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ABSTRACT

We propose here a multiple-window wavelet transform
for the purpose of identifying non-stationary self-similar
structures in random processes and estimating the time-
varying scaling exponent H(t) that controls the local reg-
ularity and correlation of the process. More specifically,
our final aim is to be able to track even rapidly varying tra-
jectories (¢, H(t)). The solution described here combines
analysis obtained from scalograms computed with a set of
multi-windows designed so as to satisfy to a decorrelation
condition. We derive here the statistics for the estimate of
H(t), compare it against numerical simulations and show
that we obtain a substantial reduction of variance in estima-
tion, without introducing bias.

1. MOTIVATION

The problem of tracking the local regularity H(t) of a func-
tion arises in many real world applications (two examples
are local scaling properties in high speed telecommunica-
tion traffic and time-varying self similarity of physiologic
signals). Very often also, sharp variations of the Holder
function H (t) precludes the use of smoothed-wavelet based
estimators as proposed in [1], as the bias/variance trade-off
is penalized by the smearing effect [2]. In this paper, we
propose a multiple-window wavelet transform inspired by
Thomson’s method for classical spectral analysis [3]. Fol-
lowing the idea of projecting a unique observation z onto
several orthogonal subspaces, we consider each projection
as a different realization of the same random process. Af-
ter having derived a shift cross-correlation condition on the
wavelet sets to span (almost) orthogonal subspaces, we turn,
in a second step, to bases designed from the multiresolution
analysis theory [4]. This framework not only simplifies con-
siderably the derivation of the wavelet sets, but also supports
fast and efficient algorithms.

At last, we identify the probability density function un-
derlying the coefficients of the Log-time-scale distribution
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based on the multiple-window wavelet transform. The sta-
bilized variance of the Log-scalogram across scales carries

—

over to that of the estimate H(¢). Simulation experiments
evidence the dramatic gain induced on the bias/variance
trade-off.

2. LOCAL SCALING EXPONENTS AND WAVELET
TRANSFORM

e A model for local regularity. A locally self-similar
processes is defined by the equality (in distribution)
z(at) b a®®x(t), where H(t) is the time-varying scal-
ing (or Holder) exponent to be estimated (H(t) will also
be referred to as the local regularity of the process). In
the course of our development we will use the Multifrac-
tional Brownian Motion (MBM) [1, 5], a generalization of
the constant— H fractional Brownian motion, as a paradigm
for locally self-similar processes. Assuming continuity of
the Holder function H(t), a limit expression for the covari-
ance function of a MBM is

Ye(t;7) = E{a(t)z"(t + 1)}
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whereas the variance of its increment process is

E{lz(t+7) —2z®)} = (o7/2) |7[*2®, 7 — 0.

e Scaling behavior of the scalogram. Let us denote the
wavelet transform by
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where ¢, .(7) = |a|"29(Ja|~ (7 — t)). Let us more-

over define the scalogram as the squared-magnitude of the
wavelet transform: S, (t,a) = |T,(t,a)|?.

1Throughout this paper, integration bounds run from —co to 4oo.
Without loss of generality, we deal with real wavelets only.



Then, it is known from [1, 2, 6] that the local scaling
structure echoes the self-similarity of those processes as

E(S. (L)} = @O0} [ WOy () du, a0
M+ Cy(t), a—0. (3)
where v, (u) = [ 9(v)y(v—u) dv stands for the autocorre-

lation of the analyzmg Wavelet. Fortherange 0 < H(t) <1
of interest, this behavior holds provided the wavelet v ver-
ifies the usual admissibility condition, i.e. [(t)dt = 0.
When H (t) exceeds this range, this condition needs to be
extended up to a sufficient number of vanishing moments
of the wavelets [7]. In this expression, the major problem
is to access a good estimate of the ensemble average on the
scalogram given a single observation of the random process
. Whereas in [1] a local time smoothing was proposed, we
adopt here a different solution that relates to the technique
of multiple-window spectral analysis to reduce the variance
on the estimate of E{S,(¢,a)}.

3. MULTIPLE-WINDOW WAVELET TRANSFORM

e Principle and definition. In [3], Thomson deals with the
problem of spectral analysis of a single short-length random
observation z by proposing a set of orthogonal analyzing
functions w; as windows for periodograms. Then, each win-
dow w; spans a signal subspace S; orthogonal to any other
subspace S; derived from a different window w;+;. Then,
all periodograms P;(f) = |[ a(t)wi(t) e~ 2"/t dt|* can
be viewed as uncorrelated spectra of the same random vari-
able. So, the weighted sum? T',(f) = >, 8; Pi(f) corre-
sponds to a sample mean estimate and has a variance low-
ered by a factor equal to the number of used windows.

Based on the same idea, in [8, 9] the multiple-window
scalogram is defined as follows?
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where {1(V};_, .1 is a set of chosen mother wavelets.

2

(4)

e Decorrelation condition. In order to reduce the variance
on the average scalogram €2, applied to MBM of the form
(1), we must choose a set {1(9},;.. 1 leading to uncorre-
lated wavelet transforms, in other terms we want
E{T(t,a) TV (t,a)} = 0 Vi#j, Vt, a — 0.
Solution to this constraint imposes the set {1V };; . 1
to verify the following equality

/|u|2H(t)'yi’j(u) du = 0,

2The weights 8; are such that E Bi=1.
3A generalization of this principle to time-varying spectral analysis can
be found in [9].
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where v, ;(u) = [¢@ ()Y (v — u)dv is the cross-
correlation functlon between the two wavelets 1(*) and (7).
Moreover and without loss of generality, we impose that the
wavelets are of unit energy, i.e. :
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In the past, several studies (mainly in coding theory [10])
have faced, and partially solved, similar problems of finding
time-shift cross-orthogonal functions, but in general this re-
mains a difficult task. Therefore, we decide to restrict the
class of solutions to the ones stemming from the procedure
described below.

e Designing the set of wavelets. To help finding solu-
tions to this set of constraints we choose to write each
mother wavelet 1/(¥) as a linear combination of an existing
multiresolution-type wavelet 1(%) (referred to as the grand-
mother wavelet)
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Here 4(® is chosen such that the collection {gb;?,z(t) =
2732 (2-3t — k), (j,k) € (Z*,Z)} defines an or-
thonormal basis of wavelets (strictly speaking, it only needs
to form a Riesz [4] basis, but the choice of an orthonor-
mal basis simplifies further calculations). This linear com-
bination technique is a general procedure that enables the
design of infinitely many different semi-orthogonal or bi-
orthogonal multiresolution-type basis of wavelets [4, 11].
Within this framework, the decorrelation condition as ex-
pressed in equation (5) can be rewritten in terms of the co-
efficient series ¢(*) and reduces to

ZIQ% @) [P sou—du =,
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where Q; (1) = 3, q\”¢\?, corresponds to the cross-

correlation between the two sequences ¢(*) and ¢(¥), and
~o the autocorrelation function of the grand-mother wavelet
1), The normalization condition of equation (6) becomes :

Qi,i(0) =1, Vi. )

Hence, the identification of the set {¢()},_; . L S|mpI|-

fles to the derivation of a finite set of coefficients {qk , k=
, K'} that verifies (8) and (9).

However, since equation (8) involves a time-varying
regularity H (t), the set of coefficients {qu), k=1,...,K}
need to satisfy time-shift cross-orthogonality (in the sense
of (8)) forall 0 < H(t) < 1 simultaneously. To overcome
this other difficulty, we propose the trivial solution satisfy-
ing :

1Qii(1)] = 0,Vi # j, Viand Q; ;(0) = 1,Vi.



Unfortunately, numerical solutions of this new equation
correspond to sequences of length K > 2L, yielding un-
acceptable long wavelets as far as time-tracking of H () is
concerned (see [2]). Nevertheless, one can easily show that
the modulus of the integral

/ |u|2H(t) Yo(u —1) du,

decreases rapidly with [ (see figure 1), which as a result,
loosens the constraint on the solutions ¢(?). Therefore, we
end up with the following constraints, solved by a Matlab
optimization routine :

Qi (] =0,
and  Q;;(1) <e,

Vi# g, Il < K.
Vi#j, K. <|l| < K.

Wavelets designed by mean of this procedure are used in the
numerical simulations reported in figure 2.
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Figure 1. Cross-correlation [ [u|>"®) yo(u — 1) du, for
1o(t), a Daubechies wavelet of regularity 2 (at scale a = 1) and
for three different values of the exponent H ().

4. APPLICATION TO LOCAL SCALING
EXPONENT ESTIMATION

We now use this new multiple-window wavelet transform to
estimate the local Holder exponent H(¢) of a MBM. The re-

sults regarding the statistics of the estimate H(t) presented
here are obtained assuming that a MBM is a locally Gaus-
sian process with variance o? [5] (details of the calculus
can be found in [2]). Moreover all the results listed be-
low are to be understood with respects to the limitof a — 0.

e Statistics of the multiple window wavelet transform.
In the following, we denote by Q. the multiple window
wavelet transform proposed in (4), and by Sff) the scalo-
gram based on the wavelet 4(). Because each wavelet

1 is a linear combination of orthogonal admissible grand-
mother wavelets (%), it can be shown, using notations and
results of relation (3), that the statistics for log S, reads (cf
[2D):

% ((2H + 1) log(a) 4+ b, 7r2/2)

where b(*) is a constant depending on (" which can be
made explicit.

Using theorems for non-linear transforms of asymptotically
normal (AN) random variables (see e.g., [12]), it is straight-
forward to show that the probability density function for the
variable log €2, is itself AN with mean .0 = (2H +
1)log(a) + bq and variance ot o = (2/L)(1+ 03 /pz),
where bg is a constant, and pc and o¢ are respec-
tively the mean and the standard deviation of the sequence
{Cyw,i=1,...,L}. Basically, it amounts to say that the
variance of log 2, behaves as o7, o ~ 2/L.

e Bias and variance on the estimate }f(\t). The statistics
presented above show that both S,(t,a) and Q,(t, a) pro-
vide us/vv\ith unbias/egestimates of the local regularity, de-
noted H(t)g and H(t), respectively and obtained from a
linear regression of the corresponding distribution vs. scale
in a Log-Log plot. Moreover, the fact that the variances of
log S, and log Q. are constant with respect to the scale a,
indicates that non-weighted linear fits can be used as effi-
cient estimates. More precisely, assuming that the linear
fits are performed on the set {a;, j = 1,...,J} defining
a reasonably loose sampling of the scale axis (say octaves
a; = 29) so that log S,(t, a;) and log S,(t,a;), (i # j) are
uncorrelated (respectively, log Q,(t, a;) and log Q,(t, a;),
(i # 7)), we can derive the second-order statistics of the
estimates, we get :

Var(H(t)g) = f(J)r?/2 and Var(H(t)o) = f(J)2/L,
where f(J) is a function depending only on the number of
octaves J involved in the linear fits.

e Comparison with numerical simulations. To implement
this new multiple-window estimation technique, we need to
implement L wavelet transforms. By averaging the L es-
timates H (t) ¢, obtained independently from the L scalo-
grams, we may obtain a reduction of variance of a factor L,
as compared to the variance of a crude estimator based on a
single scalogram:

Var(H(t) g /Var( IZH S())_L

On the other hand, the reduction of variance on the estimate
H (t),, derived from averaging the scalograms before taking
the log reads :

Var(H(t)s)/Var(H(t)g) ~

Experimental results shown in figure 2 confirm reason-
ably well this assertion. For a piece-wise constant MBM

(n?/4)L > L.
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Figure 2: For a piece-wise constant MBM, ratio % /cg vs. L,
where 5% and 73 are the variances of }7(\1&) estimated respectively
from a single scalogram (2) and the multiple-window method (4)
based on L wavelets. The wavelets we use are of the form (7) and
verify the condition (5) where a Daubechies2 wavelet (i.e., with 4
coefficients) as the grand-mother wavelet is chosen. Symbols o and
+ correspondto H = 0.2 and H = 0.8 respectively. The dashed
line shows the usual improvement on the variance obtained with a
sample mean estimator, assuming independence of the L realiza-
tions. The empirical variances are estimated on a 50 independent
trial set of MBM.

(H(t) = 02for 0 < t < tgand H(t) = 0.8 for
to < t < t;) we compute the empirical variances 5%

— —

of H(t)g and 53 of H(t),, based respectively on a sin-
gle scalogram (2) and on the multiple-window method (4).
The ratio % /5% is ploted vs. the number L of wavelets in-
volved in (4). Choosing a set of wavelets verifying the shift
cross-correlation condition (5), the multiple-window esti-
mator performs very well as compared to the usual decrease
of variance achieved by a sample mean estimator assuming
independence of the L realizations.

5. CONCLUSIONS AND PERSPECTIVE

We propose a generalization of the multiple-window
method of Thomson for constant-Q time-varying spectral
analysis of locally self-similar processes. Applied to local
scaling exponent estimation, this method performs surpris-
ingly well, insofar as it is unbiased (with the limit a — 0)
and exhibits very low variance. It also prompts the use of
non-linear estimators like cross-validation [13] to eventu-
ally replace the sample mean estimator of equation (4) by a
weighted sum :
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T i=1

this particular point is under current investigation. Another
interesting issue is to formalize the place of these multiple

window wavelet transforms within the echelon of the affine
class of time-scale distributions [14]

Qu(ta) = //Wz(f,e)n (T;t,aﬂ) dr db,

where W, (7, 8) is the Wigner-Ville distribution of the sig-
nal z. While it is straightforward to show that the corre-
sponding kernel TI(r, #) writes in our case

L
1
H(Ta 9) = i E W¢(i)(Ta 0))
i=1

it is not clear how in general, the bias-variance trade-off on

—

the estimate H (t), stems from the properties of this kernel
(see [2] for further discussions).
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