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INRIA Rocquencourt - Projet Fractales
Domaine de Voluceau

B.P. 105 Le Chesnay 78153 Cedex, France
tel: (33) 1 39 63 52 79, Fax: (33) 1 39 63 57 71

Email: paulo.goncalves@inria.fr

Patrice Abry

Laboratoire de Physique - CNRS URA 1325
Ecole Normale Supérieure de Lyon

46 allée d’Italie, 69364 Lyon cedex 07, France
tel: (33) 4 72 72 84 93, Fax: (33) 4 72 72 80 80

Email: pabry@physique.ens-lyon.fr

ABSTRACT

We propose here a multiple-window wavelet transform
for the purpose of identifying non-stationary self-similar
structures in random processes and estimating the time-
varying scaling exponent

�������
that controls the local reg-

ularity and correlation of the process. More specifically,
our final aim is to be able to track even rapidly varying tra-
jectories

�����	�
�������
. The solution described here combines

analysis obtained from scalograms computed with a set of
multi-windows designed so as to satisfy to a decorrelation
condition. We derive here the statistics for the estimate of�
�����

, compare it against numerical simulations and show
that we obtain a substantial reduction of variance in estima-
tion, without introducing bias.

1. MOTIVATION

The problem of tracking the local regularity
�
�����

of a func-
tion arises in many real world applications (two examples
are local scaling properties in high speed telecommunica-
tion traffic and time-varying self similarity of physiologic
signals). Very often also, sharp variations of the Hölder
function

�
�����
precludes the use of smoothed-wavelet based

estimators as proposed in [1], as the bias/variance trade-off
is penalized by the smearing effect [2]. In this paper, we
propose a multiple-window wavelet transform inspired by
Thomson’s method for classical spectral analysis [3]. Fol-
lowing the idea of projecting a unique observation � onto
several orthogonal subspaces, we consider each projection
as a different realization of the same random process. Af-
ter having derived a shift cross-correlation condition on the
wavelet sets to span (almost) orthogonal subspaces, we turn,
in a second step, to bases designed from the multiresolution
analysis theory [4]. This framework not only simplifies con-
siderably the derivation of the wavelet sets, but also supports
fast and efficient algorithms.

At last, we identify the probability density function un-
derlying the coefficients of the Log-time-scale distribution
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based on the multiple-window wavelet transform. The sta-
bilized variance of the Log-scalogram across scales carries
over to that of the estimate �������

. Simulation experiments
evidence the dramatic gain induced on the bias/variance
trade-off.

2. LOCAL SCALING EXPONENTS AND WAVELET
TRANSFORM� A model for local regularity. A locally self-similar

processes is defined by the equality (in distribution)� ������� D� ��������� � ������� where
�������

is the time-varying scal-
ing (or Hölder) exponent to be estimated (

�
�����
will also

be referred to as the local regularity of the process). In
the course of our development we will use the Multifrac-
tional Brownian Motion (MBM) [1, 5], a generalization of
the constant � � fractional Brownian motion, as a paradigm
for locally self-similar processes. Assuming continuity of
the Hölder function

�
�����
, a limit expression for the covari-

ance function of a MBM is��� ������� � � E !"� ����� �$# ���&%'� ��(
�*),+�-/.10 � 0 + �����2� % 0 �3%�� 0 + ������� � 0 � 0 + �������54 �6�87:9;�

(1)

whereas the variance of its increment process is

E ! 0 � ���,%'� � �<� ����� 0 + ( �>= ) +�@? -BA 0 � 0 + �����2� ���C7/9;D
� Scaling behavior of the scalogram. Let us denote the
wavelet transform by1

E � �2�F�	��� �HG � �5� ��I ��J K �5� ��L@� (2)

where
I �5J K ���$� � 0 � 0 MONP IQ� 0 � 0 M R �5� � �����

. Let us more-
over define the scalogram as the squared-magnitude of the
wavelet transform: S � ���F�	��� � 0 E � �2�F�	��� 0 + .

1Throughout this paper, integration bounds run from T3U to VWU .
Without loss of generality, we deal with real wavelets only.



Then, it is known from [1, 2, 6] that the local scaling
structure echoes the self-similarity of those processes as

E ! S � ���F������( � � + ������� � R ) +� G 0 �W0 + �����2� ��� � � ��L � � � 7:9
� � + ������� � R�� � ������� � 7/9�D

(3)

where ��� � � � ��� IQ�
	;�1IQ��	 � � ��L�	 stands for the autocorre-
lation of the analyzing wavelet. For the range

9� ����������
of interest, this behavior holds provided the wavelet

I
ver-

ifies the usual admissibility condition, i.e. � IQ������L�� � 9
.

When
�������

exceeds this range, this condition needs to be
extended up to a sufficient number of vanishing moments
of the wavelets [7]. In this expression, the major problem
is to access a good estimate of the ensemble average on the
scalogram given a single observation of the random process� . Whereas in [1] a local time smoothing was proposed, we
adopt here a different solution that relates to the technique
of multiple-window spectral analysis to reduce the variance
on the estimate of E ! S � �2�F�	����( .
3. MULTIPLE-WINDOW WAVELET TRANSFORM� Principle and definition. In [3], Thomson deals with the
problem of spectral analysis of a single short-length random
observation � by proposing a set of orthogonal analyzing
functions ��� as windows for periodograms. Then, each win-
dow ��� spans a signal subspace ��� orthogonal to any other
subspace ��� derived from a different window ������ � . Then,

all periodograms ��� ���$� �!  � � ����� ��� �����#" M � +%$'& � L��   + can
be viewed as uncorrelated spectra of the same random vari-
able. So, the weighted sum2 () � ��� � �+* �-, �'��� ���$� corre-
sponds to a sample mean estimate and has a variance low-
ered by a factor equal to the number of used windows.

Based on the same idea, in [8, 9] the multiple-window
scalogram is defined as follows3

. � �����	��� � �/ 01
� � R

    G � �5� ��I � � ��5J K �5� ��L��     + (4)

where ! I � � � ( � � R32 2 2 0 is a set of chosen mother wavelets.� Decorrelation condition. In order to reduce the variance
on the average scalogram

. � applied to MBM of the form
(1), we must choose a set ! I � � � ( � � R32 2 2 0 leading to uncorre-
lated wavelet transforms, in other terms we want

E ! E � � �� �����	����E � � �� ���F�	����(54 9 6�798�;: �<6 �F��� 7:9�D
Solution to this constraint imposes the set ! I � � � ( � � R32 2 2 0

to verify the following equality

G 0 � 0 + ������� � � J � � � ��L � 4 9��=6>7�8�?: (5)

2The weights @�A are such that * A @�ACBED .
3A generalization of this principle to time-varying spectral analysis can

be found in [9].

where � � J � � � � � � I � � � �
	;�1I � � � �
	 � � � L'	 is the cross-
correlation function between the two wavelets

I � � � and
I6� � � .

Moreover and without loss of generality, we impose that the
wavelets are of unit energy, i.e. :

� � J � ��9@� � G 0 I � � � �
	;� 0 + L�	�4F��D
(6)

In the past, several studies (mainly in coding theory [10])
have faced, and partially solved, similar problems of finding
time-shift cross-orthogonal functions, but in general this re-
mains a difficult task. Therefore, we decide to restrict the
class of solutions to the ones stemming from the procedure
described below.� Designing the set of wavelets. To help finding solu-
tions to this set of constraints we choose to write each
mother wavelet

I � � � as a linear combination of an existing
multiresolution-type wavelet

I �HG	�
(referred to as the grand-

mother wavelet)

I � � � ����� �JI1K � G�L � � �
K I �HG	� ��� �NM ��D (7)

Here
I �HG	�

is chosen such that the collection ! I �HG	�� J
K ����� �- M �PO + I �HG	� � - M � � �QM �	�,� : � M �SR ��T T � �UT T,��(

defines an or-
thonormal basis of wavelets (strictly speaking, it only needs
to form a Riesz [4] basis, but the choice of an orthonor-
mal basis simplifies further calculations). This linear com-
bination technique is a general procedure that enables the
design of infinitely many different semi-orthogonal or bi-
orthogonal multiresolution-type basis of wavelets [4, 11].
Within this framework, the decorrelation condition as ex-
pressed in equation (5) can be rewritten in terms of the co-
efficient series L � � � and reduces to

� � J � �VI M$R1W � M I � R
X � J � �ZY5� G 0 � 0 + ������� � G � � � Y5� L � 4 9��[6>798�;:

(8)
where

X � J � �ZY5� � * K L � � �
K
L � � �
K
M W corresponds to the cross-

correlation between the two sequences L � � � and L � � � , and� G the autocorrelation function of the grand-mother waveletI6�HG	�
. The normalization condition of equation (6) becomes :X � J � ��9@� � �B�<6>7	D (9)

Hence, the identification of the set ! I � � ��( � � R32 2 2 0 simpli-
fies to the derivation of a finite set of coefficients ! L � � �

K � M ��B�"D"D"D	�3\
(
that verifies (8) and (9).

However, since equation (8) involves a time-varying
regularity

�������
, the set of coefficients ! L � � �

K � M � �B�"D D"D��%\
(
need to satisfy time-shift cross-orthogonality (in the sense
of (8)) for all

9^] �
�����_]`�
simultaneously. To overcome

this other difficulty, we propose the trivial solution satisfy-
ing :

0 X � J � �ZY5� 0 � 9��a6>7�8�?: ��6�Y and
X � J � ��9�� � ���a6>7�D



Unfortunately, numerical solutions of this new equation
correspond to sequences of length

\�� - /
, yielding un-

acceptable long wavelets as far as time-tracking of
�������

is
concerned (see [2]). Nevertheless, one can easily show that
the modulus of the integral

G 0 �W0 + ������� � G � � � Y5��L � �
decreases rapidly with

Y
(see figure 1), which as a result,

loosens the constraint on the solutions L � � � . Therefore, we
end up with the following constraints, solved by a Matlab
optimization routine :

0 X � J � �ZY5� 0 � 9�� 6>7�8�?: � 0 Y 0 ] \��
and

X � J � �ZY5�9]�� �+6>7�8�;: � \��  0 Y 0  \ D
Wavelets designed by mean of this procedure are used in the
numerical simulations reported in figure 2.
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Figure 1: Cross-correlation �	�
 � � �� ����� ������������� ���! � , for" �#��$ � , a Daubechies wavelet of regularity 2 (at scale %'&)( ) and
for three different values of the exponent * ��$ � .

4. APPLICATION TO LOCAL SCALING
EXPONENT ESTIMATION

We now use this new multiple-window wavelet transform to
estimate the local Hölder exponent

�
�����
of a MBM. The re-

sults regarding the statistics of the estimate �
�����
presented

here are obtained assuming that a MBM is a locally Gaus-
sian process with variance ) +� [5] (details of the calculus
can be found in [2]). Moreover all the results listed be-
low are to be understood with respects to the limit of

� 7:9
.

� Statistics of the multiple window wavelet transform.
In the following, we denote by

. � the multiple window
wavelet transform proposed in (4), and by S � � �� the scalo-
gram based on the wavelet

I � � � . Because each wavelet

I � � � is a linear combination of orthogonal admissible grand-
mother wavelets

I �HG	�
, it can be shown, using notations and

results of relation (3), that the statistics for +-,/.�S � reads (cf
[2]) : 0 + R 1 � - � %��"� +-,/. �����,%32 � � � �54 + ? -76
where

2 � � � is a constant depending on
I � � � which can be

made explicit.
Using theorems for non-linear transforms of asymptotically
normal (AN) random variables (see e.g., [12]), it is straight-
forward to show that the probability density function for the
variable +-,/. . � is itself AN with mean 8:9 ;5<>= � � - � %�"� +-,/. �����$%?2 = and variance ),+9 ;5<>= � � - ? / �	� � % ) +@ ? 8 + @ � ,
where

2 = is a constant, and 8 @ and ) @ are respec-
tively the mean and the standard deviation of the sequenceA � �CB D E �#7 � �B�"D"D"D��3/GF . Basically, it amounts to say that the
variance of +-,/. . � behaves as ) +9 ;5<>=IH - ? / .� Bias and variance on the estimate �
�����

. The statistics
presented above show that both S � ���F����� and

. � ���F����� pro-
vide us with unbiased estimates of the local regularity, de-
noted �
�����5J

and ������� = respectively and obtained from a
linear regression of the corresponding distribution vs. scale
in a Log-Log plot. Moreover, the fact that the variances of+-,/.OS � and +-,/. . � are constant with respect to the scale

�
,

indicates that non-weighted linear fits can be used as effi-
cient estimates. More precisely, assuming that the linear
fits are performed on the set ! � � � : � �B�"D"D"D	��K3(

defining
a reasonably loose sampling of the scale axis (say octaves� � � - � ) so that +-,/.�S � ���F��� � � and +-,/.�S � ���F��� � � , �
7 8� : � are
uncorrelated (respectively, +-,/. . � ���F�	� � � and + ,�. . � �����	� � � ,�
7E8� : � ), we can derive the second-order statistics of the
estimates, we get :

Var
� �������LJ � � �3��K3�M4 + ? - and Var

� �
����� = � � �3��K,� - ? / �
where

�&��K,�
is a function depending only on the number of

octaves
K

involved in the linear fits.� Comparison with numerical simulations. To implement
this new multiple-window estimation technique, we need to
implement

/
wavelet transforms. By averaging the

/
es-

timates �������5J B D E obtained independently from the
/

scalo-
grams, we may obtain a reduction of variance of a factor

/
,

as compared to the variance of a crude estimator based on a
single scalogram:

Var
� �
�����LJ � ? Var N / M$R 01 � � R �������OJ B D EQP � / D

On the other hand, the reduction of variance on the estimate���2��� = derived from averaging the scalograms before taking
the + ,�. reads :

Var
� �
����� J � ? Var

� ������� = � H �R4 + ?7S �a/T� / D
Experimental results shown in figure 2 confirm reason-
ably well this assertion. For a piece-wise constant MBM
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Figure 2: For a piece-wise constant MBM, ratio ( � �	�
 ( � �� vs.  ,

where ( � �	 and ( � �� are the variances of * ��$ � estimated respectively
from a single scalogram (2) and the multiple-window method (4)
based on  wavelets. The wavelets we use are of the form (7) and
verify the condition (5) where a Daubechies2 wavelet (i.e., with 4
coefficients) as the grand-mother wavelet is chosen. Symbols � and�

correspond to * &���� � and * &���� � respectively. The dashed
line shows the usual improvement on the variance obtained with a
sample mean estimator, assuming independence of the  realiza-
tions. The empirical variances are estimated on a 50 independent
trial set of MBM.

(
�
����� � 9�D -

for
9  � ] � G and

������� � 9;D �
for� G  � ] � R ) we compute the empirical variances ( )3+J

of ������� J
and ( ),+= of ������� = based respectively on a sin-

gle scalogram (2) and on the multiple-window method (4).
The ratio ( ) +J ? () += is ploted vs. the number

/
of wavelets in-

volved in (4). Choosing a set of wavelets verifying the shift
cross-correlation condition (5), the multiple-window esti-
mator performs very well as compared to the usual decrease
of variance achieved by a sample mean estimator assuming
independence of the

/
realizations.

5. CONCLUSIONS AND PERSPECTIVE

We propose a generalization of the multiple-window
method of Thomson for constant-Q time-varying spectral
analysis of locally self-similar processes. Applied to local
scaling exponent estimation, this method performs surpris-
ingly well, insofar as it is unbiased (with the limit

� 7 9
)

and exhibits very low variance. It also prompts the use of
non-linear estimators like cross-validation [13] to eventu-
ally replace the sample mean estimator of equation (4) by a
weighted sum :

. � �����	��� � �* , �
01
� � R , �

    G � �5� ��I � � ���J K �5� ��L��     + �
this particular point is under current investigation. Another
interesting issue is to formalize the place of these multiple

window wavelet transforms within the echelon of the affine
class of time-scale distributions [14]

. � �����	��� � G G�� � �5�;���@����� � � �� ������� L@�6L �;�
where � � �5�;���@� is the Wigner-Ville distribution of the sig-
nal � . While it is straightforward to show that the corre-
sponding kernel

� �5�;�����
writes in our case

� �5�;����� � �/ 01
� � R

� �:B D E �5�;���@�$�
it is not clear how in general, the bias-variance trade-off on
the estimate ������� = stems from the properties of this kernel
(see [2] for further discussions).
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