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We derive the mean-field equations characterizing the dynamics of a rumor process that takes
place on top of complex heterogeneous networks. These equations are solved numerically by means
of a stochastic approach. First, we present analytical and Monte Carlo calculations for homogeneous
networks and compare the results with those obtained by the numerical method. Then, we study the
spreading process in detail for random scale-free networks. The time profiles for several quantities
are numerically computed, which allow us to distinguish among different variants of rumor spreading
algorithms. Our conclusions are directed to possible applications in replicated database maintenance,
peer to peer communication networks and social spreading phenomena.
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I. INTRODUCTION

During the last years, many systems have been ana-
lyzed from the perspective of graph theory [1, 2]. It turns
out that seemingly diverse systems such as the Internet,
the World Wide Web (WWW), metabolic and protein
interaction networks and food webs, to mention a few
examples, share many topological properties [3]. Among
these properties, the fact that one can go from one node
(or element) of the network to another node passing by
just a few others is perhaps the most popular property,
known as “six degrees of separation” or small-world (SW)
property [3, 4]. The SW feature has been shown to im-
prove the performance of many dynamical processes as
compared to regular lattices; a direct consequence of the
existence of key shortcuts that speed up the communica-
tion between otherwise distant nodes and of the shorter
path length among any two nodes on the net [1, 2, 3].

However, it has also been recognized that there are
at least two types of networks fulfilling the SW property
but radically different as soon as dynamical processes are
ran on top of them. The first type can be called “expo-
nential networks” since the probability of finding a node
with connectivity (or degree) k different from the aver-
age connectivity ⟨k⟩ decays exponentially fast for large k
[5]. The second kind of networks comprises those referred
to as “scale-free” (SF) networks [6]. For these networks,
the probability that a given node is connected to k other
nodes follows a power-law of the form P (k) ∼ k−γ , with
the remarkable feature that γ ≤ 3 for most real-world
networks [1, 2].

The heterogeneity of the connectivity distribution in
scale-free networks greatly impacts the dynamics of pro-
cesses that they support. One of the most remarkable
examples is that an epidemic disease will pervade in an
infinite-size SF network regardless of its spreading rate
[7, 8, 9, 10, 11]. The change in the behavior of the pro-
cesses is so radical in this case that it has been claimed
that the standard epidemiological framework should be

carefully revisited. This might be bad news for epidemi-
ologists, and those fighting natural and computer viruses.
On the other hand, in a number of important technologi-
cal and commercial applications, it is desirable to spread
the “epidemic” as fast and as efficient as possible, not to
prevent it from spreading. Important examples of such
applications are epidemic (or rumor-based) protocols for
data dissemination and resource discovery on the Internet
[17, 18, 19, 20], and marketing campaigns using rumor-
like strategies (viral marketing).

The above applications, and their dynamics, have
passed almost unnoticed [22, 23] to the physics commu-
nity working on complex networks despite the fact that
they have been extensively studied by computer scientists
and sociologists [20, 24]. The problem here consists of
designing an epidemic (or rumor-mongering) algorithm
in such a way that the dissemination of data or infor-
mation from any node of a network reaches the largest
possible number of remaining nodes. Note that in this
case, in contrast to epidemic modeling, one is free to de-
sign the rules of epidemic infection in order to reach the
desired result, instead of having to model an existing pro-
cess. Furthermore, in a number of applications, such as
peer-to-peer file sharing systems [19] built on top of the
Internet and grid computing [21], the connectivity dis-
tribution of the nodes can also be changed in order to
maximize the performance of such protocols.

In this paper we study in detail the dynamics of a
generic rumor model [25] on complex scale-free topolo-
gies through analytic and numerical studies, and investi-
gate the impact of the interaction rules on the efficiency
and reliability of the rumor process. We first solve the
model analytically for the case of exponential networks
in the infinite time limit and then introduce a stochas-
tic approach to deal with the numerical solution of the
mean-field rate equations characterizing the system’s dy-
namics. The method [26, 27, 28] is used to obtain accu-
rate results for several quantities when the topology of
random SF networks is taken into account, without us-
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ing large and expensive Monte Carlo (MC) simulations.
The rest of the paper is organized as follows. Section II
is devoted to introducing the rumor model and to derive
the mean-field rate equations used throughout the paper.
In Section III we deal with the stochastic approach, and
compare its performance with analytical and MC calcu-
lations in homogeneous systems. We extend the method
to the case of power-law distributed networks and present
the results obtained for this kind of networks in Section
IV and V. Finally, the paper is rounded off in the last
Section, where conclusions are given.

II. RUMOR MODEL IN HOMOGENEOUS
NETWORKS

The rumor model is defined as follows. Each of the N
elements of the network can be in three different states.
Following the original terminology and the epidemiologi-
cal literature [24], these three classes correspond to igno-
rant, spreader and stifler nodes. Ignorants are those in-
dividuals who have not heard the rumor and hence they
are susceptible to be informed. The second class com-
prises active individuals that are spreading the rumor.
Finally, stiflers are those who know the rumor but that
are no longer spreading it. The spreading process evolves
by directed contacts of the spreaders with others in the
population. When a spreader meets an ignorant the last
one turns into a new spreader with probability λ. The
decay of the spreading process may be due to a mecha-
nism of “forgetting” or because spreaders learn that the
rumor has lost its “news value”. We assume this latter
hypothesis as the most plausible so that the contacting
spreaders become stiflers with probability α if they en-
counter another spreader or a stifler. Note that as we are
designing our rumor strategy in such a way that the frac-
tion of the population which ultimately learns the rumor
be the maximum possible, we have assumed that con-
tacts of the type spreader-spreader are directed, that is,
only the contacting individual loses the interest in prop-
agating the rumor further. Therefore, there is no double
transition to the stifler class.

In a homogeneous system, the original rumor model
due to Daley and Kendall [25] can be described in terms
of the densities of ignorants, spreaders, and stiflers, i(t),
s(t), and r(t), respectively, as a function of time. Besides,
we have the normalization condition,

i(t) + s(t) + r(t) = 1. (1)

In order to obtain an analytical insight and a way to
later test our numerical approach, we first study the ru-
mor model on top of exponentially distributed networks.
These include models of random graphs as well as the
Watts and Strogatz (WS) small-world model [3, 4]. This
model produces a network made up of N nodes with at
least m links to other nodes. The resulting connectivity
distribution in the random graph limit of the model [4]

takes the form

P (k) =
mk−m

(k − m)!
e−m,

which gives an average connectivity ⟨k⟩ = 2m. Hence,
the probability that a node has a degree k ≫ ⟨k⟩ decays
exponentially fast and the network can be regarded as
homogeneous.

The mean-field rate equations for the evolution of the
three densities satisfy the following set of coupled differ-
ential equations:

di(t)

dt
= −λ⟨k⟩i(t)s(t), (2)

ds(t)

dt
= λ⟨k⟩i(t)s(t) − α⟨k⟩s(t)[s(t) + r(t)], (3)

dr(t)

dt
= α⟨k⟩s(t)[s(t) + r(t)], (4)

with the initial conditions i(0) = (N − 1)/N , s(0) =
1/N and r(0) = 0. The above equations state that the
density of spreaders increases at a rate proportional to
the spreading rate λ, the average number of contacts of
each individual ⟨k⟩ and to the densities of ignorant and
spreader individuals, i(t) and s(t), respectively. On the
other hand, the annihilation mechanism considers that
spreaders decay into the stifler class at a rate α⟨k⟩ times
the density of spreaders and of non-ignorant individuals
1 − i(t) = s(t) + r(t).

The system of differential equations (2-4) can be ana-
lytically solved in the infinite time limit when s(∞) = 0.
Using equation (1), we have that

∫

∞

0 s(t)dt = r∞ =
limt→∞r(t). Introducing the new variable β = 1 + λ/α
we obtain the transcendental equation,

r∞ = 1 − e−βr∞ . (5)

Equation (5) always admits the trivial solution r∞ =
0, but at the same time it also has another physically
relevant solution for all values of the parameters λ and
α. This can be easily appreciated since the condition,

d

dr∞

(

1 − e−βr∞

)
∣

∣

r∞=0
> 1, (6)

reduces to λ/α > 0. That is, there is no “rumor thresh-
old” contrary to the case of epidemic spreading [8]. This
strikingly different behavior does not come from any dif-
ference in the growth mechanism of s(t) −the two are
actually the same−, but from the disparate rules for the
decay of the spreading process.

On the other hand, this result also points out that a
mathematical model for the spreading of rumors can be
constructed in many different ways. The results of this
paper, however, indicate that the presence of spreader an-
nihilation terms due to spreader-spreader and spreader-
stifler interactions is very relevant for practical imple-
mentations [29, 30]. We shall come back to this point
later on.
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α Eq. (5) MC SNA

1 0.7968 0.813 0.802

0.5 0.9404 0.962 0.954

0.25 0.9930 0.986 0.987

0.2 0.9974 0.996 0.997

0.1 0.9999 0.998 0.999

TABLE I: Density of stiflers at the end of the rumor spreading
process. Results are shown for 5 different values of α for
each method considered. Monte Carlo (MC) simulations were
performed in a WS network with ⟨k⟩ = 6 and N = 104 nodes.
The same system size was used in the stochastic numerical
approach (SNA).

III. STOCHASTIC NUMERICAL APPROACH

Recently [28], we have introduced a numerical tech-
nique [26] to deal with the mean-field rate equations ap-
pearing in epidemic-like models. It solves the differential
equations by calculating the passage probabilities for the
different transitions. The main advantage of this method,
as compared to MC simulations, is its modest memory
and CPU time requirements for large system sizes. Be-
sides, we do not have to generate any network. Instead,
we produce a sequence of integers distributed according
to the desired connectivity distribution P (k). The nu-
merical procedure here proceeds as follows. At each time
step until the end of the rumor spreading process, the
following steps are performed:

1. Identify from the mean-field rate equations the
transition probabilities per time unit from one state
into the following one, that is, from the i class to
the s class, Wi→s, and finally to the r class, Ws→r.

2. Calculate the mean time interval, τ , for one tran-
sition to occur. This is determined as the in-
verse of the sum of all the transition probabilities;
τ = 1/(Wi→s + Ws→r).

3. Stochastically decide what transition will actually
take place. This is done by deciding that the prob-
abilities for both transitions are given by Πi→s =
Wi→sτ and Πs→r = Ws→rτ , respectively, materi-
alizing the choice by generating a random number
between 0 and 1.

The numerical algorithm described above does not de-
pend on the topological features of the network on top
of which the rumor dynamics is taking place. Indeed, all
the topological information, including correlations, en-
ters in the computation of the transition probabilities.
We should note here that the present results are obtained
for uncorrelated networks. The method could also be ap-
plied to correlated networks without explicit generation
of them. In that case, one should work with the two point
correlation function P (k, k′) [28] instead of using P (k).

On the other hand, a correlated network could be built
up as in [31].

In order to gain confidence with the method and to
show its soundness, we show in Table I the values of r∞
obtained from Eq. (5), MC simulations and the stochastic
approach for homogeneous networks. In this case, the
transition probabilities are the same for all the elements
within a given class (i, s or r) irrespective of their actual
connectivities. From equations (2-4) we get

Wi→s(t) = Nλ⟨k⟩i(t)s(t), (7)

Ws→r(t) = Nα⟨k⟩s(t)[s(t) + r(t)], (8)

for the transitions from the ignorant to the spreader class
and from the spreader to the stifler class, respectively.

It can be seen from Table I that the difference between
the SNA result and the MC simulations is less that 1.4%,
indicating the reliability of the SNA approach. The re-
maining small differences between the SNA and the MC
results is mainly due to the fact that the homogeneous
SNA model does not take into account the exponentially
decaying fluctations in the connectivity of WS networks.
On the other hand, MC simulations of the rumor dynam-
ics for a network made up of N = 104 nodes, averaged
over at least 10 different network realizations and 1000
iterations, took several hours. Eventually, this method
takes up to a few days when increasing the system size
and decreasing the value of α. On the contrary, the
stochastic approach is very fast. Indeed, for the same pa-
rameter values, the numerical simulation takes around 5
minutes CPU time in a 2.0Ghz-P4 PC. Therefore, having
such a method will allow us to scrutinize very efficiently
and accurately the whole phase diagram and time profiles
of the process under study. In what follows, we analyze
in detail the dynamics of the rumor spreading process by
numerically solving the mean-field rate equations for SF
networks.

IV. POWER-LAW DISTRIBUTED NETWORKS

The heterogeneity of the connectivity distribution in-
herent to SF networks significantly affects the dynamical
evolution of processes that take place on top of these net-
works [7, 8, 9, 10, 11, 12, 13, 14, 32]. We have learned in
recent years that the fluctuations of the connectivity dis-
tribution, ⟨k2⟩, can not be neglected even for finite size
systems [9]. Thus, the system of differential equations
(2-4) should be modified accordingly. In particular, we
should take into account that nodes could not only be
in three different states, but also they belong to differ-
ent connectivity classes k. Let us denote by ik(t), sk(t),
and rk(t) the densities of ignorants, spreaders and sti-
flers with connectivity k, respectively. In addition, we
have that ik(t) + sk(t) + rk(t) = 1. The mean-field rate
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equations now read as,

dik(t)

dt
= −λkik(t)

∑

k′

k′P (k′)sk′(t)

⟨k⟩
, (9)

dsk(t)

dt
= λkik(t)

∑

k′

k′P (k′)sk′ (t)

⟨k⟩

−αksk(t)
∑

k′

k′P (k′)[sk′ (t) + rk′(t)]

⟨k⟩
, (10)

drk(t)

dt
= αksk(t)

∑

k′

k′P (k′)[sk′(t) + rk′ (t)]

⟨k⟩
, (11)

where P (k) is the connectivity distribution of the nodes
and

∑

k′ k′P (k′)sk′ (t)/⟨k⟩ is the probability that any
given node points to a spreader. We start from a ran-
domly selected spreader and all the remaining nodes in
the ignorant class. The summation in Eq. (10) stands
for the probability that a node points to a spreader or a
stifler. Note that as before, we do not allow for double
transitions from the spreader to the stifler class. Next,
we compute the respective transition probabilities. In
this case, we should also consider that transitions from
one state into another also take place within connectivity
classes. Thus, the transition probabilities depend on k as
well. From Eq. (10) we obtain,

Wi→s(t, k) = λkNP (k)ik(t)
∑

k′

k′P (k′)sk′ (t)

⟨k⟩
, (12)

Ws→r(t, k) = αkNP (k)sk(t)
∑

k′

k′P (k′)[sk′(t) + rk′ (t)]

⟨k⟩
,

(13)

where all the topological information is contained. Fi-
nally for the mean time interval after i−1 transitions, τ ,
we find at each time step

τ =
1

Wi→s(t) + Ws→r(t)
, (14)

with Wi→s(t) =
∑

k Wi→s(t, k), Ws→r(t) =
∑

k Ws→r(t, k) and t =
∑i−1

j τj , where the τjs are
the mean times of the i − 1 previous transitions. At
this point, the identification of what transition takes
place and which connectivity class is affected proceeds
as defined in step 3 of the previous section.

V. RESULTS AND DISCUSSION

The stochastic method described above can be used to
explore several quantities characterizing the dynamics of
the rumor spreading process. Throughout the rest of the
paper we set λ = 1 without loss of generality and vary
the value of α. We first generated a sequence of integers
distributed according to P (k) ∼ k−γ with γ = 3 and

10−2 10−1 100 101 1020.0

0.2

0.4

0.6

0.8

S(
t)

0 5 10 15 20 25 30
time 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R(
t)

FIG. 1: Time evolution of the density of stifler individuals for
different values of α. From below, the values of α go from 1.0
to 0.1 at fixed increments of 0.1. The inset shows the time
dependency of the density of spreaders. The system size is
N = 104, ⟨k⟩ = 6 and γ = 3. Time is in units of α−1.

⟨k⟩ = 6. As initial condition we use rk(t = 0) = 0, and

sk(t) =

{

1
NP (k) k = ki

0 otherwise
(15)

where ki is the connectivity of the randomly chosen initial
spreader. The results are then averaged over at least 1000
different choices of ki.

One of the most important practical aspects of any ru-
mor mongering process is whether or not it reaches a high
number of individuals. This magnitude is simply given
by the final density of stiflers and is called reliability of
the rumor process. However, it is also of great impor-
tance for potential applications that higher levels of reli-
ability are reached as fast as possible, which constitute a
practical measure of the cost associated to such levels of
stiflers. For example, in technological applications, where
one may consider several strategies [29, 30], it is possible
to define a key global quantity, the efficiency of the pro-
cess, which is the ratio between the reliability and the
traffic imposed to the network. For these applications it
is not only important to have high levels of reliability but
also to achieve these with the lowest possible load result-
ing from the epidemic protocol’s message passing traffic.
This is important in order to avoid network congestion
and also to reduce the amount of processing power used
by nodes participating in the rumor process.

In order to analyze, from a global perspective, this
trade-off between reliability and cost, we use time as a
practical measure of efficiency. We call a rumor process
less efficient than another if it needs more time to reach
the same level of reliability. Figure 1 shows the time evo-
lution of the density of stiflers for several values of the pa-
rameter α. It turns out, as expected, that the number of
individuals who finally learned the rumor increases as the
probability of becoming stifler decreases. On the other
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0 5 10 15 20 25 30 35 40
k

10−8

10−6

10−4

10−2

100

i k α=0.1
α=0.2
α=0.5
α=1.0

FIG. 2: Density of ignorants ik at the end of the rumor process
as a function of their connectivity k. A clear exponential
decay can be appreciated for all values of α shown. This
implies that hubs have efficiently learned the rumor.

0 1 2 3 4 5 6 7
time 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R(
t)
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time

0.0

0.2

0.4

0.6

0.8

1.0

R(
t)

α=1.0

α=0.1

k=3, k=6, k=20, k=280

From Right to Left

FIG. 3: Density of stiflers as a function of time for α = 0.1
(main figure) and α = 1.0 (inset) when the initial spreader has
the connectivity indicated in the inset. Note that in all cases
the final density of individuals who have learned the rumor
is the same, but the asymptotic value is reached at different
times. The model parameters are as of Fig. (1). Time is in
units of α−1.

hand, the time it takes for R(t) to reach its asymptotic
value slightly increases with α−1, but clear differences do
not arise for the two extreme values of α. In fact, for
a given time after the beginning of the rumor propaga-
tion, the density of stiflers scales with the inverse of α.
This behavior is further corroborated in the inset, where
the growth of the density of spreaders as time goes on
is shown for the same values of the parameter α. While
the peaks of the curves get larger and larger, the times
at which the maxima are reached are of the same order
of magnitude and thus the meantimes of the spreading
processes do not differ significantly.

Figure 2 shows another aspect worth taking into ac-

count when dealing with rumor algorithms. For a given
level of reliability, it is also of interest to know the distri-
bution of ignorants (or stiflers) by classes k. The figure
shows a coarse-grained picture of Fig. 1, where the den-
sity of ignorants ik according to the connectivity of the
individuals has been represented for different values of
α. The results indicate that the probability of having an
ignorant with a connectivity k, at the end of the rumor
propagation, decays exponentially fast with a sharp cut-
off kc for large connectivity values, which depends on α.
In fact, kc is always well below the natural cut-off of the
connectivity distribution (∼ 102) even for small values of
α. This implies that hubs effectively learn the rumor.

We can further scrutinize the dynamics of the rumor
spreading process by looking at the final density of sti-
flers when the initial spreader has a given connectivity
ki. Figure 3 represents the reliability as a function of
time (in units of α−1) when the rumor starts propagating
from a node of connectivity ki = kmin = 3, ki = ⟨k⟩ = 6,
ki = 20 and ki = kmax ∼ 280 for two different values
of α: 0.1 (main figure) and 1.0 (inset). Interestingly,
the final value of R(t) does not depend on the initial
seed, but reaches the same level irrespective of the con-
nectivity of the very first spreader ki. This is a genuine
behavior of the rumor dynamics and is the opposite to
what has been observed in other epidemic models like
the SIR model [8], where the final number of recovered
individuals strongly depends on the connectivity of the
initially infected individuals. However, a closer look to
the spreading dynamics tell us that not all is the same
for different initial spreaders.

The figure also indicates that as the connectivity of
the seed is increased, the time it takes for the rumor
to reach the asymptotic value decreases, so that for a
fixed time length the number of individuals in the stifler
class is higher when ki gets larger. This feature suggests
an interesting alternative for practical applications: start
propagating the rumor from the most connected nodes.
Even in case that no direct link exits between a node that
is willing to spread an update and a hub, a dynamical
(or temporal) shortcut to a well connected node could be
created in order to speed up the process. With this pro-
cedure, the density of stiflers at the intermediate stages of
the spreading process could be as much different as 30%
for moderate values of α. This translates in less costs,
because one can always implement an algorithm that kill
off the actual spreading when a given level of reliability
is reached. Note, however, that this behavior slightly de-
pends on α, being the differences always appreciable, but
more important as α increases.

Finally, we have exploited the fastness of the stochas-
tic approach used here to explore the consequences of
implementing three different annihilation rules for the
rumor spreading decay. In particular, we consider that
the spreading process dies out proportionally only to the
number of spreaders (ss interactions) or to the number of
stiflers (sr interactions). This modifies the terms enter-
ing in the sum of Eqs. (10-11) so that now the transition
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α Rs(s+r) Rsr Rss

1 0.592 0.857 0.985

0.9 0.635 0.886 0.989

0.8 0.674 0.911 0.991

0.7 0.710 0.938 0.993

0.6 0.766 0.960 0.993

0.5 0.818 0.967 0.997

0.4 0.871 0.980 0.997

0.3 0.925 0.997 0.998

0.2 0.962 0.999 0.999

0.1 0.988 0.999 0.999

TABLE II: Density of stiflers at the end of the rumor spread-
ing process. Results are shown for 10 different values of α
for each annihilation term considered. Simulations were per-
formed for a network with ⟨k⟩ = 6 and N = 104 nodes. See
the text for further details.

probabilities from the s into the r class read

W ss
s→r(t, k) = αkNP (k)sk(t)

∑

k′

k′P (k′)sk′ (t)

⟨k⟩
, (16)

W sr
s→r(t, k) = αkNP (k)sk(t)

∑

k′

k′P (k′)rk′ (t)

⟨k⟩
, (17)

respectively. Table II summarizes the reliability of the
process as a function of α for the three mechanisms con-
sidered [33]. The results indicate that in all variants, the
final density of stifler individuals is higher than for the
“classical” setting. However, in order to evaluate the effi-
ciency of the process from a global perspective, we must
look at the time evolution of the densities as we did be-
fore.

In Figs. 4 and 5 we have represented the time (in units
of α−1) profiles of R(t) and S(t) for each decay term and
several values of α. From the figures, it is clear that while
the final density of stiflers increases when modifying the
original decay rules, the time needed to reach such high
levels of reliability also increases. This is due to the fact
that the tails of the densities of spreaders decay more
slowly than before. In particular, it is noticeable that
when only spreader-spreader interactions are taken into
account in the decay mechanism, the lifetime of the prop-
agation process is more than two times longer than for
the other two settings. This means that this implemen-
tation is not very suitable for practical applications as
the costs associated to the process rise as well. On the
other hand, the performance of the spreader-stifler set-
ting seems to depend on the value of α in such a way
that it is more efficient at both the reliability level and
time consumption for a large α, but not in the middle
region of the parameter space. In summary, the present
results support that the original model works quite well
under any condition, while other variants can be consid-
ered depending on the value of α used and the type of

0 5 10 15 20 25 30 35 40 45 50
time 

0.0

0.2

0.4

0.6

0.8

1.0

R(
t) s−s & s−r

s−r
s−s

FIG. 4: Stifler’s growth as a function of time for three different
annihilation mechanisms as explained in the text. Curves
show the time profiles for the two extreme values of α used
in the simulations: α = 1.0 (lower curves) and 0.1 (higher
curves). The curve for s− s interactions is for α = 0.1 and is
not complete for clarity. Time is in units of α−1.

0 2 4 6 8 10 12 14
time 

0.0

0.2

0.4

0.6

0.8

1.0

S(
t)

s−s & s−r
s−r
s−s

FIG. 5: Growth and decay of the populations of spreaders
when the annihilation mechanism includes interactions of the
type s − s and s − r or only s − r or s − s. Curves show
the time profiles for the two extreme values of α used in the
simulations: α = 1.0 (lower curves) and 0.1 (higher curves).
Note that although the final number of stiflers when only s−s
interactions enter in the decay mechanism, the time it takes
for the rumor to reach the asymptotic value is very high as
compared to the other two mechanisms. Curves correspond-
ing to the s−s interactions are not complete for clarity. Time
is in units of α−1.

applications they are designed for.

VI. CONCLUSIONS

In this paper, we have analyzed the spreading dynam-
ics of rumor models in complex heterogeneous networks.
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We have first introduced a useful stochastic method
that allows us to obtain meaningful time profiles for the
quantities characterizing the propagation process. The
method is based on the numerical solution of the mean-
field rate equations describing the model, and contrary to
Monte Carlo simulations, there is no need of generating
explicitly the network. This allows to save memory and
a fast exploration of the whole evolution diagram of the
process.

The kind of processes studied here are of great practi-
cal importance since epidemic data dissemination might
become the standard practice in multiple technological
applications. The results show that there is a fragile bal-
ance between different levels of reliability and the costs
(in terms of time) associated to them. In this sense,
our study may open new paths in the use of rumor-
mongering process for replicated database maintenance,
reliable group communication and peer to peer networks
[15, 16, 17, 18, 19, 20]. Besides, as shown here, the behav-
ior and features of the different algorithms one may im-
plement are not trivial and depend on the type of mech-
anisms used for both the creation and the annihilation
terms. It is worth noting here that we have studied the
simplest possible set of rumor algorithms, but other in-
gredients such as memory must be incorporated in more
elaborated models [29, 30].

Of further interest would be a more careful exploration
of the possibility of using dynamical shortcuts for a more
efficient spreading of the updates. Our results suggest
that it would be more economic to start from hubs and
then kill off the updating process when a given level of
reliability is reached than starting at random and let-
ting the process dies out by itself. Preliminary studies of
more elaborated models aimed at implementing a prac-
tical protocol confirm our results [30]. This feature is
specially relevant for the understanding and modeling of
social phenomena such as the spreading of new ideas or
the design of efficient marketing campaigns.
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