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ABSTRACT

Huang’s data-driven technique of Empirical Mode
Decomposition (EMD) is presented, and issues re-
lated to its effective implementation are discussed.
A number of algorithmic variations, including new
stopping criteria and an on-line version of the al-
gorithm, are proposed. Numerical simulations are
used for empirically assessing performance elements
related to tone identification and separation. The
obtained results support an interpretation of the
method in terms of adaptive constant-Q filter banks.

1 INTRODUCTION

A new nonlinear technique, referred to as Empirical
Mode Decomposition (EMD), has recently been pio-
neered by N.E. Huang et al. for adaptively represent-
ing nonstationary signals as sums of zero-mean AM-
FM components [2]. Although it often proved re-
markably effective [1, 2, 5, 6, 8], the technique is faced
with the difficulty of being essentially defined by an
algorithm, and therefore of not admitting an analyt-
ical formulation which would allow for a theoretical
analysis and performance evaluation. The purpose
of this paper is therefore to contribute experimen-
tally to a better understanding of the method and
to propose various improvements upon the original
formulation. Some preliminary elements of experi-
mental performance evaluation will also be provided
for giving a flavour of the efficiency of the decompo-
sition, as well as of the difficulty of its interpretation.

2 EMD BASICS

The starting point of the Empirical Mode Decompo-
sition (EMD) [2] is to consider oscillations in signals
at a very local level. In fact, if we look at the evolu-
tion of a signal x(t) between two consecutive extrema
(say, two minima occurring at times ¢t_ and ¢, ), we
can heuristically define a (local) high-frequency part

{d(t),t— < t < ti}, or local detail, which corre-
sponds to the oscillation terminating at the two min-
ima and passing through the maximum which nec-
essarily exists in between them. For the picture to
be complete, one still has to identify the correspond-
ing (local) low-frequency part m(t), or local trend,
so that we have z(t) = m(t) + d(¢) for t_ <t < t,.
Assuming that this is done in some proper way for all
the oscillations composing the entire signal, the pro-
cedure can then be applied on the residual consisting
of all local trends, and constitutive components of a
signal can therefore be iteratively extracted.

Given a signal z(t), the effective algorithm of EMD
can be summarized as follows [2]:

1. identify all extrema of x(t)

2. interpolate between minima (resp. maxima),
ending up with some envelope ey (t) (resp. emax(t))

3. compute the mean m(t) = (emin(t) + emax(t))/2

4. extract the detail d(t) = x(t) — m(t)

5. iterate on the residual m(t)

In practice, the above procedure has to be refined
by a sifting process [2] which amounts to first iterat-
ing steps 1 to 4 upon the detail signal d(t), until this
latter can be considered as zero-mean according to
some stopping criterion. Once this is achieved, the
detail is referred to as an Intrinsic Mode Function
(IMF), the corresponding residual is computed and
step 5 applies. By construction, the number of ex-
trema is decreased when going from one residual to
the next, and the whole decomposition is guaranteed
to be completed with a finite number of modes.

Modes and residuals have been heuristically intro-
duced on “spectral” arguments, but this must not
be considered from a too narrow perspective. First,
it is worth stressing the fact that, even in the case
of harmonic oscillations, the high vs. low frequency
discrimination mentioned above applies only locally
and corresponds by no way to a pre-determined sub-
band filtering (as, e.g., in a wavelet transform). Se-
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Figure 1: EMD of a 3-component signal. The an-
alyzed signal (first row of the top diagram) is the
sum of 2 sinusoidal FM components and 1 Gaus-
sian wavepacket. The decomposition performed by
EMD is given in the 8 IMF’s plotted below, the last
row corresponding to the final residue. The time-
frequency analysis of the total signal (top left of the
4 bottom diagrams) reveals 3 time-frequency signa-
tures which overlap in both time and frequency, thus
forbidding the components to be separated by any
non-adaptive filtering technique. The time-frequency
signatures of the first 3 IMF’s extracted by EMD
evidence that these modes efficiently capture the 3-
component structure of the analyzed signal. (All
time-frequency representations are reassigned spec-
trograms [3, 9].)

lection of modes rather corresponds to an automatic
and adaptive (signal-dependent) time-variant filter-
ing. An example in this direction, where a signal
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Figure 2: EMD of a 3-component signal — Nonlin-
ear oscillations. The analyzed signal (first row of the
diagram) is the sum of 8 components: a sinusoid of
some medium period T superimposed to 2 triangu-
lar waveforms with periods smaller and larger than
T. The decomposition performed by EMD is given in
the 3 IMF’s plotted below, the last row corresponding
to the final residue.

composed of 3 components which significantly over-
lap in time and frequency is successfully decomposed
by the method, is given in Figure 1. This figure
has been obtained by running the MATLAB script
emd_fmsin2.m.!

Another example (emd_sawtooth.m) that puts em-
phasis on the potentially “non-harmonic” nature of
EMD is given in Figure 2. In this case, both linear
and nonlinear oscillations (associated respectively
with 1 sinusoid and 2 triangular waveforms) are ef-
fectively identified and separated, whereas any “har-
monic” analysis (Fourier, wavelets,...) would end
up in the same context with a much less compact
and physically less meaningful decomposition.

3 ALGORITHMIC VARIATIONS

As it has been defined in Section 2, the EMD algo-
rithm depends on a number of options which have
to be controlled by the user and which require some
expertise. Our purpose here is to make more precise
the rationale for such choices, as well as to base upon
this analysis variations on the initial formulation.

IMATLAB scripts developed for the algorithms and exam-
ples described throughout this paper are available as freeware
codes [9].



3.1 Sampling, interpolation and border ef-
fects

A basic operation in EMD is the estimation of up-
per and lower “envelopes” as interpolated curves be-
tween extrema. The nature of the chosen interpo-
lation plays an important role, and our experiments
tend to confirm (in agreement with what is recom-
mended in [2]) that cubic splines are to be preferred.
Other types of interpolation (linear or polynomial)
tend to increase the required number of sifting itera-
tions and to “over-decompose” signals by spreading
out their components over adjacent modes.

A second point is that, since the algorithm op-
erates in practice on discrete-time signals, some spe-
cial attention has to be paid to the fact that extrema
must be correctly identified, a pre-requisite which re-
quires a fair amount of oversampling (this point will
be investigated further in Section 4 below).

Finally, a third issue that has to be taken into
account is related to boundary conditions, so as to
minimize error propagations due to finite observa-
tion lengths. In this respect, adding extrema by mir-
ror symmetry with respect to the extrema which are
closest to the edges gives generally good results.

3.2 Stopping Criteria for sifting

The extraction of a mode is considered as satisfactory
when the sifting process is terminated. Two condi-
tions are to be fulfilled in this respect [2]: the first
one is that the number of extrema and the number
of zero-crossings must differ at most by 1; the second
one is that the mean between the upper and lower
envelopes must close to zero according to some cri-
terion.

The evaluation of how small is the amplitude of the
mean has to be done in comparison with the ampli-
tude of the corresponding mode, but imposing a too
low threshold for terminating the iteration process
leads to drawbacks similar to the ones mentioned pre-
viously (over-iteration leads to over-decomposition).
As an improvement to the criteria that have been
considered so far [2], we propose in emd.m [9] to in-
troduce a new criterion based on 2 thresholds #; and
02, aimed at guaranteeing globally small fluctuations
in the mean while taking into account locally large
excursions. This amounts to introduce the mode am-
plitude a(t) := (emax(t) — emin(t))/2 and the evalu-
ation function o(t) := |m(t)/a(t)| so that sifting is
iterated until o(¢) < 6; for some prescribed fraction
(1 — @) of the total duration, while o(t) < 2 for the
remaining fraction. One can typically set o = 0.05,
01 = 0.05 and 05 ~ 106, (default values in emd.m).

3.3 Local EMD

In the classical EMD implementation, sifting itera-
tions apply to the full length signal, and they are
pursued as long as there exists a local zone where
the mean of the envelopes is not considered as suffi-
ciently small. However, as it has been already men-
tioned, it turns out that over-iterating on the whole
signal for the sake of a better local approximation
has the drawback of contaminating other parts of
the signal, in particular in uniformizing the ampli-
tude and in over-decomposing it by spreading out
its components over adjacent modes. Moreover, the
hierarchical and nonlinear nature of the princeps al-
gorithm can by no means guarantee that the EMD
of concatenated signals would be the concatenation
of individual EMD’s.

This observation suggests therefore a first varia-
tion upon the initial EMD formulation. This vari-
ation, referred to as “local EMD” (local_emd.m),
introduces an intermediate step in the sifting pro-
cess: those local zones where the error remains large
are identified and isolated, and extra-iterations are
applied only to them. This is achieved by introduc-
ing a weighting function w(t) such that w(¢) =1 on
those connected time supports where o(t) > 61, with
a soft decay to 0 outside those supports. Step 4 of
the algorithm described in Section 2 is thus simply
replaced by d(t) = z(t) — w(t) m(t).

3.4 On-line EMD

A second variation is based on the observation that
the sifting step relies on interpolations between ex-
trema, and thus only requires a finite number of them
(5 minima and 5 maxima in the case of cubic splines)
for being operated at a given point. This suggests
that the extraction of a mode could therefore be pos-
sible blockwise, without the necessary knowledge of
the whole signal (or previous residual). This remark
paved the road for our development of an EMD al-
gorithm which operates on-line and can therefore be
applied to data flows (emd_online.m).

A pre-requisite for the blockwise extraction of a
mode is to apply the same number of sifting steps
to all blocks in order to prevent possible discontinu-
ities Since this would require the knowledge of the
whole signal, the number of sifting operations is pro-
posed to be fixed a priori, and it proved in fact that
a few iterations (less than 10, typically 4) are gener-
ally sufficient to extract a meaningful IMF. The ef-
fective application of the on-line version of the EMD
algorithm that we propose is obtained by means of
a sliding window operating on top of the local algo-
rithm described above. The front edge of the window



progresses when new data become available, whereas
the rear edge progresses by blocks when the stopping
criterion is met on a block. Based on this principle,
an IMF and its corresponding residual can be com-
puted sequentially. The whole algorithm can there-
fore be applied to this residual, thus allowing for an
extraction of the next mode with some delay.

An example of how the algorithm works on can be
appreciated by running ex_online.m, an example in
which the analyzed signal is the periodization of the
3-component signal used in Figure 1. In this case,
the final decomposition obtained on-line on 16000
data points clearly appears as the periodization of
the decomposition obtained by decomposing the ele-
mentary block of 2000 data points.

Besides the essential usefulness of an on-line al-
gorithm for decomposing data flows, one can also
point out its advantage over standard (block) al-
gorithms in terms of computational burden, which
quickly becomes very heavy when dealing with long
data records.

4 PERFORMANCE ELEMENTS

Since EMD is essentially defined by an algorithm and
does not admit an analytical definition, its perfor-
mance evaluation is difficult and requires extensive
simulation experiments. We will report here on two
situations: yet elementary, they both point on non-
trivial features that are to be known (and better un-
derstood) prior applying EMD to real data and try-
ing to interpret the decomposition.

4.1 Tones and sampling

When analyzing a pure tone, EMD is expected to be
the identity operator, with only 1 mode (supposed to
be identical to the tone), and no residual. Even when
keeping apart possible border effects, this happens
not to be true because of the unavoidable influence
of sampling, which may create jittered extrema when
dealing with only a few points per period.

Figure 3 (emd_sampling.m) aims at quantifying
this phenomenon by plotting, as a function of the
tone frequency f, the relative error

1/2
e(f)=(Z(xf[n]—dl[n]f/zx?[no , (1)

n

where d;[n] stands for the 1st EMD mode extracted
from the tone z¢[n] of (normalized) frequency f. It
results that such a tone estimation is heavily depen-
dent on f: while the error reaches minima when the
tone period is an even multiple of the sampling pe-
riod, we globally observe that e(f) < C f2.

Iogz(error)

-5 -4 -3 2 -1
\ogz(frequency)

Figure 3: EMD of 1 tone — Estimation error. Circles
correspond to eq.(1) evaluated on 256 points tones.
The superimposed straight line has a slope of 2 in
this (base 2) log-log plot, thus evidencing that error
18 upper bounded by a quadratic increase.

4.2 Tones Separation

In the case of 2 superimposed tones
x[n] = ay cos 27 fin + ag cos 27 fan

with fo < f1 < 1/2, EMD is expected to extract
them via its first 2 modes, although moderate sam-
pling may require more that one mode for extracting
f1, thus locating fo in modes of index larger than
2. Errors in the extraction can be quantified via a
weighted extension of the criterion (1), with f; com-
pared to mode 1, and f; to the subsequent mode
with smallest error (emd_separation.m).

The result is plotted in Figure 4, evidencing an
intricate structure with entire domains where tones
separation is difficult, in particular when f; > 1/4.
The observed patterns clearly depend on the ampli-
tudes ratio p := aj/ay but, in a first approximation
(and when both f; and fo are sufficently small so
that no sampling issue enters the problem), they all
share a common feature: most errors are contained
within a triangular domain limited by two lines pass-
ing through the origin. In other words, for a given
frequency f1, there exist for each amplitude ratio p
a fixed a, < 1 that defines a “confusion” frequency
band B(f1) := [a, fi, f1] such that f1 and fo € B(f1)
cannot be separated. This supports an interpreta-
tion of EMD in terms of a constant-Q filter bank, in
close agreement with the findings reported in [1, 4, 7]
in stochastic situations involving broadband noise.



Figure 4: EMD of 2 tones — Estimation error. A
weighted extension of the criterion (1) is evaluated in
the lower triangle of the normalized frequency square
[0,1/2] x [0,1/2], and plotted on a linear gray-level
scale (darker pizels correspond to larger errors). Am-
plitude ratios are set to p = 4,1 and 1/4 (from top
to bottom).

5 CONCLUSION

EMD is a promising new addition to existing tool-
boxes for nonstationary and nonlinear signal process-
ing, but it still needs to be better understood. This
paper discussed algorithmic issues aimed at more ef-
fective implementations of the method, and it pro-
posed some preliminary performance measures.

The results reported here are believed to provide
new insights on EMD and its use, but they are
merely of an experimental nature and they clearly
call for further studies devoted to more theoretical
approaches.
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