanishing moments (different regularities). Each system generates a multireso-
lution analysis scheme.

3.3.3 Discrete wavelets as a pyramidal filter bank

Analysis. The approximation coefficients at scale m read

ax[n,m] =
∫
x(t)φnm(t) dt =

∫
x(t) 2m/2φ(2mt− n) dt

=
∫
x(t)2m/2

[
√

2
∞∑

k=−∞

h[k]φ(2(2m − t)− k)

]
︸ ︷︷ ︸

decomp. of φnm onto Vm+1

dt

=
∞∑

k=−∞

h[k]
∫
x(t)2(m+1)/2φ(2m+1t− (k + 2n)) dt

=
∞∑

k=−∞

h[k]ax[k + 2n,m+ 1] =
∞∑

k=−∞

ax[k,m+ 1]h[k − 2n]

or equivalently
ax[n,m] = h[·] ∗

2n
ax[·,m+ 1]. (14)
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Equation (14) must be interpreted as the convolution of the approximation series at finer scale
m + 1 with the low-pass filter coefficients h[n], followed by a decimation of a factor 2 (i.e. retain
only one over two output samples).
Similarly, the detail coefficients at scale m are obtained by convolution of the approximation series
at finer scale m+ 1 with the high-pass filter coefficients g[n], followed by a decimation of a factor
2,

dx[n,m] = g[·] ∗
2n

ax[·,m+ 1]. (15)

In practice, assuming that we start with the signal projection onto V0 (the finest resolution space
corresponding to observational scale fixed by the sampling rate), approximations and details at
coarser scales, j < 0, are obtained by iteratively applying the QMF pair (14) and (15) to the
preceding approximation sequence. The resulting pyramidal algorithm is depicted in figure 5.
Remark. Whenever the continuous version of the analyzed signal x(t) is available, the finest ap-
proximation ax[0, n] can be obtained by projecting this latter onto the space V0. In most of the
case though, only a sampled version x[n] = x(nT ) is observed, which can directly and reasonably
be considered as the approximation P0x itself7.

Synthesis As we shall see, the pyramidal algorithm, with the (almost) same pair of quadrature
filters h and g, is perfectly reversible, allowing for reconstructing the initial series x[n] from the
approximation ax[m,n] at any scale m < 0 and its associated detail sequences {d[k, n], 0 > k ≥ m}.
Let us then recall that

Pmx(t) =
∑
k

ax[m, k]φm,k(t)

and
Pm+1x(t) = Pmx(t) +

∑
k

dx[m, k]ψm,k(t).

Then, the approximation coefficients in Vm+1 read

ax[m+ 1, n] = 〈Pm+1x, φ(m+1),n〉 =
∑
k

ax[m, k]〈φm,k, φ(m+1),n〉+
∑
k

dx[m, k]〈ψm,k, φ(m+1),n〉

and because
〈φm,k, φm+1,n〉 =

∫
2

m
2 φ(2mt− k)2

m+1
2 φ(2m+1t− n) dt =

√
2
∫
φ(t)φ(2t− (n− 2k)) dt = h[n− 2k]

〈ψm,k, φm+1,n〉 =
∫

2
m
2 ψ(2mt− k)2

m+1
2 φ(2m+1t− n) dt =

√
2
∫
ψ(t)φ(2t− (n− 2k)) dt = g[n− 2k]

then

ax[m+ 1, n] =
∑
k

h[n− 2k]ax[m, k] +
∑
k

g[n− 2k]dx[m, k]

=
∑
l

h[n− l] ax

[
m,

l

2

]
+
∑
l

g[n− l] dx

[
m,

l

2

]
(16)

Eq. (16) must be interpreted as follows (see figure 5) :
1. insert a zero valued sample between each two consecutive samples of ax[m,n] (resp. of
dx[m,n])

2. convolve the resulting zero-added sequence ax[m, l/2] (resp. dx[m, l/2]) with the low-pass
filter h̃[n] = h[−n] (resp. with the high-pass filter g̃[n] = g[−n])

3. sum the two filters’ outputs to get ax[m+ 1, n].

7A rigorous procedure to compute P0x from x[n] exists (see e.g. [? ] and references therein).
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Fig. 5 – Pyramidal QMF filter bank corresponding to a wavelet multiresolution analysis.
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