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Historical milestones in (digital) SP (non exhaustive list)

1822. Fourier transform Joseph FOURIER

1925-1927. Uncertainty principle Hermann Weyl Werner HEISENBERG

1946. Time-Frequency principle Dennis GABOR

1949. Sampling theory Claude SHANNON

1970 Continuous wavelets Jean MORLET Alexander GROSSMANN

1980. Orthogonal wavelet bases Ingrid DAUBECHIES Stéphane MALLAT Yves MEYER

and Multiresolution analysis



• sampling theory
• coding theory
• harmonic analysis
• information theory
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Advantages – compression (up to thousands of LP’s in 2 Gbytes), disturbance
immunity, rewritability, accessibility, portability

Drawbacks – information loss, quality loss (higher harmonics drop, dynamic squeeze,
distorsion,...)
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Fourier transform: a bridge between time and frequency

X(f ) =

∫ ∞
−∞

x(t) exp{−i2πf t} dt ↔ x(t) =

∫ ∞
−∞

X(f ) exp{i2πf t} df

Power Spectrum Density : S(f ) := |X(f )|2
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Discretization in time

Discretizing:

x [n] = x(nTs), n ∈ Z

Periodizing:

X̃(f ) =
m=∞∑

m=−∞
X(f +mFs)

The Poisson sum formula: X̃(f ) =
n=∞∑

n=−∞
x(nTs) exp{−i2πnTs f}
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Discretization in frequency
By isometry of Fourier transform, similarly in frequency:

x̃(t) =
m=∞∑

m=−∞
X(mΩs) exp{i2πmΩs t} and x̃(t) =

m=∞∑
m=−∞

x
(

t + mΩ−1
s

)
x(t), t ∈ [0,T [ and X(f ), f ∈ [−B/2,B/2[ recoverable from x̃(t) and X̃(f ) respectively

iff
{

Ts · B ≤ 1
Ωs · T ≤ 1 Sampling Shannon theorem

−→
←−
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Discrete Fourier Transform

Combining both discretized representations yields the discrete Fourier transform:

X [m] =

N−1∑
n=0

x [n] exp{−i2π(TsΩs)mn}, m = 0, . . . ,M−1, and T = NTs, B = MΩs

Moreover, setting M = N = (Ts · Ωs)−1, and wN := ei2π/N , the discrete Fourier series:

X [m] =
∑

n
x [n] w−mn

N ↔ x [n] =
∑

m
X [m] wmn

n

are N−periodic and form a one-to-one correspondence.

Straightforward computation of a DFT is in O(N2).
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Fast Fourier Transform
The Cooley Tukey algorithm (radix-2) relies on:

• the N−periodicity of the series
• rearrangement into a sum of the two sub-series of odd and even indices
• factorization of the complex exponentials
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Fast Fourier Transform
The Cooley Tukey algorithm (radix-2) relies on:

• the N−periodicity of the series
• rearrangement into a sum of the two sub-series of odd and even indices
• factorization of the complex exponentials

Computational cost in O(N log N)
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Highly correlated with exact signal amplitude
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Quantization

bQ−1 . . . b1 b0

Q = 1 bit (2 levels quantization) - SNR ≈ 7.781 dB
Q = 2 bit (4 levels quantization) - SNR ≈ 13.801 dB

Q = 4 bit (16 levels quantization) - SNR ≈ 25.841 dB
Q = 8 bit (256 levels quantization) - SNR ≈ 49.92 dB



Compression / Coding

Remove contextual redundancy (lossless compression) or imperceptible information
(lossy compression) from signals.

• psychoacoustic models (e.g. MP3 for audio)
• entropic coding (e.g. JPEG 2000 for images)
• statistical description (e.g. Lempel-Ziv-Welch for texts)
• . . .

Wavelets — How Digital Signal Processing prompted a major breakthrough in
mathematics: an edifying illustration



Compression / Coding

Remove contextual redundancy (lossless compression) or imperceptible information
(lossy compression) from signals.

• psychoacoustic models (e.g. MP3 for audio)
• entropic coding (e.g. JPEG 2000 for images)
• statistical description (e.g. Lempel-Ziv-Welch for texts)
• . . .

Wavelets — How Digital Signal Processing prompted a major breakthrough in
mathematics: an edifying illustration



Compression / Coding

Remove contextual redundancy (lossless compression) or imperceptible information
(lossy compression) from signals.

• psychoacoustic models (e.g. MP3 for audio)
• entropic coding (e.g. JPEG 2000 for images)
• statistical description (e.g. Lempel-Ziv-Welch for texts)
• . . .

Wavelets — How Digital Signal Processing prompted a major breakthrough in
mathematics: an edifying illustration



Compression / Coding

Remove contextual redundancy (lossless compression) or imperceptible information
(lossy compression) from signals.

• psychoacoustic models (e.g. MP3 for audio)
• entropic coding (e.g. JPEG 2000 for images)
• statistical description (e.g. Lempel-Ziv-Welch for texts)
• . . .

Wavelets — How Digital Signal Processing prompted a major breakthrough in
mathematics: an edifying illustration



Compression / Coding

Remove contextual redundancy (lossless compression) or imperceptible information
(lossy compression) from signals.

• psychoacoustic models (e.g. MP3 for audio)
• entropic coding (e.g. JPEG 2000 for images)
• statistical description (e.g. Lempel-Ziv-Welch for texts)
• . . .

Wavelets — How Digital Signal Processing prompted a major breakthrough in
mathematics: an edifying illustration



Time Frequency decompositions

Motivation —

An intuitive starting-point —

Discrete versions —

Orthogonal bases —

Wavelets —

The wavelet “miracle” —



Time Frequency decompositions

Motivation — harmonic analysis of non-stationary signals

An intuitive starting-point —

Discrete versions —

Orthogonal bases —

Wavelets —

The wavelet “miracle” —



Time Frequency decompositions

Motivation — harmonic analysis of non-stationary signals

An intuitive starting-point — the short time Fourier transform

Discrete versions —

Orthogonal bases —

Wavelets —

The wavelet “miracle” —



Time Frequency decompositions

Motivation — harmonic analysis of non-stationary signals

An intuitive starting-point — the short time Fourier transform

Discrete versions — Gabor transform and frames

Orthogonal bases —

Wavelets —

The wavelet “miracle” —



Time Frequency decompositions

Motivation — harmonic analysis of non-stationary signals

An intuitive starting-point — the short time Fourier transform

Discrete versions — Gabor transform and frames

Orthogonal bases — critical sampling and the Balian-Law obstruction

Wavelets —

The wavelet “miracle” —



Time Frequency decompositions

Motivation — harmonic analysis of non-stationary signals

An intuitive starting-point — the short time Fourier transform

Discrete versions — Gabor transform and frames

Orthogonal bases — critical sampling and the Balian-Law obstruction

Wavelets — Affine group of translations

The wavelet “miracle” —



Time Frequency decompositions

Motivation — harmonic analysis of non-stationary signals

An intuitive starting-point — the short time Fourier transform

Discrete versions — Gabor transform and frames

Orthogonal bases — critical sampling and the Balian-Law obstruction

Wavelets — Affine group of translations

The wavelet “miracle” — Bases with compact support
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Discretizing the time-frequency plane
Under mild conditions, linear time-frequency decompositions:

Lx (t , f ; g) =

∫
x(u) gt,f (u) du =

∫
x(u) g(u − t) e−i2πfu du,

are invertible,

x(τ) =

∫ ∫
Lx (t , f ; g) gt,f (τ) dt df .

Lx (t , f ; g) lies in a 2-d continuous space R× R and is not isomorphic with x .

• define a discrete version Lx (n t0,m f0; g)

with t0 · f0 ≤ 1 (sub-critical sampling)

• revert x(t) from a uniform tiling of the time-
frequency plane:

x(t) =
∑

n

∑
m

Lx [n,m] g̃n,m(t)

needs to introduce dual frames.
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Frames
Definition — Frame: The sequence {gn,m}(n,m)∈Z2 is a frame of H if there exist two
constants 0 < A ≤ B, s.t. for any f ∈ H:

A ‖ f ‖2≤
∑
n,m
| 〈f , gn,m〉 |2≤ B ‖ f ‖2 .

Definition — Dual frame: Let {gn,m}(n,m) be a frame. The dual frame defined by

g̃n,m = (L∗L)−1 gn,m where L∗L x =
∑
n,m
〈x , gn,m〉gn,m

satifies
∀f ∈ H, x =

∑
n,m
〈x , gn,m〉g̃n,m =

∑
n,m
〈x , g̃n,m〉gn,m

Theorem (Balian-Law) — If {gn,m}(n,m)∈Z2 is a windowed Fourier frame with
t0 · f0 = 1, then∫ ∞

−∞
t2|g(t)|2 dt = +∞ or

∫ ∞
−∞

f 2|G(f )|2 df = +∞.
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Windowed Fourier frames: Gabor transform

There exists no

orthogonal windowed Fourier basis,

images of a compactly supported function g,

by time and frequency shift operators.
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Wavelet transform

Definition — Continuous wavelet transform:

Wx (t , a) =

∫
x(u)ψt,a(u) du with ψt,a(u) :=

1
√

a
ψ

(
u − t

a

)
Definition — Discrete wavelet transform:

∀k , j ∈ Z, dx
j,k := Wx

(
t 7→ kt0a−j

0 , a 7→ a−j
0

)
and ψk,j := aj/2

0 ψ
(

aj
0t − kt0

)
Theorem (I. Daubechies) — There exists compacty supported functions ψ that
generate orthonormal wavelet bases {ψj,k (t); j, k ∈ Z} of H.

Computation — Wavelet bases are associated to multiresolution analysis schemes (S.
Mallat), with efficient pyramidal filter-bank implementation.

Properties — Computational cost is O(N) vs O(N log N) for a FFT
Sparse decomposition
Large coefficients localize on singularities of the signal
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Quadrature filter-banks

Daubechies scaling function φ
(top) and wavelet ψ (bottom)
with p vanishing moments
[from A wavelet tour of

signal processing, S.

Mallat]



2-D Wavelet Decomposition

Original image (256× 256 pixels) Separable wavelet transform

[from A wavelet tour of signal processing, S. Mallat]



Non-linear image analysis

Maxima wavelet coefficients (N2/16 coefs.) Non linear approximation

[from A wavelet tour of signal processing, S. Mallat]



Wavelet based compression: JPEG 2000

JPEG compression (LCT) JPEG 2000 compression (wavelets)

41:1 41:1

86:1 86:1



Message...

Computer science allows for a numerical implementation of continuous operators

But, combined with signal and image processing, it led to a discipline on its own: the
Digital Signal Processing

DSP opened up the scope of a new mathematical field with inherent concepts and
theorems that might not have been obtained otherwise

• Filter design
• Machine learning (classification, estimation, prediction,. . . )
• Information theory (coding, compression)
• Communication
• Fractal analysis
• . . .


