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Fourier representation : a paradox for non-stationary signals

x(t) ∈ L2(R)

(∫
R

|x(t)|2dt <∞
)

X(f ) =

∫
R

x(t) e−i2πft dt = 〈x , ef 〉

x(t) =

∫
R

X(f ) ei2πft df = 〈X , e∗t 〉

Signal ≡ (continuous) superposition of harmonic functions of infinite support. . .

time

... +

+ ...

+

+

time

– dynamic cancellation (destructive interferences) reproduces static cancellation

– time reversal keeps spectral density unchanged (phase encodes time)
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Principle of time-frequency representations

Formalise the concept of musical score

Linear decomposition on a family of time and frequency localised analysing functions

Frequency (Fourier) : 〈x , δf 〉 Time (Shannon) : 〈x , δt 〉 Time-Frequency : 〈x , gt,f 〉
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Time-Frequency duality

Uncertainty principle (Weyl-Heisenberg)

Define


σ2

t = 1
‖g‖2

∫
t2|g(t)|2 dt (equivalent time support of g)

σ2
f = 1

‖g‖2

∫
f 2|G(f )|2 df (equivalent bandwidth of g)

, then :

σ2
t σ

2
f ≥

1
4π

(
with equality if |g(t)| = C e−αt2)

Compact supports (Slepian-Pollack-Landau)

Theorem – If g(t) 6= 0 has compact support in time, then G(f ) cannot be
zero on a whole interval. Reciprocally, if G(f ) 6= 0 has compact
support, then g(t) cannot be zero on a whole interval.

g cannot be simultaneously time limited and frequency limited...

(prolate spheroidal wave functions achieve the best energy concentration in both
domains)
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Local measures

One motivation for time-frequency representation is to characterise the local frequency
content of a signal and to display its time evolution

Example of a pure sine wave : x(t) = sin(2πν0t)

the frequency component is invariant with time : νx (t) = ν0

Instantaneous frequency

Define the analytical signal : zx (t) := F−1 {2 X(f ) 1[0,∞)

}
= |zx (t)| eiΦx (t)

and the instantaneous frequency : νx (t) :=
1

2π
dΦx (t)

dt

(Fresnel representation
of a rotating vector)
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Local measures
Instantaneous frequency is an intricate notion that is not always meaningful.

In particular, it can be questionable in the case of multi-components signals. . .

It is of particular interest for AM-FM type signals :

x(t) = a(t) cos Φ(t)

Theorem (Bedrosian) • If a(t) is a low-pass function on [−B,B]

• if Φ(t) is a high-pass function supported on
]−∞,B′]

⋃
[B′,∞[, with B′ > B

• if the bandwidth of Φ(t) is narrow compared to its
central frequency (∼ monochromatic case)

then

zx (t) = a(t) eiΦ(t) and νx (t) =
1

2π
dΦ(t)
dt

Average frequency

〈ν〉 =
2

Ex

∫ ∞
0

ν|X(ν)|2 dν =
1

Ez

∫ ∞
−∞

νx (t)|zx (t)|2 dt
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Examples of non-stationary signals

time time time time

time time time time
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Short-time Fourier Transform (STFT)

Lx (t , f ; g) =

∫
x(u) gt,f (u) du =

∫
x(u) g(u − t) e−i2πfu︸ ︷︷ ︸

gt,f(u)=TfFtg(u)

du,

g : analysing function (template) localised in time and in frequency, simultaneously
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STFT on non-stationary signals

time time time time

Gabor transform : Gaussian window

g(u) = C e−αu2

achieves the best joint time & frequency resolution (uncertainty principle)

10 / 56



STFT – properties
Linear transform

Lx (t , f ; g) = 〈x , gt,f 〉 =

〈
x ,

〉

Invertible

x(u) =

∫
t

∫
f
Lx (t , f ; g) gt,f (u)dt df

(
iff closure cond.

∫
|g(u)|2 du = 1

)
Lx (t , f ; g) lies in a Reproducing Kernel Hilbert Space (continuous space R× R)

Lx (t , f ; g) is not isomorphic with x

• define a discrete version Lx (n t0,m f0; g)

with t0 · f0 ≤ 1 (sub-critical sampling)

• revert x(t) from a uniform tiling of the time-frequency plane :

x(u) =
∑

n

∑
m

Lx [n,m] g̃n,m(u)

needs to introduce dual frames.
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Frames

Frame (definition) The sequence {gn,m}(n,m)∈Z2 is a frame of H if there exist two
constants 0 < A ≤ B, s.t. for any f ∈ H :

A ‖ f ‖2≤
∑
n,m
| 〈f , gn,m〉 |2≤ B ‖ f ‖2 .

Dual frame (defintion) Let {gn,m}(n,m) be a frame. The dual frame defined by

g̃n,m = (L∗L)−1 gn,m where L∗L x =
∑
n,m
〈x , gn,m〉gn,m

satifies
∀f ∈ H, x =

∑
n,m
〈x , gn,m〉g̃n,m =

∑
n,m
〈x , g̃n,m〉gn,m

Balian-Law (theorem) If {gn,m}(n,m)∈Z2 is a windowed Fourier frame with t0 · f0 = 1,
then ∫ ∞

−∞
t2|g(t)|2 dt = +∞ or

∫ ∞
−∞

f 2|G(f )|2 df = +∞.
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Windowed Fourier frames : Gabor transform

We cannot construct an

orthogonal windowed Fourier basis

with a

differentiable window g of compact support
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The Wavelet revolution

STWT

Wavelet transform
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Wavelet transform

Continuous wavelet transform (definition)

Wx (t , a) =

∫
x(u)ψt,a(u) du with ψt,a(u) :=

1
√

a
ψ

(
u − t

a

)
Admissibility condition∫

R

|Ψ(ξ)|2

ξ
dξ = 1 ⇒ Ψ(0) =

∫
ψ(t)dt = 0

ψ is an oscillating function (wavelet )

Reconstruction formula (invertible)

x(t) =

∫ ∞
0

∫ ∞
−∞

Wx (u, a)ψu,a(t)
du da

a2

Note : the offset value of x can never be recovered. . .
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Wavelets : A mathematical breakthrough

Orthogonal bases (I. Daubechies theorems)

There exists compactly supported functions ψ that generate orthonormal wavelet bases{
ψj,k (t); (j, k) ∈ Z2} of L2(R) with 〈ψj,k , ψj′,k′ 〉 = δj,j′ δk,k′

(Balian-Law theorem since
∫

t |ψ(t)|2 dt <∞ and
∫

f |Ψ(f )|2 dt <∞)

Discrete wavelet transform

∃(t0, a0) s.t. (t , a) 7−→
(

k t0 a−j
0 , a−j

0

)
(k,j)∈Z×Z

at critical sampling

and

ψj,k := aj/2
0 ψ

(
aj

0t − kt0
)

:


dx

j,k =

∫
R

x(u)ψj,k (u) du

x(u) =
∑
j,k

dx
j,k ψj,k (u)

Yields strict conditions on the admissible ψ’s (but it turns out “easy ” to construct
localised tight frames, e.g. Morlet wavelets, Mexican hat,. . . )
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Continuous 7→ Discrete : Dyadic tiling

Commonly, in practice, a0 = 2 : dyadic tiling
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Daubechies wavelet bases

ψ(t) |Ψ(f )| ψ(t) |Ψ(f )|

−4 −2 0 2 4

−1

0

1 N
ψ
=1

0 0.5

N
ψ
=1

−5 0 5

−1

0

1 N
ψ
=5

0 0.5

N
ψ
=5

−5 0 5

−1

0

1 N
ψ
=2

0 0.5

N
ψ
=2

−10 0 10

−1

0

1 N
ψ
=7

0 0.5

N
ψ
=7

−5 0 5

−1

0

1 N
ψ
=3

0 0.5

N
ψ
=3

−10 0 10

−1

0

1 N
ψ
=10

0 0.5

N
ψ
=10

time frequency time frequency
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Some properties of (discrete) wavelets

Orthogonal bases

For all series {dj,k}(k,j)∈Z×Z there exists a unique (up to some dc) signal x ∈ L2 (R) s.t.

x(t) =
∑
j,k

dj,kψj,k (t) and dj,k = 〈x , ψj,k 〉

Vanishing moments and regularity (extension of the admissibility condition)

A wavelet ψ has Nψ > 0 vanishing moments iff

∀n < Nψ :

∫
tn ψ(t) dt = 0 ⇒ Ψ(ξ)

ξ→0∼ O
(
ξNψ

) [
Ψ(n)(0) = 0, in Taylor expansion

]
Sparse decomposition (consequence of Nψ)

For a large class of signals, only a few coefficients dj,k are (significantly) non zero
⇒ large coefficients localise on singularities of the signal (non differentiable points of x)
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⇒ large coefficients localise on singularities of the signal (non differentiable points of x)
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Orthogonal wavelet (Daubechies Nψ = 6)

j=−1

j=−2

j=−3

j=−4

j=−5

j=−6

j=−7

j=−8

j=−9
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Continuous wavelet (2nd derivative of Gauss window)
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Some properties of (discrete) wavelets

Multiresolution analysis

Orthogonal wavelet bases can be associated to multiresolution analysis schemes
(S. Mallat, Y. Meyer), with efficient pyramidal filter-bank implementations

Haar system for signal approximation. . .
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Multiresolution analysis (MRA)
A multiresolution analysis consists of a sequence of successive approximation spaces
Vj satisfying the embedding relation

· · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · ⊂ Vj ⊂ Vj+1 ⊂ · · ·

(i)
j=∞⋂

j=−∞
Vj = {0}

(ii)
j=∞⋃

j=−∞
Vj is dense in L2(R)

(iii) x(t) ∈ Vj ⇔ x(2t) ∈ Vj+1

(iv) there exists a function φ(t) s.t. {φ(t − k)}k∈Z is a basis for V0.

∀x ∈ V0,

∫
|x(t)|2 dt =

∑
k

∣∣∣∣∫ x(t)φ(t − k) dt
∣∣∣∣2

(iii) & (iv) ⇒ {φj,k (t) = 2j/2φ(2j t − k)}k∈Z is a basis for Vj

Orthogonal projector onto Vj : Pj x(t) =
∑

k

〈x , φj,k 〉φj,k (t)
j→∞−→ x
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Multiresolution analysis (MRA)

Consider the orthogonal complement space Wj of Vj in Vj+1,

Vj+1 = Vj ⊕Wj .

There exists a function ψ such that (basic principle of MRA)

Pj+1x = Pj x +
∑

k

〈x , ψj,k 〉ψj,k (t)

and the set
{
ψj,k (t) = 2j/2ψ(2j t − k)

}
k∈Z is an orthogonal basis of Wj .

(i) Wj ⊥ Wj′ for any j 6= j ′

(ii) Vj = VJ +

j=J−j+1⊕
m=0

WJ−m and L2(R) =
⊕
j∈Z

Wj

(iii) x(t) ∈ Wj ⇔ x(2t) ∈ Wj+1 and x(t) ∈ Wj ⇔ x(2−j t) ∈ W0

(iv) there exists a function ψ(t) such that the collection

{2j/2ψ(2j t − k), j ∈ Z, k ∈ Z} forms a basis for L2(R).
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Construction of a MRA system {φ, ψ}
Let {φ0,n}n∈Z be a basis of V0 ⊂ V1

h[n] = 〈φ, φ1,n〉 =
∫
φ(t)
√

2φ(2t − n) dt ;
∑

n |h[n]|2 = 1 (since φ is of norm 1)

and φ(t) =
√

2
∑

n h[n]φ(2t − n) the two-scale relation

By Fourier transform and posing H(ν) = 2−1/2∑
n h[n]ei2πνn

Φ(ν) = H
(ν

2

)
Φ
(ν

2

)
a bit of linear algebra (on 1-periodic functions) . . . leads to the central relation :

|H(ν)|2 + |H(ν +
1
2

)|2 = 1, ∀ν

Similarly for ψ(t) ∈ W0 ⊂ V1, posing ψ(t) =
√

2
∑

n
g[n]φ(2t − n)

with g[n] =

∫
ψ(t)
√

2φ(2t − n) dt and G(ν) = 2−1/2∑
n g[n]ei2πνn we get

G(ν)H∗(ν) + G
(
ν +

1
2

)
H∗
(
ν +

1
2

)
= 0, ∀ν
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Solving the MRA system equations

For {φ, ψ} to generate a MRA, H and G must form a pair of quadrature mirror filters (QMF)
|H(ν)|2 + |H(ν + 1

2 )|2 = 1, ∀ν

G(ν)H∗(ν) + G
(
ν + 1

2

)
H∗
(
ν + 1

2

)
= 0, ∀ν

Solution of this system imposes

G(ν) = λ(ν)H∗
(
ν +

1
2

)
where λ(ν)

 is a 1-periodic function

verifies λ(ν) + λ
(
ν + 1

2

)
= 0.

The specific choice (Daubechies ) : λ(u) = −ei2πν leads to the relation

g[n] = (−1)nh∗[1− n]
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Daubechies MRA system
ψ(t) φ(t) ψ(t) φ(t)

−4 −2 0 2 4

−1

0

1 N
ψ
=1

−4 −2 0 2 4

0

1 N
ψ
=1

−5 0 5

−1

0

1 N
ψ
=5

−5 0 5

0

1 N
ψ
=5

−5 0 5

−1

0

1 N
ψ
=2

−5 0 5

0

1 N
ψ
=2

−10 0 10

−1

0

1 N
ψ
=7

−10 0 10

0

1 N
ψ
=7

−5 0 5

−1

0

1 N
ψ
=3

−5 0 5

0

1 N
ψ
=3

−10 0 10

−1

0

1 N
ψ
=10

−10 0 10

0

1 N
ψ
=10

time time time time

27 / 56



Pyramidal algorithm (S. Mallat)

x(t) =
∑

k

〈x , φJ,k 〉︸ ︷︷ ︸
ax [J,k ]

φJ,k (t)

︸ ︷︷ ︸
approximation in VJ

+
∑
j≥J

∑
k

〈x , ψj,k 〉︸ ︷︷ ︸
dx [j,k ]

ψj,k (t)

︸ ︷︷ ︸
detail in Wj

, for any arbitrary J

ax [j, n] =

∫
x(t) 2j/2φ(2j t − n) dt

=

∫
x(t)2j/2

[
√

2
∑

k

h[k ]φ(2(2j t − n)− k)

]
︸ ︷︷ ︸

decomp. of φj,n onto φj+1,k

=
∑

k

h[k ]

∫
x(t) 2(j+1)/2φ(2j+1t − (k + 2n)) dt

=
∑

k

h[k ] ax [j + 1, k + 2n] =
∑

k

h[k − 2n] ax [j + 1, k ]

= ax [j + 1, ·] ∗
2n

h[·]

dx [j, n] =

∫
x(t) 2j/2ψ(2j t − n) dt

= ax [j + 1, ·] ∗
2n

g[·]
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Pyramidal algorithm – decomposition

Assuming a signal x(t) ∈ V0 (sampling resolution), its projection on
VJ ⊕WJ ⊕WJ+1 ⊕ . . . ,⊕W−1 follows a pyramidal decomposition
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Pyramidal algorithm – synthesis

The synthesis of x ∈ V0 from its decomposition on VJ ⊕WJ ⊕WJ+1 ⊕ . . . ,⊕W−1

is perfectly reversible
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Separable wavelet bases for images

To any wavelet orthogonal basis {ψj,n}(j,n)∈Z2 of L2(R),one can associate a separable
wavelet orthogonal basis of L2(R2) :

{ψj1,n1 (x1)ψj2,n2 (x2)}(j1,j2,n1,n2)∈Z4

But the resulting decomposition mixes information at different scales 2j1 and 2j2 . . .

To process images at different levels of detail, we need multi resolutions approximation
deriving from dilated functions at the same scale
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Separable multiresolutions

Definition The approximation of an image f (x1, x2) at resolution 2−j is the

orthogonal projection of f on a space V 2
j that is included in L2(R2)

The space V 2
j is the set of all approximations at the resolution 2−j

When the resolution 2−j decreases, the size of V 2
j decreases as well

Let {Vj}j∈Z be a multiresolution of L2(R), a separable two-
dimensional multiresolution is composed of the tensor product
space :

V 2
j = Vj ⊗ Vj

and {V 2
j }j∈Z is a multiresolution approximation of L2(R2).
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Orthogonal bases of a two-dimensional multiresolution

From the theory of tensor product spaces. . .

Theorem

if {φj,n}k∈Z is an orthonormal bases of Vj , then, for x = (x1, x2) and n = (n1, n2)

{
φ2

j,n(x) = φj,n1 (x1)φj,n2 (x2) =
1
2j
φ

(
x1 − 2j n1

2j

)
φ

(
x2 − 2j n2

2j

)}
n∈Z2

is an orthonormal basis of V 2
j .

Warning : scale convention changed... φ2
j,n(x) obtained by scaling by 2j the two-dimensional separable scaling

function φ2(x) = φ(x1)φ(x2) and shifting it on the two-dimensional square grid of intervals 2j
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Multiresolution vision

Multiresolution approximation aj [n1, n2] of an image at scales 2j , for
−5 (coarse !) ≥ j ≥ −8 (fine !)
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Two-Dimensional wavelet bases

Let φ2 be the scaling function of {V 2
j = Vj ⊗ Vj}j∈Z, a separable two-dimensional

multiresolution. As for the 1-d case, let W 2
j be the detail space equal to the orthogonal

complement of the lower resolution approximation space V 2
j ⊂ V 2

j−1 :

V 2
j−1 = V 2

j ⊕W 2
j

Theorem Let {φ, ψ} generate a wavelet orthogonal basis (MRA) of L2(R).
We define three wavelets :

ψ1(x) = φ(x1)ψ(x2), ψ2(x) = ψ(x1)φ(x2), ψ3(x) = ψ(x1)ψ(x2)

and for 1 ≤ m ≤ 3

ψm
j,n(x) =

1
2j
ψm

(
x1 − 2j n1

2j
,

x2 − 2j n2

2j

)

The wavelet family {ψ1
j,n, ψ

2
j,n, ψ

3
j,n}n∈Z2 is an orthonormal basis of W 2

j

The {ψ1
j,n, ψ

2
j,n, ψ

3
j,n}(j,n)∈Z3 is an orthonormal basis of L2(R2)
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Two-Dimensional separable wavelets
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Two-Dimensional wavelet decomposition

Separable wavelet transforms of a white square in black background and of Lena,
decomposed on resp. 4 and 3 octaves.
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Pyramidal Algorithm for 2-D wavelet decompositions

38 / 56



Thresholding Estimation

Let B = {gm}0≤m≤N−1, be a basis of some vector space S.

A diagonal estimator of f ∈ S from the observation X = f + W can be obtained from :

F̃ = DX =

N−1∑
m=0

dm (XB[m]) gm

where the functions {dm}m=0,...N−1 form the diagonal operator that estimates the
component fB[m] independently from XB[m]

There exist optimality results proving that the estimation risk

rt (f ) =

N−1∑
m=0

E{|fB[m]− dm (XB[m]) |2}

is close to the Oracle risk rp(f ) (the risk one would obtain if f and W were known !)
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Thresholding Estimation

Hard Thresholding

dm(x) = ρT (x) =

{
x if |x | > T

0 if |x | ≤ T

Soft Thresholding

dm(x) = ρT (x) =


x − T if x > T

x + T if x ≤ −T

0 if |x | ≤ T

Theorem (Donoho, Johnstone) Let T = σ
√

2 log(N), the risk rt (f ) of a hard or soft
thresholding estimator satisfies for all N ≥ 4

rt (f ) ≤ (2 log N + 1)
(
σ2 + rp(f )

)
.

Remark : the same risk bound holds true for coloured white noise σ2
m = E{|WB [m]|2} and generalises to the

adaptive threshold Tm = σm
√

2 log N
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Wavelet Thresholding

F̃ =
J∑

j=L+1

2−j∑
m=0

ρT
(
〈X , ψj,m〉

)
ψj,m +

2−J∑
m=0

ρT
(
〈X , φJ,m〉

)
φJ,m

The thresholding performs an adaptive smoothing of the observation that depends on
the regularity of the signal f : at scale j , wavelet coefficients above the threshold T
localise at the neighbourhood of sharp signal transitions.

0 2000 4000
−20

0

20

40

(a)

0 2000 4000
−20

0

20

40

(b)

0 2000 4000
−20

0

20

40

(c)

0 2000 4000
−20

0

20

40

(d)

(a) : Original signal.

(b) : Noisy signal obtained by adding a

Gaussian white noise (SNR = 12.9db)

(c) : Estimation with a hard thresholding in

a Symmlet 4 wavelet basis (SNR = 23.5db)

(d) : Estimation with a wavelet soft threshol-

ding (SNR = 21.7db)
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Image denoising with wavelet thresholding
Original Noisy (SNR=14.1dB) Wavelet coefficients

Thresholded coefficients Hard (SNR=19) Soft (SNR=19.7)

There exits a variety of advanced wavelet thresholding based denoising (e.g. shift
invariant wavelet demonising, block thresholding. . . )
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Deconvolution using a mirror wavelet basis

Frequency tiling of a mirror wavelet basis Deconvolution of an airplane image
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Image Compression

Shannon (theorem) Let X be a source whose symbols {xx}1≤k≤K occur with
probabilities {pk}1≤k≤K . The average bit rate satisfies

RX ≥ H(X) = −
∑

k

pk log2 pk

Wavelet image code Let f , a N−by−N image and its wavelet decomposition

f =

N2−1∑
m=0

fB[m]ψm

All wavelets coefficients are quantised with a uniform quantizer

Q(x) =

{
0 if |x | < ∆/2
sign(x) k ∆ if (k − 1/2)∆ ≤ |x | < (k + 1/2)∆

and the coded image f̃ =

N2−1∑
m=0

Q (fB[m])ψm requires a bit budget (total number of

bits needed to encode the N2 coefs.) R = N2 RX .
The specific distribution of wavelet coefficients allows a small bit rate !
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Image Compression

45 / 56



Image Compression
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Dyadic Wavelets (non-orthogonal)

Application of oriented (dyadic) wavelets in image processing lie in many
physiological and computer vision studies : Textures can be synthesised and
discriminated with oriented two-dimensional wavelet transforms.

→ multiscale edge detection from the local maxima of a wavelet transform.

Oriented wavelets (definition) In 2-d, a dyadic wavelet transform is computed with
several mother wavelet {ψk}1≤k≤K which have different spatial orientations.
For x = (x1, x2), we denote

ψk
2j (x1, x2) =

1
2j
ψk
(x1

2j
,

x2

2j

)
and the wavelet transform of f ∈ L2(R2) in the direction k , at position u = (u1, u2) and
scale 2j

W k f (u, 2j ) = 〈f (x), ψk
2j (x − u)〉
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Dyadic Wavelets (non-orthogonal)

We can show that dyadic wavelet transform can generate a frame and there exist
reconstruction (dual) wavelets

{
ψ̃k
}

1≤k≤K
such that

f (x) =

j=∞∑
j=−∞

1
22j

K∑
k=1

W k f (·, 2j ) ? ψ̃k
2j (x)

For example, a wavelet in the direction α may be defined as the partial derivative of
order p of a window θ(x) in the direction of the vector ~n = (cosα, sinα)

ψα(x) =
∂pθ(x)

∂~np
=

(
cosα

∂

∂x1
+ sinα

∂

∂x2

)p
θ(x)

=

k=p∑
k=0

(
p
k

)
(cosα)k (sinα)p−kψk (x) (K = p + 1)

and ψk (x) =
∂pθ(x)

∂xk
1 ∂xp−k

2

, for 0 ≤ k ≤ p
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Dyadic Wavelets (non-orthogonal)

For appropriate windows θ(x), these K = p + 1 partial derivatives define a family of
dyadic wavelets. In the direction α the wavelet transform Wαf

(
u, 2j) is computed as a

linear combination of the p + 1 components W k f
(
u, 2j).

For example

θ(x) = exp

(
−

x2
1 + x2

2
2

)
and p = 1⇒ ~ψ(x) =

 ψ0(x) = ∂θ(x)
∂x2

= −x2θ(x)

ψ1(x) = ∂θ(x)
∂x1

= −x1θ(x)
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Dyadic Wavelets (non-orthogonal)

Gabor Wavelets

ψk (x) = exp

(
−

x2
1 + x2

2
2

)
exp[−iη(x1 cosαk + x2 sinαk )]

Gabor Dyadic wavelets Oriented Morlet wavelet
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Dyadic wavelet transform of textures

classification segmentation
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Dyadic wavelet transform of textures

classification

segmentation
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Dyadic wavelet transform of textures

classification segmentation
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Dyadic wavelet transform of textures

classification segmentation
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Multiscale edge detection

Goal Detect points of sharp variation in a image f (x1, x2)

Canny Algorithm Calculate the modulus of the gradient vector ~∇f =

(
∂f
∂x1

,
∂f
∂x2

)
The partial derivative of f in the direction ~n = (cosα, sinα) is

∂f
∂~n

= ~∇ · ~n =
∂f
∂x1

cosα+
∂f
∂x2

sinα

∣∣∣∣ ∂f
∂~n

∣∣∣∣ is maximum when ~n is collinear to ~∇f

⇒ ~∇f is parallel to the direction of maximum changes of the surface f (x)

A point y ∈ R2 is defined as an edge if |~∇f (x)| is locally maximum at x = y

when x = y + λ~∇f (y) in the vicinity of y (i.e. λ small)

Edge points are inflexion points of f
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Multiscale edge detection

Wavelet Maxima for images

Let us consider the Gabor dyadic (oriented) wavelet

~ψ(x) =

 ψ0(x) = ∂θ(x)
∂x2

= −x2θ(x)

ψ1(x) = ∂θ(x)
∂x1

= −x1θ(x)

and the corresponding dyadic wavelet transform

W k f (u, 2j ) = 〈f (x), ψk
2j (x − u)〉, k = 0, 1

We can show that the wavelet transform components of a image f verifies

~Wf (u, 2j ) =

(
W 0f (u, 2j )
W 1f (u, 2j )

)
= 2j ~∇

(
f ? θ2j

)
(u) (multiscale)

An edge point at scale 2j is a point ν such that
∣∣∣ ~Wf (u, 2j )

∣∣∣ is locally maximum

at u = ν when u = ν + λ angle
{
~Wf (u, 2j )

}
(for λ small enough)
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Multiscale edge detection
Wavelet Maxima for images
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Multiscale edge detection

Wavelet Maxima for images
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Reconstruction from Wavelet Maxima lines
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