Time-Frequency Representations Wavelet Decompositions

Paulo Gonçalves

CPE Lyon 5ETI - Majeure Image

2014-2015

Contents

- 1. The Fourier representation and its limitations
- 2. Short-time Fourier transforms and Gabor decompositions
- 3. The wavelet decomposition
- 4. Orthogonal bases and multiresolution analysis (algorithms)
- 5. Image wavelet decompositions (Multi-dimensional)
- 6. Wavelet-based image processing : A brief survey

Fourier representation : a paradox for non-stationary signals

$$\begin{aligned} x(t) \in L^2(\mathbb{R}) & \left(\int_{\mathbb{R}} |x(t)|^2 dt < \infty \right) \\ X(f) &= \int_{\mathbb{R}} x(t) e^{-i2\pi ft} dt &= \langle x, e_f \rangle \\ x(t) &= \int_{\mathbb{R}} X(f) e^{i2\pi ft} df &= \langle X, e_t^* \rangle \end{aligned}$$

Signal \equiv (continuous) superposition of harmonic functions of infinite support...

- dynamic cancellation (destructive interferences) reproduces static cancellation
- time reversal keeps spectral density unchanged (phase encodes time)

Formalise the concept of musical score

Linear decomposition on a family of time and frequency localised analysing functions

Frequency (Fourier) : $\langle x, \delta_f \rangle$ Time (Shannon) : $\langle x, \delta_t \rangle$ Time-Frequency : $\langle x, g_{t,f} \rangle$

Formalise the concept of musical score

Linear decomposition on a family of time and frequency localised analysing functions

Frequency (Fourier) : $\langle x, \delta_f \rangle$ Time (Shannon) : $\langle x, \delta_t \rangle$ Time-Frequency : $\langle x, g_{t,f} \rangle$

Formalise the concept of musical score

Linear decomposition on a family of time and frequency localised analysing functions

Time-Frequency : $\langle x, g_{t,f} \rangle$

Formalise the concept of musical score

Linear decomposition on a family of time and frequency localised analysing functions

Time-Frequency duality

Uncertainty principle (Weyl-Heisenberg)

Define
$$\begin{cases} \sigma_t^2 = \frac{1}{\|g\|^2} \int t^2 |g(t)|^2 dt & (\text{equivalent time support of } g) \\ \sigma_f^2 = \frac{1}{\|g\|^2} \int f^2 |G(f)|^2 df & (\text{equivalent bandwidth of } g) \end{cases}$$
, then :

$$\sigma_t^2\,\sigma_f^2\geq rac{1}{4\pi}\quad \left(ext{with equality if }|g(t)|=C\,e^{-lpha t^2}
ight)$$

Compact supports (Slepian-Pollack-Landau)

Theorem – If $g(t) \neq 0$ has compact support in time, then G(f) cannot be zero on a whole interval. Reciprocally, if $G(f) \neq 0$ has compact support, then g(t) cannot be zero on a whole interval.

g cannot be simultaneously time limited and frequency limited...

(prolate spheroidal wave functions achieve the **best energy concentration** in both domains)

Time-Frequency duality

Uncertainty principle (Weyl-Heisenberg)

Define
$$\begin{cases} \sigma_t^2 = \frac{1}{||g||^2} \int t^2 |g(t)|^2 dt & (\text{equivalent time support of } g) \\ \sigma_f^2 = \frac{1}{||g||^2} \int f^2 |G(t)|^2 df & (\text{equivalent bandwidth of } g) \end{cases}, \text{ then :} \\ \sigma_t^2 \sigma_f^2 \ge \frac{1}{4\pi} \quad \left(\text{with equality if } |g(t)| = C e^{-\alpha t^2}\right) \end{cases}$$

Compact supports (Slepian-Pollack-Landau)

Theorem – If $g(t) \neq 0$ has compact support in time, then G(f) cannot be zero on a whole interval. Reciprocally, if $G(f) \neq 0$ has compact support, then g(t) cannot be zero on a whole interval.

g cannot be simultaneously time limited and frequency limited...

(prolate spheroidal wave functions achieve the **best energy concentration** in both domains)

Time-Frequency duality

Uncertainty principle (Weyl-Heisenberg)

Define
$$\begin{cases} \sigma_t^2 = \frac{1}{\|g\|^2} \int t^2 |g(t)|^2 dt & (\text{equivalent time support of } g) \\ \sigma_f^2 = \frac{1}{\|g\|^2} \int f^2 |G(f)|^2 df & (\text{equivalent bandwidth of } g) \end{cases}$$
, then :

$$\sigma_t^2 \, \sigma_f^2 \geq rac{1}{4\pi} \quad \left(ext{with equality if } |g(t)| = C \, e^{-lpha t^2}
ight)$$

Compact supports (Slepian-Pollack-Landau)

Theorem – If $g(t) \neq 0$ has compact support in time, then G(f) cannot be zero on a whole interval. Reciprocally, if $G(f) \neq 0$ has compact support, then g(t) cannot be zero on a whole interval.

g cannot be simultaneously time limited and frequency limited...

(prolate spheroidal wave functions achieve the **best energy concentration** in both domains)

One motivation for time-frequency representation is to characterise the local frequency content of a signal and to display its time evolution

Example of a pure sine wave : $x(t) = sin(2\pi\nu_0 t)$ the frequency component is invariant with time : $\nu_x(t) = \nu_0$

Instantaneous frequency

Define the analytical signal : $z_X(t) := \mathcal{F}^{-1} \left\{ 2 X(t) \mathbb{1}_{[0,\infty)} \right\} = |z_X(t)| e^{i\Phi_X(t)}$ and the instantaneous frequency : $\nu_X(t) := \frac{1}{2\pi} \frac{d\Phi_X(t)}{dt}$

One motivation for time-frequency representation is to characterise the local frequency content of a signal and to display its time evolution

Example of a pure sine wave : $x(t) = sin(2\pi\nu_0 t)$ the frequency component is invariant with time : $\nu_x(t) = \nu_0$

Instantaneous frequency

Define the analytical signal : $z_x(t) := \mathcal{F}^{-1} \left\{ 2 X(t) \mathbb{1}_{[0,\infty)} \right\} = |z_x(t)| e^{i \Phi_x(t)}$ and the instantaneous frequency : $\nu_x(t) := \frac{1}{2\pi} \frac{\mathrm{d}\Phi_x(t)}{\mathrm{d}t}$

One motivation for time-frequency representation is to characterise the local frequency content of a signal and to display its time evolution

Example of a pure sine wave : $x(t) = sin(2\pi\nu_0 t)$ the frequency component is invariant with time : $\nu_x(t) = \nu_0$

Instantaneous frequency

Define the analytical signal :

and the instantaneous frequency : $\nu_{\chi}(t)$

$$z_{X}(t) := \mathcal{F}^{-1} \left\{ 2 X(t) \mathbb{1}_{[0,\infty)} \right\} = |z_{X}(t)| e^{i \Phi_{X}(t)}$$
$$\nu_{X}(t) := \frac{1}{2\pi} \frac{\mathrm{d}\Phi_{X}(t)}{\mathrm{d}t}$$

(Fresnel representation of a rotating vector)

Instantaneous frequency is an intricate notion that is not always meaningful.

In particular, it can be questionable in the case of multi-components signals...

It is of particular interest for AM-FM type signals :

 $x(t) = a(t) \cos \Phi(t)$

Theorem (Bedrosian)

- If a(t) is a low-pass function on [-B, B]
- if Φ(t) is a high-pass function supported on
] −∞, B'] ∪[B',∞[, with B' > B
- if the bandwidth of Φ(t) is narrow compared to its central frequency (~ monochromatic case)

then

$$z_x(t) = a(t) e^{i\Phi(t)}$$
 and $\nu_x(t) = \frac{1}{2\pi} \frac{\mathrm{d}\Phi(t)}{\mathrm{d}t}$

Average frequency

$$\langle \nu \rangle = \frac{2}{E_x} \int_0^\infty \nu |X(\nu)|^2 \,\mathrm{d}\nu = \frac{1}{E_z} \int_{-\infty}^\infty \nu_X(t) |z_X(t)|^2 \,\mathrm{d}t$$

Instantaneous frequency is an intricate notion that is not always meaningful.

In particular, it can be questionable in the case of multi-components signals...

It is of particular interest for AM-FM type signals :

 $x(t) = a(t) \cos \Phi(t)$

Theorem (Bedrosian)

- If *a*(*t*) is a low-pass function on [-*B*, *B*]
- if $\Phi(t)$ is a high-pass function supported on $]-\infty, B'] \bigcup [B', \infty[$, with B' > B
- if the bandwidth of Φ(t) is narrow compared to its central frequency (~ monochromatic case)

then

$$z_x(t) = a(t) e^{i\Phi(t)}$$
 and $\nu_x(t) = \frac{1}{2\pi} \frac{\mathrm{d}\Phi(t)}{\mathrm{d}t}$

Average frequency

$$\langle \nu \rangle = \frac{2}{E_x} \int_0^\infty \nu |X(\nu)|^2 \,\mathrm{d}\nu = \frac{1}{E_z} \int_{-\infty}^\infty \nu_X(t) |z_X(t)|^2 \,\mathrm{d}t$$

Instantaneous frequency is an intricate notion that is not always meaningful.

In particular, it can be questionable in the case of multi-components signals...

It is of particular interest for AM-FM type signals :

 $x(t) = a(t) \cos \Phi(t)$

Theorem (Bedrosian)

- If *a*(*t*) is a low-pass function on [-*B*, *B*]
- if Φ(t) is a high-pass function supported on
] −∞, B'] ∪[B', ∞[, with B' > B
- if the bandwidth of Φ(t) is narrow compared to its central frequency (~ monochromatic case)

then

$$z_x(t) = a(t) e^{i\Phi(t)}$$
 and $\nu_x(t) = \frac{1}{2\pi} \frac{\mathrm{d}\Phi(t)}{\mathrm{d}t}$

Average frequency

$$\langle \nu \rangle = \frac{2}{E_x} \int_0^\infty \nu |X(\nu)|^2 \,\mathrm{d}\nu = \frac{1}{E_z} \int_{-\infty}^\infty \nu_x(t) |z_x(t)|^2 \,\mathrm{d}t$$

Short-time Fourier Transform (STFT)

g : analysing function (template) localised in time and in frequency, simultaneously

Short-time Fourier Transform (STFT)

g : analysing function (template) localised in time and in frequency, simultaneously

Short-time Fourier Transform (STFT)

g : analysing function (template) localised in time and in frequency, simultaneously

STFT on non-stationary signals

Gabor transform : Gaussian window

$$g(u) = C e^{-\alpha u^2}$$

achieves the best joint time & frequency resolution (uncertainty principle)

Linear transform

Linear transform

$$L_{x}(t,f;g) = \langle x,g_{t,f} \rangle = \left\langle x, \int_{g}^{g} \right\rangle$$

Invertible

$$x(u) = \int_t \int_f L_x(t, f; g) g_{t,f}(u) \, \mathrm{d}t \, \mathrm{d}f \qquad \left(\text{iff closure cond.} \quad \int |g(u)|^2 \, \mathrm{d}u = 1 \right)$$

Linear transform

$$L_{x}(t,f;g) = \langle x,g_{t,f} \rangle = \left\langle x, \int_{g}^{g} \right\rangle$$

Invertible

$$x(u) = \int_t \int_f L_x(t, f; g) g_{t, f}(u) \, \mathrm{d}t \, \mathrm{d}f \qquad \left(\text{iff closure cond.} \quad \int |g(u)|^2 \, \mathrm{d}u = 1 \right)$$

 $L_x(t, f; g)$ lies in a Reproducing Kernel Hilbert Space (continuous space $\mathbb{R} \times \mathbb{R}$)

 $L_x(t, f; g)$ is **not isomorphic** with x

Linear transform

$$L_{x}(t,f;g) = \langle x,g_{t,f} \rangle = \left\langle x, \bigcup_{g \in \mathcal{G}} \left\langle x, \bigcup_{g \in \mathcal{G}}$$

Invertible

$$x(u) = \int_t \int_f L_x(t, f; g) g_{t,f}(u) \, \mathrm{d}t \, \mathrm{d}f \qquad \left(\text{iff closure cond.} \quad \int |g(u)|^2 \, \mathrm{d}u = 1 \right)$$

 $L_x(t, f; g)$ lies in a Reproducing Kernel Hilbert Space (continuous space $\mathbb{R} \times \mathbb{R}$)

 $L_x(t, f; g)$ is **not isomorphic** with x

• define a discrete version $L_x(n t_0, m f_0; g)$

Linear transform

$$L_{x}(t,f;g) = \langle x,g_{t,f} \rangle = \left\langle x, \int_{g}^{g} \right\rangle$$

Invertible

$$x(u) = \int_t \int_f L_x(t, f; g) g_{t,f}(u) \, \mathrm{d}t \, \mathrm{d}f \qquad \left(\text{iff closure cond.} \quad \int |g(u)|^2 \, \mathrm{d}u = 1 \right)$$

 $L_x(t, f; g)$ lies in a Reproducing Kernel Hilbert Space (continuous space $\mathbb{R} \times \mathbb{R}$)

 $L_x(t, f; g)$ is **not isomorphic** with x

• define a discrete version $L_x(n t_0, m f_0; g)$

Linear transform

$$L_{x}(t,f;g) = \langle x,g_{t,f} \rangle = \left\langle x, \int_{g}^{g} \right\rangle$$

Invertible

$$x(u) = \int_t \int_f L_x(t, f; g) g_{t,f}(u) \, \mathrm{d}t \, \mathrm{d}f \qquad \left(\text{iff closure cond.} \quad \int |g(u)|^2 \, \mathrm{d}u = 1 \right)$$

 $L_x(t, f; g)$ lies in a Reproducing Kernel Hilbert Space (continuous space $\mathbb{R} \times \mathbb{R}$)

 $L_x(t, f; g)$ is **not isomorphic** with x

• define a discrete version $L_x(n t_0, m f_0; g)$

Linear transform

$$L_{x}(t,f;g) = \langle x,g_{t,f} \rangle = \left\langle x, \bigcup_{g \in \mathcal{G}} \left\langle x, \bigcup_{g \in \mathcal{G}}$$

Invertible

$$x(u) = \int_t \int_f L_x(t, f; g) g_{t,f}(u) \, \mathrm{d}t \, \mathrm{d}f \qquad \left(\text{iff closure cond.} \quad \int |g(u)|^2 \, \mathrm{d}u = 1 \right)$$

 $L_x(t, f; g)$ lies in a Reproducing Kernel Hilbert Space (continuous space $\mathbb{R} \times \mathbb{R}$)

 $L_x(t, f; g)$ is **not isomorphic** with x

• define a discrete version $L_x(n t_0, m f_0; g)$

Linear transform

$$L_{x}(t,f;g) = \langle x,g_{t,f} \rangle = \left\langle x, \bigcup_{g \in \mathcal{G}} \left\langle x, \bigcup_{g \in \mathcal{G}}$$

Invertible

$$x(u) = \int_t \int_f L_x(t, f; g) g_{t,f}(u) \, \mathrm{d}t \, \mathrm{d}f \qquad \left(\text{iff closure cond.} \quad \int |g(u)|^2 \, \mathrm{d}u = 1 \right)$$

 $L_x(t, f; g)$ lies in a Reproducing Kernel Hilbert Space (continuous space $\mathbb{R} \times \mathbb{R}$)

 $L_x(t, f; g)$ is **not isomorphic** with x

• define a discrete version $L_x(n t_0, m f_0; g)$

Linear transform

$$L_{x}(t,f;g) = \langle x,g_{t,f} \rangle = \left\langle x, \bigcup_{g \in \mathcal{G}} \right\rangle$$

Invertible

$$x(u) = \int_t \int_f L_x(t, f; g) g_{t,f}(u) \, \mathrm{d}t \, \mathrm{d}f \qquad \left(\text{iff closure cond.} \quad \int |g(u)|^2 \, \mathrm{d}u = 1 \right)$$

 $L_x(t, f; g)$ lies in a Reproducing Kernel Hilbert Space (continuous space $\mathbb{R} \times \mathbb{R}$)

 $L_x(t, f; g)$ is **not isomorphic** with x

• define a discrete version $L_x(n t_0, m f_0; g)$

with $t_0 \cdot f_0 \leq 1$ (sub-critical sampling)

• revert x(t) from a uniform tiling of the time-frequency plane :

$$x(u) = \sum_{n} \sum_{m} L_x[n, m] \, \tilde{g}_{n,m}(u)$$

needs to introduce dual frames.

Frames

Frame (definition) The sequence $\{g_{n,m}\}_{(n,m)\in\mathbb{Z}^2}$ is a frame of \mathcal{H} if there exist two constants $0 < A \leq B$, s.t. for any $f \in \mathcal{H}$:

$$A \parallel f \parallel^2 \leq \sum_{n,m} \mid \langle f, g_{n,m} \rangle \mid^2 \leq B \parallel f \parallel^2.$$

Dual frame (definition) Let $\{g_{n,m}\}_{(n,m)}$ be a frame. The dual frame defined by

$$\widetilde{g}_{n,m} = (L^*L)^{-1} g_{n,m}$$
 where $L^*Lx = \sum_{n,m} \langle x, g_{n,m} \rangle g_{n,m}$

satifies

$$\forall f \in \mathcal{H}, \quad x = \sum_{n,m} \langle x, g_{n,m} \rangle \widetilde{g}_{n,m} = \sum_{n,m} \langle x, \widetilde{g}_{n,m} \rangle g_{n,m}$$

Balian-Law (theorem) If $\{g_{n,m}\}_{(n,m)\in\mathbb{Z}^2}$ is a *windowed Fourier* frame with $t_0 \cdot f_0 = 1$, then

$$\int_{-\infty}^{\infty} t^2 |g(t)|^2 dt = +\infty \quad \text{or} \quad \int_{-\infty}^{\infty} f^2 |G(t)|^2 dt = +\infty$$

Frames

Frame (definition) The sequence $\{g_{n,m}\}_{(n,m)\in\mathbb{Z}^2}$ is a frame of \mathcal{H} if there exist two constants $0 < A \leq B$, s.t. for any $f \in \mathcal{H}$:

$$A \parallel f \parallel^2 \leq \sum_{n,m} \mid \langle f, g_{n,m} \rangle \mid^2 \leq B \parallel f \parallel^2.$$

Dual frame (definition) Let $\{g_{n,m}\}_{(n,m)}$ be a frame. The dual frame defined by

$$\widetilde{g}_{n,m} = (L^*L)^{-1} g_{n,m}$$
 where $L^*Lx = \sum_{n,m} \langle x, g_{n,m} \rangle g_{n,m}$

satifies

$$\forall f \in \mathcal{H}, \quad x = \sum_{n,m} \langle x, g_{n,m} \rangle \widetilde{g}_{n,m} = \sum_{n,m} \langle x, \widetilde{g}_{n,m} \rangle g_{n,m}$$

Balian-Law (theorem) If $\{g_{n,m}\}_{(n,m)\in\mathbb{Z}^2}$ is a windowed Fourier frame with $t_0 \cdot f_0 = 1$, then

$$\int_{-\infty}^{\infty} t^2 |g(t)|^2 dt = +\infty \quad \text{or} \quad \int_{-\infty}^{\infty} f^2 |G(t)|^2 dt = +\infty$$

Frames

Frame (definition) The sequence $\{g_{n,m}\}_{(n,m)\in\mathbb{Z}^2}$ is a frame of \mathcal{H} if there exist two constants $0 < A \leq B$, s.t. for any $f \in \mathcal{H}$:

$$A \parallel f \parallel^2 \leq \sum_{n,m} \mid \langle f, g_{n,m} \rangle \mid^2 \leq B \parallel f \parallel^2.$$

Dual frame (definition) Let $\{g_{n,m}\}_{(n,m)}$ be a frame. The dual frame defined by

$$\widetilde{g}_{n,m} = (L^*L)^{-1} g_{n,m}$$
 where $L^*Lx = \sum_{n,m} \langle x, g_{n,m} \rangle g_{n,m}$

satifies

$$\forall f \in \mathcal{H}, \ x = \sum_{n,m} \langle x, g_{n,m} \rangle \widetilde{g}_{n,m} = \sum_{n,m} \langle x, \widetilde{g}_{n,m} \rangle g_{n,m}$$

Balian-Law (theorem) If $\{g_{n,m}\}_{(n,m)\in\mathbb{Z}^2}$ is a *windowed Fourier* frame with $t_0 \cdot f_0 = 1$, then

$$\int_{-\infty}^{\infty} t^2 |g(t)|^2 dt = +\infty \quad \text{or} \quad \int_{-\infty}^{\infty} f^2 |G(f)|^2 df = +\infty.$$

Windowed Fourier frames : Gabor transform

Windowed Fourier frames : Gabor transform

Wavelet transform

Wavelet transform

Wavelet transform

Wavelet transform

Wavelet transform

Wavelet transform

STWT

Wavelet transform

Continuous wavelet transform (definition)

$$W_X(t,a) = \int x(u) \psi_{t,a}(u) du$$
 with $\psi_{t,a}(u) := \frac{1}{\sqrt{a}} \psi\left(\frac{u-t}{a}\right)$

Admissibility condition

$$\int_{\mathbb{R}} \frac{|\Psi(\xi)|^2}{\xi} \,\mathrm{d}\xi = 1 \ \Rightarrow \ \Psi(0) = \int \psi(t) \,\mathrm{d}t = 0$$

 ψ is an oscillating function (*wavelet*)

Reconstruction formula (invertible)

$$x(t) = \int_0^\infty \int_{-\infty}^\infty W_x(u, a) \,\psi_{u,a}(t) \,\frac{\mathrm{d}u \,\mathrm{d}a}{a^2}$$

Continuous wavelet transform (definition)

$$W_x(t,a) = \int x(u) \psi_{t,a}(u) du$$
 with $\psi_{t,a}(u) := \frac{1}{\sqrt{a}} \psi\left(\frac{u-t}{a}\right)$

Admissibility condition

$$\int_{\mathbb{R}} \frac{|\Psi(\xi)|^2}{\xi} \, \mathrm{d}\xi = 1 \quad \Rightarrow \quad \Psi(0) = \int \psi(t) \, \mathrm{d}t = 0$$

 ψ is an oscillating function (*wavelet*)

Reconstruction formula (invertible)

$$x(t) = \int_0^\infty \int_{-\infty}^\infty W_x(u, a) \,\psi_{u,a}(t) \,\frac{\mathrm{d}u \,\mathrm{d}a}{a^2}$$

Continuous wavelet transform (definition)

$$W_x(t,a) = \int x(u) \psi_{t,a}(u) du$$
 with $\psi_{t,a}(u) := \frac{1}{\sqrt{a}} \psi\left(\frac{u-t}{a}\right)$

Admissibility condition

$$\int_{\mathbb{R}} \frac{|\Psi(\xi)|^2}{\xi} \, \mathrm{d}\xi = 1 \quad \Rightarrow \quad \Psi(0) = \int \psi(t) \, \mathrm{d}t = 0$$

 ψ is an oscillating function (*wavelet*)

Reconstruction formula (invertible)

$$x(t) = \int_0^\infty \int_{-\infty}^\infty W_x(u, a) \,\psi_{u,a}(t) \,\frac{\mathrm{d} u \,\mathrm{d} a}{a^2}$$

Continuous wavelet transform (definition)

$$W_x(t,a) = \int x(u) \psi_{t,a}(u) du$$
 with $\psi_{t,a}(u) := \frac{1}{\sqrt{a}} \psi\left(\frac{u-t}{a}\right)$

Admissibility condition

$$\int_{\mathbb{R}} \frac{|\Psi(\xi)|^2}{\xi} \, \mathrm{d}\xi = 1 \quad \Rightarrow \quad \Psi(0) = \int \psi(t) \, \mathrm{d}t = 0$$

 ψ is an oscillating function (*wavelet*)

Reconstruction formula (invertible)

$$x(t) = \int_0^\infty \int_{-\infty}^\infty W_x(u, a) \psi_{u, a}(t) \frac{\mathrm{d} u \, \mathrm{d} a}{a^2}$$
Wavelets : A mathematical breakthrough

Orthogonal bases (I. Daubechies theorems)

There exists compactly supported functions ψ that generate orthonormal wavelet bases

 $\{\psi_{j,k}(t);\,(j,k)\in\mathbb{Z}^2\}$ of $L^2(\mathbb{R})$ with $\langle\psi_{j,k},\psi_{j',k'}
angle=\delta_{j,j'}\,\delta_{k,k'}$

 $(Balian-Law theorem \text{ since } \int t |\psi(t)|^2 dt < \infty \text{ and } \int f |\Psi(f)|^2 dt < \infty)$

Discrete wavelet transform

$$\exists (t_0, a_0) \text{ s.t. } (t, a) \longmapsto \left(k t_0 a_0^{-j}, a_0^{-j}\right)_{(k,j) \in \mathbb{Z} \times \mathbb{Z}} \text{ at critical sampling}$$
$$\psi_{j,k} := a_0^{j/2} \psi \left(a_0^j t - k t_0\right) : \begin{cases} d_{j,k}^x = \int_{\mathbb{R}} x(u) \psi_{j,k}(u) \, \mathrm{d}u \\ x(u) = \sum_{j,k} d_{j,k}^x \psi_{j,k}(u) \end{cases}$$

Yields strict conditions on the admissible ψ 's (but it turns out "*easy*" to construct localised tight frames, e.g. *Morlet* wavelets, *Mexican hat*,...)

Wavelets : A mathematical breakthrough

Orthogonal bases (I. Daubechies theorems)

There exists compactly supported functions ψ that generate orthonormal wavelet bases

 $\{\psi_{j,k}(t); (j,k) \in \mathbb{Z}^2\}$ of $L^2(\mathbb{R})$ with $\langle \psi_{j,k}, \psi_{j',k'} \rangle = \delta_{j,j'} \,\delta_{k,k'}$

(*Balian-Law theorem* since $\int t |\psi(t)|^2 dt < \infty$ and $\int f |\Psi(f)|^2 dt < \infty$)

Discrete wavelet transform

$$\exists (t_0, a_0) \text{ s.t. } (t, a) \longmapsto \left(k t_0 a_0^{-j}, a_0^{-j}\right)_{(k,j) \in \mathbb{Z} \times \mathbb{Z}} \text{ at critical sampling}$$
$$\psi_{j,k} := a_0^{j/2} \psi \left(a_0^j t - k t_0\right) : \begin{cases} d_{j,k}^x = \int_{\mathbb{R}} x(u) \psi_{j,k}(u) \, \mathrm{d}u \\ x(u) = \sum_{j,k} d_{j,k}^x \psi_{j,k}(u) \end{cases}$$

Yields strict conditions on the admissible ψ 's (but it turns out "*easy*" to construct localised tight frames, e.g. *Morlet* wavelets, *Mexican hat*,...)

Wavelets : A mathematical breakthrough

Orthogonal bases (I. Daubechies theorems)

There exists compactly supported functions ψ that generate orthonormal wavelet bases

$$\{\psi_{j,k}(t); (j,k) \in \mathbb{Z}^2\}$$
 of $L^2(\mathbb{R})$ with $\langle \psi_{j,k}, \psi_{j',k'}
angle = \delta_{j,j'} \, \delta_{k,k'}$

 $(Balian-Law theorem since \int t |\psi(t)|^2 dt < \infty and \int f |\Psi(f)|^2 dt < \infty)$

Discrete wavelet transform

$$\exists (t_0, a_0) \text{ s.t. } (t, a) \longmapsto \left(k \ t_0 \ a_0^{-j}, \ a_0^{-j}\right)_{(k,j) \in \mathbb{Z} \times \mathbb{Z}} \text{ at critical sampling}$$
$$\psi_{j,k} := a_0^{j/2} \psi \left(a_0^j t - k t_0\right) : \begin{cases} d_{j,k}^x = \int_{\mathbb{R}} x(u) \ \psi_{j,k}(u) \ du \\ x(u) = \sum_{j,k} d_{j,k}^x \ \psi_{j,k}(u) \end{cases}$$

and

Yields strict conditions on the admissible ψ 's (but it turns out "*easy*" to construct localised tight frames, e.g. *Morlet* wavelets, *Mexican hat*,...)

Commonly, in practice, $a_0 = 2$: dyadic tiling

Daubechies wavelet bases

N_w=1

N_w=2

N_w=3

0.5

0.5

Orthogonal bases

For all series $\{d_{i,k}\}_{(k,i)\in\mathbb{Z}\times\mathbb{Z}}$ there exists a unique (up to some dc) signal $x \in L^2(\mathbb{R})$ s.t.

$$x(t) = \sum_{j,k} d_{j,k} \psi_{j,k}(t)$$
 and $d_{j,k} = \langle x, \psi_{j,k} \rangle$

Vanishing moments and regularity (extension of the admissibility condition) A wavelet ψ has $N_{\psi} > 0$ vanishing moments iff

$$\forall n < N_{\psi} : \int t^n \, \psi(t) \, \mathrm{d}t = 0 \ \Rightarrow \ \Psi(\xi) \stackrel{\xi \to 0}{\sim} \mathcal{O}\left(\xi^{N_{\psi}}\right) \quad \left[\Psi^{(n)}(0) = 0, \text{ in Taylor expansion}\right]$$

Sparse decomposition (consequence of N_{ψ})

Orthogonal bases

For all series $\{d_{j,k}\}_{(k,j)\in\mathbb{Z}\times\mathbb{Z}}$ there exists a unique *(up to some dc)* signal $x \in L^2(\mathbb{R})$ s.t.

$$x(t) = \sum_{j,k} d_{j,k} \psi_{j,k}(t)$$
 and $d_{j,k} = \langle x, \psi_{j,k} \rangle$

Vanishing moments and regularity (extension of the admissibility condition) A wavelet ψ has $N_{\psi} > 0$ vanishing moments iff

$$\forall n < N_{\psi} : \int t^n \, \psi(t) \, \mathrm{d}t = 0 \ \Rightarrow \ \Psi(\xi) \stackrel{\xi \to 0}{\sim} \mathcal{O}\left(\xi^{N_{\psi}}\right) \quad \left[\Psi^{(n)}(0) = 0, \text{ in Taylor expansion}\right]$$

Sparse decomposition (consequence of N_{ψ})

Orthogonal bases

For all series $\{d_{j,k}\}_{(k,j)\in\mathbb{Z}\times\mathbb{Z}}$ there exists a unique *(up to some dc)* signal $x \in L^2(\mathbb{R})$ s.t.

$$x(t) = \sum_{j,k} d_{j,k} \psi_{j,k}(t)$$
 and $d_{j,k} = \langle x, \psi_{j,k} \rangle$

Vanishing moments and regularity (extension of the admissibility condition) A wavelet ψ has $N_{\psi} > 0$ vanishing moments iff

$$\forall n < \mathsf{N}_{\psi} : \int t^n \, \psi(t) \, \mathrm{d}t = \mathsf{0} \ \Rightarrow \ \Psi(\xi) \stackrel{\xi \to 0}{\sim} \mathcal{O}\left(\xi^{\mathsf{N}_{\psi}}\right) \quad \left[\Psi^{(n)}(\mathsf{0}) = \mathsf{0}, \text{ in Taylor expansion}\right]$$

Sparse decomposition (consequence of N_{ψ})

Orthogonal bases

For all series $\{d_{j,k}\}_{(k,j)\in\mathbb{Z}\times\mathbb{Z}}$ there exists a unique *(up to some dc)* signal $x \in L^2(\mathbb{R})$ s.t.

$$x(t) = \sum_{j,k} d_{j,k} \psi_{j,k}(t)$$
 and $d_{j,k} = \langle x, \psi_{j,k} \rangle$

Vanishing moments and regularity (extension of the admissibility condition) A wavelet ψ has $N_{\psi} > 0$ vanishing moments iff

$$\forall n < N_{\psi} : \int t^{n} \psi(t) \, \mathrm{d}t = 0 \ \Rightarrow \ \Psi(\xi) \stackrel{\xi \to 0}{\sim} \mathcal{O}\left(\xi^{N_{\psi}}\right) \quad \left[\Psi^{(n)}(0) = 0, \text{ in Taylor expansion}\right]$$

Sparse decomposition (consequence of N_{ψ})

Orthogonal wavelet (Daubechies $N_{\psi} = 6$)

Continuous wavelet (2nd derivative of Gauss window)

time

Multiresolution analysis

Orthogonal wavelet bases can be associated to **multiresolution analysis schemes** (S. Mallat, Y. Meyer), with efficient pyramidal filter-bank implementations

Haar system for signal approximation...

Multiresolution analysis (MRA)

A multiresolution analysis consists of a sequence of successive approximation spaces V_i satisfying the embedding relation

 $\cdots \subset V_{-1} \subset V_0 \subset V_1 \subset \cdots \subset V_j \subset V_{j+1} \subset \cdots$

(i)
$$\bigcap_{\substack{j=-\infty\\j=\infty}}^{J=\infty} V_j = \{0\}$$

(ii)
$$\bigcup_{\substack{i=-\infty\\j=\infty}}^{J=\infty} V_j \text{ is dense in } L^2(\mathbb{R})$$

$$\text{(iii)} \quad \textbf{x}(t) \in \textbf{V}_{j} \ \Leftrightarrow \ \textbf{x}(2t) \in \textbf{V}_{j+1}$$

(iv) there exists a function $\phi(t)$ s.t. $\{\phi(t-k)\}_{k\in\mathbb{Z}}$ is a basis for V_0 .

$$\forall x \in V_0, \ \int |x(t)|^2 dt = \sum_k \left| \int x(t) \phi(t-k) dt \right|^2$$

(iii) & (iv) $\Rightarrow \{\phi_{j,k}(t) = 2^{j/2}\phi(2^jt-k)\}_{k\in\mathbb{Z}}$ is a basis for V_j

Orthogonal projector onto V_j : $P_j x(t) = \sum_k \langle x, \phi_{j,k} \rangle \phi_{j,k}(t) \xrightarrow{j \to \infty} x$

Multiresolution analysis (MRA)

Consider the orthogonal complement space W_j of V_j in V_{j+1} ,

 $V_{j+1} = V_j \oplus W_j.$

There exists a function ψ such that (basic principle of MRA)

$$P_{j+1}x = P_jx + \sum_k \langle x, \psi_{j,k} \rangle \psi_{j,k}(t)$$

and the set $\{\psi_{j,k}(t) = 2^{j/2}\psi(2^{j}t - k)\}_{k \in \mathbb{Z}}$ is an orthogonal basis of W_{j} .

(i)
$$W_j \perp W_{j'}$$
 for any $j \neq j'$
(ii) $V_j = V_J + \bigoplus_{m=0}^{j=J-j+1} W_{J-m}$ and $L^2(\mathbb{R}) = \bigoplus_{j \in \mathbb{Z}} W_j$
(iii) $\mathbf{x}(\mathbf{t}) \in \mathbf{W}_j \Leftrightarrow \mathbf{x}(2\mathbf{t}) \in \mathbf{W}_{j+1}$ and $x(t) \in W_j \Leftrightarrow x(2^{-j}t) \in W_0$

(*iv*) there exists a function $\psi(t)$ such that the collection $\{2^{j/2}\psi(2^{j}t - k), j \in \mathbb{Z}, k \in \mathbb{Z}\}$ forms a basis for $L^{2}(\mathbb{R})$.

Let $\{\phi_{0,n}\}_{n\in\mathbb{Z}}$ be a basis of $V_0 \subset V_1$

 $h[n] = \langle \phi, \phi_{1,n} \rangle = \int \phi(t) \sqrt{2}\phi(2t-n) dt$; $\sum_n |h[n]|^2 = 1$ (since ϕ is of norm 1)

and $\phi(t) = \sqrt{2} \sum_{n} h[n] \phi(2t - n)$ the two-scale relation

By Fourier transform and posing $H(\nu) = 2^{-1/2} \sum_n h[n] e^{i2\pi\nu n}$ $\Phi(\nu) = H\left(\frac{\nu}{2}\right) \Phi\left(\frac{\nu}{2}\right)$

a bit of linear algebra (on 1-periodic functions) ... leads to the central relation :

Let $\{\phi_{0,n}\}_{n\in\mathbb{Z}}$ be a basis of $V_0\subset V_1$

 $h[n] = \langle \phi, \phi_{1,n} \rangle = \int \phi(t) \sqrt{2} \phi(2t - n) dt$; $\sum_n |h[n]|^2 = 1$ (since ϕ is of norm 1)

and $\phi(t) = \sqrt{2} \sum_{n} h[n] \phi(2t - n)$ the two-scale relation

By Fourier transform and posing $H(\nu) = 2^{-1/2} \sum_n h[n] e^{i2\pi\nu n}$ $\Phi(\nu) = H\left(\frac{\nu}{2}\right) \Phi\left(\frac{\nu}{2}\right)$

a bit of linear algebra (on 1-periodic functions) ... leads to the central relation :

Let $\{\phi_{0,n}\}_{n\in\mathbb{Z}}$ be a basis of $V_0 \subset V_1$

 $h[n] = \langle \phi, \phi_{1,n} \rangle = \int \phi(t) \sqrt{2} \phi(2t - n) dt \quad ; \quad \sum_{n} |h[n]|^2 = 1 \text{ (since } \phi \text{ is of norm 1)}$ and $\phi(t) = \sqrt{2} \sum_{n} h[n] \phi(2t - n) \text{ the two-scale relation}$

By Fourier transform and posing $H(\nu) = 2^{-1/2} \sum_n h[n] e^{i 2\pi \nu n}$ $\Phi(\nu) = H\left(\frac{\nu}{2}\right) \Phi\left(\frac{\nu}{2}\right)$

a bit of linear algebra (on 1-periodic functions) ... leads to the central relation :

Let $\{\phi_{0,n}\}_{n\in\mathbb{Z}}$ be a basis of $V_0 \subset V_1$

 $h[n] = \langle \phi, \phi_{1,n} \rangle = \int \phi(t) \sqrt{2} \phi(2t-n) dt$; $\sum_n |h[n]|^2 = 1$ (since ϕ is of norm 1)

and $\phi(t) = \sqrt{2} \sum_{n} h[n] \phi(2t - n)$ the two-scale relation

By Fourier transform and posing $H(\nu) = 2^{-1/2} \sum_n h[n] e^{i2\pi\nu n}$ $\Phi(\nu) = H\left(\frac{\nu}{2}\right) \Phi\left(\frac{\nu}{2}\right)$

a bit of linear algebra (on 1-periodic functions) ... leads to the central relation :

Let $\{\phi_{0,n}\}_{n\in\mathbb{Z}}$ be a basis of $V_0\subset V_1$

 $h[n] = \langle \phi, \phi_{1,n} \rangle = \int \phi(t) \sqrt{2} \phi(2t - n) dt$; $\sum_n |h[n]|^2 = 1$ (since ϕ is of norm 1)

and $\phi(t) = \sqrt{2} \sum_{n} h[n] \phi(2t - n)$ the two-scale relation

By Fourier transform and posing $H(\nu) = 2^{-1/2} \sum_n h[n] e^{i2\pi\nu n}$ $\Phi(\nu) = H\left(\frac{\nu}{2}\right) \Phi\left(\frac{\nu}{2}\right)$

a bit of linear algebra (on 1-periodic functions) ... leads to the central relation :

Similarly for
$$\psi(t) \in W_0 \subset V_1$$
, posing $\psi(t) = \sqrt{2} \sum_n g[n]\phi(2t - n)$
with $g[n] = \int \psi(t) \sqrt{2}\phi(2t - n) dt$ and $G(\nu) = 2^{-1/2} \sum_n g[n]e^{i2\pi\nu n}$ we get

Let $\{\phi_{0,n}\}_{n\in\mathbb{Z}}$ be a basis of $V_0\subset V_1$

 $h[n] = \langle \phi, \phi_{1,n} \rangle = \int \phi(t) \sqrt{2} \phi(2t - n) dt$; $\sum_n |h[n]|^2 = 1$ (since ϕ is of norm 1)

and $\phi(t) = \sqrt{2} \sum_{n} h[n] \phi(2t - n)$ the two-scale relation

By Fourier transform and posing $H(\nu) = 2^{-1/2} \sum_n h[n] e^{i2\pi\nu n}$ $\Phi(\nu) = H\left(\frac{\nu}{2}\right) \Phi\left(\frac{\nu}{2}\right)$

a bit of linear algebra (on 1-periodic functions) ... leads to the central relation :

$$|H(\nu)|^2 + |H(\nu + \frac{1}{2})|^2 = 1, \ \forall \nu$$

Let $\{\phi_{0,n}\}_{n\in\mathbb{Z}}$ be a basis of $V_0\subset V_1$

 $h[n] = \langle \phi, \phi_{1,n} \rangle = \int \phi(t) \sqrt{2} \phi(2t-n) dt$; $\sum_n |h[n]|^2 = 1$ (since ϕ is of norm 1)

and $\phi(t) = \sqrt{2} \sum_{n} h[n] \phi(2t - n)$ the two-scale relation

By Fourier transform and posing $H(\nu) = 2^{-1/2} \sum_n h[n] e^{i2\pi\nu n}$ $\Phi(\nu) = H\left(\frac{\nu}{2}\right) \Phi\left(\frac{\nu}{2}\right)$

a bit of linear algebra (on 1-periodic functions) ... leads to the central relation :

$$|H(\nu)|^2 + |H(\nu + \frac{1}{2})|^2 = 1, \ \forall \nu$$

Similarly for $\psi(t) \in W_0 \subset V_1$, posing $\psi(t) = \sqrt{2} \sum_{n=1}^{\infty} g[n]\phi(2t-n)$

with $g[n] = \int \psi(t) \sqrt{2}\phi(2t - n) dt$ and $G(\nu) = 2^{-1/2} \sum_{n} g[n] e^{i2\pi\nu n}$ we get

Let $\{\phi_{0,n}\}_{n\in\mathbb{Z}}$ be a basis of $V_0 \subset V_1$

 $h[n] = \langle \phi, \phi_{1,n} \rangle = \int \phi(t) \sqrt{2} \phi(2t-n) dt$; $\sum_n |h[n]|^2 = 1$ (since ϕ is of norm 1)

and $\phi(t) = \sqrt{2} \sum_{n} h[n] \phi(2t - n)$ the two-scale relation

By Fourier transform and posing $H(\nu) = 2^{-1/2} \sum_n h[n] e^{i2\pi\nu n}$ $\Phi(\nu) = H\left(\frac{\nu}{2}\right) \Phi\left(\frac{\nu}{2}\right)$

a bit of linear algebra (on 1-periodic functions) ... leads to the central relation :

$$|H(\nu)|^2 + |H(\nu + \frac{1}{2})|^2 = 1, \ \forall \nu$$

$$G(\nu)H^*(\nu)+G\left(\nu+\frac{1}{2}\right)H^*\left(\nu+\frac{1}{2}\right)=0,\;\forall\nu$$

$$|H(\nu)|^2 + |H(\nu + \frac{1}{2})|^2 = 1, \ \forall \nu$$

$$G(\nu)H^*(\nu)+G\left(\nu+\frac{1}{2}\right)H^*\left(\nu+\frac{1}{2}\right)=0,\;\forall\nu$$

Solving the MRA system equations

For $\{\phi, \psi\}$ to generate a MRA, H and G must form a pair of quadrature mirror filters (QMF)

Solution of this system imposes

$$G(\nu) = \lambda(\nu)H^*\left(\nu + \frac{1}{2}\right) \quad \text{where } \lambda(\nu) \begin{cases} \text{ is a 1-periodic function} \\ \text{verifies } \lambda(\nu) + \lambda\left(\nu + \frac{1}{2}\right) = 0. \end{cases}$$

The specific choice (Daubechies) : $\lambda(u)=-e^{i2\pi
u}$ leads to the relation

 $g[n] = (-1)^n h^*[1-n]$

Solving the MRA system equations

For $\{\phi, \psi\}$ to generate a MRA, H and G must form a pair of quadrature mirror filters (QMF)

Solution of this system imposes

$$G(\nu) = \lambda(\nu)H^*\left(\nu + \frac{1}{2}\right) \quad \text{where } \lambda(\nu) \begin{cases} \text{ is a 1-periodic function} \\ \text{verifies } \lambda(\nu) + \lambda\left(\nu + \frac{1}{2}\right) = 0. \end{cases}$$

The specific choice (Daubechies) : $\lambda(u)=-e^{i2\pi
u}\,$ leads to the relation

 $g[n] = (-1)^n h^* [1 - n]$

Solving the MRA system equations

For $\{\phi, \psi\}$ to generate a MRA, H and G must form a pair of quadrature mirror filters (QMF)

Solution of this system imposes

$$G(\nu) = \lambda(\nu)H^*\left(\nu + \frac{1}{2}\right) \quad \text{where } \lambda(\nu) \begin{cases} \text{ is a 1-periodic function} \\ \text{verifies } \lambda(\nu) + \lambda\left(\nu + \frac{1}{2}\right) = 0. \end{cases}$$

The specific choice (Daubechies) : $\lambda(u) = -e^{i2\pi\nu}$ leads to the relation

 $g[n] = (-1)^n h^*[1 - n]$

Daubechies MRA system

Pyramidal algorithm (S. Mallat)

$$\begin{aligned} \mathbf{x}(t) &= \sum_{k} \underbrace{\langle \mathbf{x}, \phi_{J,k} \rangle}_{\mathbf{a}_{X}[J,k]} \phi_{J,k}(t) + \sum_{j \ge J} \sum_{k} \underbrace{\langle \mathbf{x}, \psi_{j,k} \rangle}_{\mathbf{d}_{X}[j,k]} \psi_{j,k}(t), & \text{for any arbitrary } J \\ \mathbf{approximation in } \mathbf{v}_{J} & \underbrace{\mathsf{detail in } \mathbf{w}_{j}}_{\mathbf{detail in } \mathbf{w}_{j}} \end{aligned}$$

$$\begin{aligned} \mathbf{a}_{x}[j,n] &= \int \mathbf{x}(t) 2^{j/2} \phi(2^{j}t-n) \, dt \\ &= \int \mathbf{x}(t) 2^{j/2} \left[\sqrt{2} \sum_{k} h[k] \phi(2(2^{j}t-n)-k) \right] \\ \underbrace{\mathsf{decomp. of } \phi_{j,n} \text{ onto } \phi_{j+1,k}}_{\mathbf{decomp. of } \phi_{j,n} \text{ onto } \phi_{j+1,k}} \end{aligned}$$

$$\begin{aligned} &= \sum_{k} h[k] \int \mathbf{x}(t) 2^{(j+1)/2} \phi(2^{j+1}t - (k+2n)) \, dt \\ &= \sum_{k} h[k] \, \mathbf{a}_{x}[j+1,k+2n] = \sum_{k} h[k-2n] \, \mathbf{a}_{x}[j+1,k] \\ &= \mathbf{a}_{x}[j+1,\cdot] \underset{2n}{*} h[\cdot] \\ \mathbf{d}_{x}[j,n] &= \int \mathbf{x}(t) 2^{j/2} \psi(2^{j}t-n) \, dt \\ &= a_{x}[j+1,\cdot] \underset{2n}{*} g[\cdot] \end{aligned}$$

Pyramidal algorithm - decomposition

Assuming a signal $x(t) \in V_0$ (sampling resolution), its projection on $V_J \oplus W_J \oplus W_{J+1} \oplus \dots, \oplus W_{-1}$ follows a pyramidal decomposition

Pyramidal algorithm - synthesis

The synthesis of $x \in V_0$ from its decomposition on $V_J \oplus W_J \oplus W_{J+1} \oplus \dots, \oplus W_{-1}$ is perfectly reversible

Separable wavelet bases for images

To any wavelet orthogonal basis $\{\psi_{j,n}\}_{(j,n)\in\mathbb{Z}^2}$ of $L^2(\mathbb{R})$,one can associate a separable wavelet orthogonal basis of $L^2(\mathbb{R}^2)$:

 $\{\psi_{j_1,n_1}(x_1)\psi_{j_2,n_2}(x_2)\}_{(j_1,j_2,n_1,n_2)\in\mathbb{Z}^4}$

But the resulting decomposition mixes information at different scales 2^{j_1} and 2^{j_2} ...

To process images at different levels of detail, we need multi resolutions approximation deriving from dilated functions at the same scale

Separable multiresolutions

Definition The approximation of an image $f(x_1, x_2)$ at resolution 2^{-j} is the orthogonal projection of *f* on a space V_i^2 that is included in $L^2(\mathbb{R}^2)$

The space V_i^2 is the set of all approximations at the resolution 2^{-j}

When the resolution 2^{-j} decreases, the size of V_i^2 decreases as well

Let $\{V_j\}_{j\in\mathbb{Z}}$ be a multiresolution of $L^2(\mathbb{R})$, a separable two-dimensional multiresolution is composed of the tensor product space :

$$V_j^2 = V_j \otimes V_j$$

and $\{V_i^2\}_{j\in\mathbb{Z}}$ is a multiresolution approximation of $L^2(\mathbb{R}^2)$.
Definition The approximation of an image $f(x_1, x_2)$ at resolution 2^{-j} is the orthogonal projection of *f* on a space V_i^2 that is included in $L^2(\mathbb{R}^2)$

The space V_i^2 is the set of all approximations at the resolution 2^{-j}

When the resolution 2^{-j} decreases, the size of V_i^2 decreases as well

Let $\{V_j\}_{j\in\mathbb{Z}}$ be a multiresolution of $L^2(\mathbb{R})$, a separable two-dimensional multiresolution is composed of the tensor product space :

$$V_j^2 = V_j \otimes V_j$$

and $\{V_j^2\}_{j\in\mathbb{Z}}$ is a multiresolution approximation of $L^2(\mathbb{R}^2)$.

Definition The approximation of an image $f(x_1, x_2)$ at resolution 2^{-j} is the orthogonal projection of *f* on a space V_i^2 that is included in $L^2(\mathbb{R}^2)$

The space V_i^2 is the set of all approximations at the resolution 2^{-j}

When the resolution 2^{-j} decreases, the size of V_i^2 decreases as well

Let $\{V_j\}_{j\in\mathbb{Z}}$ be a multiresolution of $L^2(\mathbb{R})$, a separable two-dimensional multiresolution is composed of the tensor product space :

$$V_j^2 = V_j \otimes V_j$$

and $\{V_j^2\}_{j\in\mathbb{Z}}$ is a multiresolution approximation of $L^2(\mathbb{R}^2)$.

Definition The approximation of an image $f(x_1, x_2)$ at resolution 2^{-j} is the orthogonal projection of *f* on a space V_i^2 that is included in $L^2(\mathbb{R}^2)$

The space V_i^2 is the set of all approximations at the resolution 2^{-j}

When the resolution 2^{-j} decreases, the size of V_i^2 decreases as well

Let $\{V_j\}_{j\in\mathbb{Z}}$ be a multiresolution of $L^2(\mathbb{R})$, a separable two-dimensional multiresolution is composed of the tensor product space :

$$V_j^2 = V_j \otimes V_j$$

and $\{V_j^2\}_{j\in\mathbb{Z}}$ is a multiresolution approximation of $L^2(\mathbb{R}^2)$.

Definition The approximation of an image $f(x_1, x_2)$ at resolution 2^{-j} is the orthogonal projection of *f* on a space V_i^2 that is included in $L^2(\mathbb{R}^2)$

The space V_i^2 is the set of all approximations at the resolution 2^{-j}

When the resolution 2^{-j} decreases, the size of V_i^2 decreases as well

Let $\{V_j\}_{j\in\mathbb{Z}}$ be a multiresolution of $L^2(\mathbb{R})$, a separable two-dimensional multiresolution is composed of the tensor product space :

$$V_j^2 = V_j \otimes V_j$$

and $\{V_i^2\}_{j\in\mathbb{Z}}$ is a multiresolution approximation of $L^2(\mathbb{R}^2)$.

Orthogonal bases of a two-dimensional multiresolution

From the theory of tensor product spaces...

Theorem

if $\{\phi_{j,n}\}_{k\in\mathbb{Z}}$ is an orthonormal bases of V_j , then, for $x = (x_1, x_2)$ and $n = (n_1, n_2)$

$$\left\{\phi_{j,n}^{2}(x) = \phi_{j,n_{1}}(x_{1})\phi_{j,n_{2}}(x_{2}) = \frac{1}{2^{j}}\phi\left(\frac{x_{1}-2^{j}n_{1}}{2^{j}}\right)\phi\left(\frac{x_{2}-2^{j}n_{2}}{2^{j}}\right)\right\}_{n \in \mathbb{Z}^{2}}$$

is an orthonormal basis of V_i^2 .

Warning : scale convention changed... $\phi_{\tilde{j},n}^2(x)$ obtained by scaling by 2^j the two-dimensional separable scaling function $\phi^2(x) = \phi(x_1)\phi(x_2)$ and shifting it on the two-dimensional square grid of intervals 2^j

Multiresolution vision

Multiresolution approximation $a_j[n_1, n_2]$ of an image at scales 2^j , for -5 (coarse !) $\geq j \geq -8$ (fine !)

Two-Dimensional wavelet bases

Let ϕ^2 be the scaling function of $\{V_j^2 = V_j \otimes V_j\}_{j \in \mathbb{Z}}$, a separable two-dimensional multiresolution. As for the 1-d case, let W_j^2 be the detail space equal to the orthogonal complement of the lower resolution approximation space $V_j^2 \subset V_{j-1}^2$:

$$V_{j-1}^2 = V_j^2 \oplus W_j^2$$

Theorem Let $\{\phi, \psi\}$ generate a wavelet orthogonal basis (MRA) of $L^2(\mathbb{R})$. We define three wavelets :

$$\psi^{1}(x) = \phi(x_{1})\psi(x_{2}), \quad \psi^{2}(x) = \psi(x_{1})\phi(x_{2}), \quad \psi^{3}(x) = \psi(x_{1})\psi(x_{2})$$

and for $1 \le m \le 3$

$$\psi_{j,n}^{m}(x) = \frac{1}{2^{j}}\psi^{m}\left(\frac{x_{1}-2^{j}n_{1}}{2^{j}}, \frac{x_{2}-2^{j}n_{2}}{2^{j}}\right)$$

The wavelet family $\{\psi_{j,n}^1, \psi_{j,n}^2, \psi_{j,n}^3\}_{n \in \mathbb{Z}^2}$ is an orthonormal basis of W_j^2 The $\{\psi_{j,n}^1, \psi_{j,n}^2, \psi_{j,n}^3\}_{(j,n) \in \mathbb{Z}^3}$ is an orthonormal basis of $L^2(\mathbb{R}^2)$

Two-Dimensional separable wavelets

Two-Dimensional wavelet decomposition

Separable wavelet transforms of a white square in black background and of Lena, decomposed on resp. 4 and 3 octaves.

Pyramidal Algorithm for 2-D wavelet decompositions

FIGURE 7.27 (a): Decomposition of a_j with 6 groups of one-dimensional convolutions and subsamplings along the image rows and columns. (b): Reconstruction of a_j by inserting zeros between the rows and columns of a_{j+1} and d_{j+1}^k , and filtering the output.

Let $\mathcal{B} = \{g_m\}_{0 \le m \le N-1}$, be a basis of some vector space \mathcal{S} .

A *diagonal estimator* of $f \in S$ from the observation X = f + W can be obtained from :

$$\widetilde{F} = DX = \sum_{m=0}^{N-1} d_m \left(X_{\mathcal{B}}[m] \right) g_m$$

where the functions $\{d_m\}_{m=0,..,N-1}$ form the **diagonal operator** that estimates the component $f_{\mathcal{B}}[m]$ independently from $X_{\mathcal{B}}[m]$

There exist optimality results proving that the estimation risk

$$r_{l}(f) = \sum_{m=0}^{N-1} \mathbb{E}\{|f_{\mathcal{B}}[m] - d_{m}(X_{\mathcal{B}}[m])|^{2}\}$$

is close to the Oracle risk $r_p(f)$ (the risk one would obtain if f and W were known!)

Hard Thresholding

$$d_m(x) = \rho_T(x) = \begin{cases} x & \text{if } |x| > T \\ 0 & \text{if } |x| \le T \end{cases}$$

Hard Thresholding

$$d_m(x) = \rho_T(x) = \begin{cases} x & \text{if } |x| > T \\ 0 & \text{if } |x| \le T \end{cases}$$

Soft Thresholding

$$d_m(x) = \rho_T(x) = \begin{cases} x - T & \text{if } x > T \\ x + T & \text{if } x \le -T \\ 0 & \text{if } |x| \le T \end{cases}$$

Hard Thresholding

$$d_m(x) = \rho_T(x) = \begin{cases} x & \text{if } |x| > T \\ 0 & \text{if } |x| \le T \end{cases}$$

Soft Thresholding

Theorem (Donoho, Johnstone) Let $T = \sigma \sqrt{2 \log(N)}$, the risk $r_t(f)$ of a hard or soft thresholding estimator satisfies for all $N \ge 4$

$$r_t(f) \leq (2\log N + 1) \left(\sigma^2 + r_p(f)\right).$$

Remark : the same risk bound holds true for coloured white noise $\sigma_m^2 = \mathbb{E}\{|W_{\mathcal{B}}[m]|^2\}$ and generalises to the adaptive threshold $T_m = \sigma_m \sqrt{2 \log N}$

Wavelet Thresholding

$$\widetilde{F} = \sum_{j=L+1}^{J} \sum_{m=0}^{2^{-j}} \rho_T \left(\langle X, \psi_{j,m} \rangle \right) \psi_{j,m} + \sum_{m=0}^{2^{-J}} \rho_T \left(\langle X, \phi_{J,m} \rangle \right) \phi_{J,m}$$

The thresholding performs an adaptive smoothing of the observation that depends on the regularity of the signal f: at scale j, wavelet coefficients above the threshold T localise at the neighbourhood of sharp signal transitions.

(a) : Original signal.

(b) : Noisy signal obtained by adding a Gaussian white noise (SNR = 12.9db)
(c) : Estimation with a hard thresholding in a Symmlet 4 wavelet basis (SNR = 23.5db)
(d) : Estimation with a wavelet soft thresholding (SNR = 21.7db)

Image denoising with wavelet thresholding

Original

Thresholded coefficients

Noisy (SNR=14.1dB)

Hard (SNR=19)

Hard denoising, SNR=19

Wavelet coefficients

Soft (SNR=19.7)

Soft denoising, SNR=19.7

There exits a variety of advanced wavelet thresholding based denoising (e.g. shift invariant wavelet demonising, block thresholding...)

Deconvolution using a mirror wavelet basis

Frequency tiling of a mirror wavelet basis

FIGURE 10.13 The mirror wavelet basis (10.167) segments the frequency plane (k_1, k_2) into rectangles over which the noise variance $\sigma_{i_1,k_2}^2 = \sigma_{k_1}^2 \sigma_{k_2}^2$, varies by a bounded factor. The lower frequencies are covered by separable wavelets ψ_j^2 , and the higher frequencies are covered by separable mirror wavelets $\psi_j \psi_j$.

Deconvolution of an airplane image

FIGURE 10.14 (a): Original airplane image. (b): Simulation of a satellite image provided by the CNES (SNR = 31.1db). (c): Deconvolution with a translation imariant thresholding in a mirror wavelet basis (SNR = 34.1db). (d): Deconvolution calculated with a circular convolution, which yields a nearly minimax risk for bounded variation images (SNR = 32.7db).

Image Compression

Shannon (theorem) Let *X* be a source whose symbols $\{x_k\}_{1 \le k \le K}$ occur with probabilities $\{p_k\}_{1 \le k \le K}$. The average bit rate satisfies

$$R_X \geq \mathcal{H}(X) = -\sum_k p_k \log_2 p_k$$

Wavelet image code Let f, a N-by-N image and its wavelet decomposition

$$f = \sum_{m=0}^{N^2 - 1} f_{\mathcal{B}}[m]\psi_m$$

All wavelets coefficients are quantised with a uniform quantizer

$$\mathcal{Q}(x) = \begin{cases} 0 & \text{if } |x| < \Delta/2\\ \text{sign}(x) \ k \ \Delta & \text{if } (k-1/2) \ \Delta \le |x| < (k+1/2) \ \Delta \end{cases}$$

and the coded image $\tilde{f} = \sum_{m=0}^{N^2-1} \mathcal{Q}(f_{\mathcal{B}}[m]) \psi_m$ requires a bit budget (total number of bits needed to encode the N^2 coefs.) $R = N^2 R_X$.

The specific distribution of wavelet coefficients allows a small bit rate !

Image Compression

FIGURE 11.6 These images of $N^2 = 512^2$ pixels are coded with $\bar{R} = 0.5$ bit/pixel, by a wavelet transform coding.

Image Compression

FIGURE 11.8 Normalized histograms of orthogonal wavelet coefficients for each image.

FIGURE 11.9 Significance map of quantized wavelet coefficients for images coded with $\vec{R} = 0.5$ bit/pixel.

Application of oriented (dyadic) wavelets in image processing lie in many **physiological** and **computer vision** studies : Textures can be synthesised and discriminated with oriented two-dimensional wavelet transforms.

ightarrow multiscale edge detection from the local maxima of a wavelet transform.

Oriented wavelets (definition) In 2-d, a dyadic wavelet transform is computed with several mother wavelet $\{\psi^k\}_{1 \le k \le K}$ which have different spatial orientations. For $x = (x_1, x_2)$, we denote

$$\psi_{2j}^{k}(x_{1}, x_{2}) = \frac{1}{2^{j}}\psi^{k}\left(\frac{x_{1}}{2^{j}}, \frac{x_{2}}{2^{j}}\right)$$

and the wavelet transform of $f \in L^2(\mathbb{R}^2)$ in the direction k, at position $u = (u_1, u_2)$ and scale 2^j

$$W^k f(u, 2^j) = \langle f(x), \psi_{2j}^k(x-u) \rangle$$

Application of oriented (dyadic) wavelets in image processing lie in many **physiological** and **computer vision** studies : Textures can be synthesised and discriminated with oriented two-dimensional wavelet transforms.

 \rightarrow multiscale edge detection from the local maxima of a wavelet transform.

Oriented wavelets (definition) In 2-d, a dyadic wavelet transform is computed with several mother wavelet $\{\psi^k\}_{1 \le k \le K}$ which have different spatial orientations. For $x = (x_1, x_2)$, we denote

$$\psi_{2j}^{k}(x_{1}, x_{2}) = \frac{1}{2^{j}}\psi^{k}\left(\frac{x_{1}}{2^{j}}, \frac{x_{2}}{2^{j}}\right)$$

and the wavelet transform of $f \in L^2(\mathbb{R}^2)$ in the direction k, at position $u = (u_1, u_2)$ and scale 2^j

$$W^k f(u, 2^j) = \langle f(x), \psi_{2j}^k(x-u) \rangle$$

Application of oriented (dyadic) wavelets in image processing lie in many **physiological** and **computer vision** studies : Textures can be synthesised and discriminated with oriented two-dimensional wavelet transforms.

 \rightarrow multiscale edge detection from the local maxima of a wavelet transform.

Oriented wavelets (definition) In 2-d, a dyadic wavelet transform is computed with several mother wavelet $\{\psi^k\}_{1 \le k \le K}$ which have different spatial orientations. For $x = (x_1, x_2)$, we denote

$$\psi_{2j}^{k}(x_{1}, x_{2}) = \frac{1}{2^{j}}\psi^{k}\left(\frac{x_{1}}{2^{j}}, \frac{x_{2}}{2^{j}}\right)$$

and the wavelet transform of $f \in L^2(\mathbb{R}^2)$ in the direction k, at position $u = (u_1, u_2)$ and scale 2^j

$$W^k f(u, 2^j) = \langle f(x), \psi_{2j}^k (x - u) \rangle$$

We can show that dyadic wavelet transform can generate a frame and there exist reconstruction (dual) wavelets $\left\{\widetilde{\psi}^k\right\}_{1\leq k\leq K}$ such that

$$f(x) = \sum_{j=-\infty}^{j=\infty} \frac{1}{2^{2j}} \sum_{k=1}^{K} W^k f(\cdot, 2^j) \star \widetilde{\psi}_{2^j}^k(x)$$

For example, a wavelet in the direction α may be defined as the partial derivative of order *p* of a window $\theta(x)$ in the direction of the vector $\vec{n} = (\cos \alpha, \sin \alpha)$

$$\begin{split} \psi^{\alpha}(x) &= \frac{\partial^{p}\theta(x)}{\partial \vec{n}^{p}} = \left(\cos \alpha \frac{\partial}{\partial x_{1}} + \sin \alpha \frac{\partial}{\partial x_{2}}\right)^{p} \theta(x) \\ &= \sum_{k=0}^{k=p} {p \choose k} \left(\cos \alpha\right)^{k} (\sin \alpha)^{p-k} \psi^{k}(x) \quad (K=p+1) \\ \text{and} \qquad \psi^{k}(x) = \frac{\partial^{p}\theta(x)}{\partial x_{1}^{k} \partial x_{2}^{p-k}}, \quad \text{for } 0 \le k \le p \end{split}$$

We can show that dyadic wavelet transform can generate a frame and there exist reconstruction (dual) wavelets $\left\{\widetilde{\psi}^k\right\}_{1\leq k\leq K}$ such that

$$f(x) = \sum_{j=-\infty}^{j=\infty} \frac{1}{2^{2j}} \sum_{k=1}^{K} W^k f(\cdot, 2^j) \star \widetilde{\psi}_{2^j}^k(x)$$

For example, a wavelet in the direction α may be defined as the partial derivative of order *p* of a window $\theta(x)$ in the direction of the vector $\vec{n} = (\cos \alpha, \sin \alpha)$

$$\begin{split} \psi^{\alpha}(x) &= \frac{\partial^{p}\theta(x)}{\partial \vec{n}^{p}} = \left(\cos \alpha \frac{\partial}{\partial x_{1}} + \sin \alpha \frac{\partial}{\partial x_{2}}\right)^{p} \theta(x) \\ &= \sum_{k=0}^{k=p} {p \choose k} \left(\cos \alpha\right)^{k} (\sin \alpha)^{p-k} \psi^{k}(x) \quad (K = p+1) \\ \text{and} \qquad \psi^{k}(x) = \frac{\partial^{p}\theta(x)}{\partial x_{1}^{k} \partial x_{2}^{p-k}}, \quad \text{for } 0 \le k \le p \end{split}$$

For appropriate windows $\theta(x)$, these K = p + 1 partial derivatives define a family of dyadic wavelets. In the direction α the wavelet transform $W^{\alpha}f(u, 2^{j})$ is computed as a linear combination of the p + 1 components $W^{k}f(u, 2^{j})$.

$$\theta(x) = \exp\left(-\frac{x_1^2 + x_2^2}{2}\right) \text{ and } p = 1 \Rightarrow \vec{\psi}(x) = \begin{cases} \psi^0(x) = \frac{\partial \theta(x)}{\partial x_2} = -x_2\theta(x) \\ \psi^1(x) = \frac{\partial \theta(x)}{\partial x_1} = -x_1\theta(x) \end{cases}$$

For appropriate windows $\theta(x)$, these K = p + 1 partial derivatives define a family of dyadic wavelets. In the direction α the wavelet transform $W^{\alpha}f(u, 2^{j})$ is computed as a linear combination of the p + 1 components $W^{k}f(u, 2^{j})$.

For example

$$\theta(x) = \exp\left(-\frac{x_1^2 + x_2^2}{2}\right) \text{ and } p = 1 \Rightarrow \vec{\psi}(x) = \begin{cases} \psi^0(x) = \frac{\partial\theta(x)}{\partial x_2} = -x_2\theta(x)\\ \psi^1(x) = \frac{\partial\theta(x)}{\partial x_1} = -x_1\theta(x) \end{cases}$$

For appropriate windows $\theta(x)$, these K = p + 1 partial derivatives define a family of dyadic wavelets. In the direction α the wavelet transform $W^{\alpha}f(u, 2^{j})$ is computed as a linear combination of the p + 1 components $W^{k}f(u, 2^{j})$.

$$\theta(x) = \exp\left(-\frac{x_1^2 + x_2^2}{2}\right) \text{ and } p = 1 \Rightarrow \vec{\psi}(x) = \begin{cases} \psi^0(x) = \frac{\partial \theta(x)}{\partial x_2} = -x_2\theta(x) \\ \psi^1(x) = \frac{\partial \theta(x)}{\partial x_1} = -x_1\theta(x) \end{cases}$$

Ear oxampla

Ondelette dérivée d"une gaussienne

Gabor Wavelets

$$\psi^{k}(x) = \exp\left(-\frac{x_{1}^{2} + x_{2}^{2}}{2}\right) \exp\left[-i\eta(x_{1}\cos\alpha_{k} + x_{2}\sin\alpha_{k})\right]$$

Gabor Dyadic wavelets

Ondelette orientée de Morlet

classification

classification

segmentation

classification

θ=0 a=2-3

θ=0 a=2⁻²

θ=0 a=21

θ=0 a=2²

segmentation

θ=2 a=2-3

Multiscale edge detection

Goal Detect points of sharp variation in a image $f(x_1, x_2)$

Multiscale edge detection

GoalDetect points of sharp variation in a image $f(x_1, x_2)$ Canny AlgorithmCalculate the modulus of the gradient vector $\vec{\nabla} f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}\right)$

The partial derivative of *f* in the direction $\vec{n} = (\cos \alpha, \sin \alpha)$ is

$$\frac{\partial f}{\partial \vec{n}} = \vec{\nabla} \cdot \vec{n} = \frac{\partial f}{\partial x_1} \cos \alpha + \frac{\partial f}{\partial x_2} \sin \alpha$$

 $\left|\frac{\partial f}{\partial \vec{n}}\right|$ is maximum when \vec{n} is collinear to $\vec{\nabla} f$
GoalDetect points of sharp variation in a image $f(x_1, x_2)$ Canny AlgorithmCalculate the modulus of the gradient vector $\vec{\nabla} f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}\right)$ The partial derivative of f in the direction $\vec{n} = (\cos \alpha, \sin \alpha)$ is $\frac{\partial f}{\partial \vec{n}} = \vec{\nabla} \cdot \vec{n} = \frac{\partial f}{\partial x_1} \cos \alpha + \frac{\partial f}{\partial x_2} \sin \alpha$ $\left|\frac{\partial f}{\partial \vec{n}}\right|$ is maximum when \vec{n} is collinear to $\vec{\nabla} f$

 $\Rightarrow \quad \vec{\nabla} f$ is parallel to the direction of maximum changes of the surface f(x)

GoalDetect points of sharp variation in a image $f(x_1, x_2)$ Canny AlgorithmCalculate the modulus of the gradient vector $\vec{\nabla}f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}\right)$

The partial derivative of *f* in the direction $\vec{n} = (\cos \alpha, \sin \alpha)$ is

$$\frac{\partial f}{\partial \vec{n}} = \vec{\nabla} \cdot \vec{n} = \frac{\partial f}{\partial x_1} \cos \alpha + \frac{\partial f}{\partial x_2} \sin \alpha$$

$$\left|\frac{\partial f}{\partial \vec{n}}\right|$$
 is maximum when \vec{n} is collinear to $\vec{\nabla} f$

$\Rightarrow \quad \vec{\nabla} f$ is parallel to the direction of maximum changes of the surface f(x)

A point $y \in \mathbb{R}^2$ is defined as an edge if $|\vec{\nabla}f(x)|$ is locally maximum at x = ywhen $x = y + \lambda \vec{\nabla}f(y)$ in the vicinity of y (i.e. λ small) Edge points are inflexion points of f

Wavelet Maxima for images

Wavelet Maxima for images

Let us consider the Gabor dyadic (oriented) wavelet

$$\vec{\psi}(x) = \begin{cases} \psi^0(x) = \frac{\partial \theta(x)}{\partial x_2} = -x_2\theta(x) \\ \psi^1(x) = \frac{\partial \theta(x)}{\partial x_1} = -x_1\theta(x) \end{cases}$$

and the corresponding dyadic wavelet transform

$$W^k f(u, 2^j) = \langle f(x), \psi_{2^j}^k(x-u) \rangle, \quad k = 0, 1$$

Wavelet Maxima for images

Let us consider the Gabor dyadic (oriented) wavelet

$$\vec{\psi}(x) = \begin{cases} \psi^0(x) = \frac{\partial \theta(x)}{\partial x_2} = -x_2\theta(x) \\ \psi^1(x) = \frac{\partial \theta(x)}{\partial x_1} = -x_1\theta(x) \end{cases}$$

and the corresponding dyadic wavelet transform

$$W^k f(u, 2^j) = \langle f(x), \psi_{2^j}^k (x - u) \rangle, \quad k = 0, 1$$

We can show that the wavelet transform components of a image f verifies

$$\vec{W}f(u,2^{j}) = \begin{pmatrix} W^{0}f(u,2^{j}) \\ W^{1}f(u,2^{j}) \end{pmatrix} = 2^{j}\vec{\nabla}\left(f \star \theta_{2^{j}}\right)(u) \quad \text{(multiscale)}$$

Wavelet Maxima for images

Let us consider the Gabor dyadic (oriented) wavelet

$$\vec{\psi}(x) = \begin{cases} \psi^0(x) = \frac{\partial \theta(x)}{\partial x_2} = -x_2\theta(x) \\ \psi^1(x) = \frac{\partial \theta(x)}{\partial x_1} = -x_1\theta(x) \end{cases}$$

and the corresponding dyadic wavelet transform

$$W^k f(u, 2^j) = \langle f(x), \psi_{2^j}^k (x - u) \rangle, \quad k = 0, 1$$

We can show that the wavelet transform components of a image f verifies

$$\vec{W}f(u,2^{j}) = \begin{pmatrix} W^{0}f(u,2^{j}) \\ W^{1}f(u,2^{j}) \end{pmatrix} = 2^{j}\vec{\nabla}\left(f\star\theta_{2^{j}}\right)(u) \quad \text{(multiscale)}$$

An edge point at scale 2^{j} is a point ν such that $\left| \vec{W} f(u, 2^{j}) \right|$ is **locally maximum** at $u = \nu$ when $u = \nu + \lambda$ angle $\left\{ \vec{W} f(u, 2^{j}) \right\}$ (for λ small enough)

Wavelet Maxima for images

FIGURE 6.9 The top image has $N^2 = 128^2$ pixels. (a): Wavelet transform in the horizontal direction, with a scale 2/ that increases from top to bottom: $\{W^{1}f(u, 2)\}_{h \in \mathcal{L}(2n)}$. Black, grey and white pixels correspond respectively to great one doubting the pixels correspond respectively to zero and large amplitude coefficients. (a): Angle $\{Af(u, 2)\}_{h \in \mathcal{L}(2n)}$. White and black pixels maxima are in black.

Wavelet Maxima for images

FIGURE 6.10 Multiscale edges of the Lena image shown in Figure 6.11. (a): $\{W^{\dagger}f(u, 2')\}_{-7\leq j\leq -3}$. (b): $\{WF_{f}(u, 2')\}_{-7\leq j\leq -3}$. (c): $\{Af(u, 2')\}_{-7\leq j\leq -3}$. (d): $\{Af(u, 2')\}_{-7\leq j\leq -3}$. (e): Modulus maxima. (f): Maxima whose modulus values are above a threshold.

Reconstruction from Wavelet Maxima lines

FIGURE 6.11 (a): Original Lena. (b): Reconstructed from the wavelet maxima displayed in Figure 6.10(c) and larger scale maxima. (c): Reconstructed from the thresholded wavelet maxima displayed in Figure 6.10(f) and larger scale maxima.