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Abstract Directed information theory deals with com-
munication channels with feedback. When applied to
networks, a natural extension based on causal condi-
tioning is needed. We show here that measures built
from directed information theory in networks can be
used to assess Granger causality graphs of stochastic
processes. We show that directed information theory
includes measures such as the transfer entropy, and
that it is the adequate information theoretic framework
needed for neuroscience applications, such as connec-
tivity inference problems.
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1 Introduction

Modeling and estimating connectivity is a key question
often raised in neuroscience. Understanding connec-
tivity is fundamental in order to decipher how neural
networks process information. Deriving a definition
for connectivity turns out to be a problem. In Sporns
(2007), three types of connectivities are described:
structural or anatomical connectivity describes the
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physical links between parts of the brain; functional
connectivity describes links between parts of the brain
that jointly react in some circumstances (the joint re-
action is reflected by measures such as correlation
or mutual information); effective connectivity is an
attempt to add to functional connectivity the notion
of direction in the information flow. Once a point of
view is adopted, the inference problem i.e. estimating
the connectivity from data, gives rise to numerous
difficulties. For instance, in measuring effective connec-
tivity, the different scales of observation of the brain
(associated with different means of observation) lead
to time series that may have very different natures and
properties, and thus may lead to rather different con-
clusions. When studying, for example, networks of neu-
rons cultured in vitro and recorded by Micro-Electrode
Arrays, the recorded signals will usually be described
as a mixture of point processes and continuously valued
processes. Depending on the nature of the experiment,
the correlation structure of the signals may depict
short or long memory, leading to different processing
schemes. Furthermore, approaches will be in general
highly nonlinear. Going to a much broader scale, fMRI
measurements are well modeled by Gaussian processes
but with long range memory. These facts lead to the
conclusion that there is no universal method for in-
ferring a graph from multiple measurements that will
reflect the connectivity of the brain. However, general
principles may be designed and adapted to each situ-
ation. It is the goal of this short paper to offer such
a general framework—one that relies on information
theory and causality principles.

Dependence analysis will provide the main tools for
inferring connectivity. Such tools range from correla-
tion and partial correlation to mutual information and



8 J Comput Neurosci (2011) 30:7–16

causality measures. Many of the most popular tools
are non directional, e.g. correlation or partial corre-
lation, and mutual information measures. These mea-
sures have been extensively used in neuroscience (e.g.
Jirsa and McIntosh 2007; Achard et al. 2006; Kraskov
et al. 2004, to cite but a few).

Alternately, some authors have defined directional
measures. Some of these generalize partial correlation
to partial directed coherence in order to have efficient
second-order statistical methods (Kaminski et al. 2001;
Eichler 2006). Other methods and measures have been
developed using information theoretic tools (Saito and
Harashima 1981; Schreiber 2000; Palus et al. 2001;
Hlavackova-Schindlera et al. 2007). Among these mea-
sures, the most popular one, the transfer entropy, is
often cited in neuroscience. It has been applied, for
example, in Lungarella and Sporns (2006) to measure
information flow in sensorimotor networks. Transfer
entropy relies, by construction, on bivariate analysis.
One attempt to generalize it to multivariate analysis has
been suggested in Frenzel and Pompe (2007). Although
not designed for solving neuroscience problems, this
method uses a very interesting and pragmatic approach.
We will discuss this in the last section.

A different class of approaches relies on works by
Wiener and Granger on causality. Granger causality
considers that a signal xt causes a signal yt if the
prediction of yt is improved when taking into account
the past of xt. This approach is appealing but gives
rise to many questions, philosophical as well as tech-
nical (Granger 1980, 1988; Geweke 1982; Rissanen and
Wax 1987; Pearl 2000). Several levels of definition for
Granger causality exist. If the definition based on lin-
ear prediction is adopted, operational approaches exist
to assess causality between signals. These approaches
and some ‘linear-in-the-parameters’ nonlinear exten-
sions have been applied in neuroscience (e.g. Eichler
2005; Seth 2005; Seth and Edelman 2007). Interestingly,
applying Granger causality definitions within a linear
modeling framework turns out to introduce measures
mostly used in correlation based approaches (directed
partial coherence). This opens a way to unify the
different point of views.

The goal of the paper is to propose a possible uni-
f ication between Granger causality and information
theory. This is made possible by recoursing to the frame-
work of directed information theory.

‘Directed information theory’ has its roots in
Marko’s work; Marko was a German ethologist who
studied communication between monkeys in the 1970’s
(Marko 1973). Marko remarked that standard informa-
tion theory was not adequate in the context he studied,
since feedback was not taken into account by sym-

metrical quantities such as the mutual information. He
thus introduced directed information measures elab-
orated from Markov modeling of communication sig-
nals. His findings were later (re)formalized by Massey
in 1990, developed by Kramers, Tatikonda and some
others in the late 1990’s, and more recently (Massey
1990; Kramer 1998; Tatikonda 2000; Venkataramanan
and Pradhan 2007; Tatikonda and Mitter 2009). All
these results and developments may be referred to
as directed information theory, and culminates in the
study of communication theory through channels with
feedback. Here, we do not consider the problem of
communication in its full generality, but rather we con-
sider directed information theory to assess directional
dependencies between multiple time series.

The paper is organized as follows: Granger causality
graphs, as defined by the work in Eichler (1999) and
Dahlaus and Eichler (2003), are introduced in the next
section. Then, we present the essentials of directed
information theory, with emphasis on the notion of
causal conditioning. Causal conditioning is fundamen-
tal to assess directional dependence between multiple
time series. While extending these tools for stochas-
tic processes, we will highlight the relationships be-
tween transfer entropy and directed information theory
(Amblard and Michel 2009a; Barnett et al. 2009).
Section 4 is dedicated to establishing the link between
Granger causality graphs and directed information the-
ory. This is one of the main points made in this paper.
Although the paper remains deliberately at the con-
ceptual level, some practical aspects such as estimation
issues or testing are discussed in the last section.

2 Granger causality graphs

Graphical modeling is a powerful statistical method
to model the dependence structure of multivariate
random variables (Whittaker 1989; Lauritzen 1996).
Graphical models have been extended to random
processes in the nineties (Brillinger 1996; Dahlaus et al.
1997; Dahlaus 2000) and the learning of graphical mod-
els have subsequently been studied, e.g. Eichler (1999),
Dahlaus (2000) and Bach and Jordan (2004). It is worth
noting that one of the first applications was dedicated to
neuroscience (Dahlaus et al. 1997). In Eichler (1999),
the concept of (linear) causality graph is introduced.
Such a graph is a mixed graph in which nodes may
be connected by directed edges as well as undirected
edges. Each connection is defined using the concept of
Granger causality, restricted to linear models. Later,
Dahlaus and Eichler (2003) generalized the definition
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of connection using the unrestricted Granger causality
definition, i.e. based on probability measures.

2.1 Granger causality

In this section we briefly review the basics concerning
Granger causality between two time series. Granger
causality is based upon prediction theory. Let xt and
yt be two stochastic processes indexed by Z, the set of
relative integers. Let xn:t be the vector composed of all
the samples of x from time n up to time t, or xn:t =
(xn, xn+1, . . . , xt−1, xt). n may be equal to 1 in which
case x1:t represents the whole past and the present of
process x at time t. We set to t = 1 the origin of time
for the sake of mathematical convenience. Once all the
measures are defined, we implicitly let the time origin
going to −∞.

Let capital letters denote multivariate processes,
Xt = (x1,t, . . . , xN,t). As above, Xn:t will denote the col-
lection of all the samples of the multivariate time series
from time n up to time t.

Basically, a signal xt will be said to ‘Granger cause’
a signal yt if the prediction of yt is improved when
considering not only its own past but also the past of xt.
Thus a first definition can be given using (conditional)
probability measures P of the processes: xt does not
cause yt if and only if P(yt|y1:t−1, x1:t−1) = P(yt|y1:t−1).
In other words, xt does not cause yt if yt is, conditionally
to its own past, independent from the past of xt; the
chain x1:t−1 → y1:t−1 → yt is a Markov chain.

This definition may be satisfactory only if other
observations are not taken into account. Actually, it
has been quoted by Granger that adding new obser-
vations may change the causality relation between two
processes, i.e.

P(yt|y1:t−1, x1:t−1) $= P(yt|y1:t−1)

$=⇒
P(yt|y1:t−1, x1:t−1, Z1:t) $= P(yt|y1:t−1, Z1:t). (1)

The dependence relationship between two times series
x and y is not guaranteed to be conserved when extra
observations are taken into account. This means that
Granger causality can only be considered as a property
relative to the available information set.

A very simple example to illustrate this can easily
be constructed. Let xt = azt−1 + εt, yt = b xt−1 + ϕt and
zt = cyt−1 + ηt be three processes constructed from
three independent processes ε, ϕ, η. Then P(xt|x1:t−1,

y1:t−1) $= P(xt|x1:t−1) whereas P(xt|x1:t−1, y1:t−1, z1:t) =
P(xt|x1:t−1, z1:t). From this example, we may conclude
that a relationship exists between y and x if z is not
taken into account. If the observation of the third signal

z is considered as well, no direct link from y to x is
exhibited, as all dependencies between y and x appear
to be related to the presence of z; including z in the
analysis, y is found to not Granger cause x.

Granger causality is thus mainly due to the influence
of the past of a process onto the present of an-
other process. Geweke (Geweke 1982) introduced the
definition of instantaneous coupling. If the dynamical
noises εt, ϕt, ηt in the preceding example are assumed to
be white but no longer independent processes, there is
a coupling between xt, yt and zt which is instantaneous
(Eichler uses the word contemporaneous). Thus two
types of influence have to be defined.

Let xt and yt be two stochastic processes, and Zt a
third multivariate process which does not contain x nor
y as components.

1. xt does not cause yt relatively to Zt ⇐⇒ P(yt|y1:t−1,

x1:t−1, Z1:t) = P(yt|y1:t−1, Z1:t), ∀t > 1
2. xt does not instantaneously cause yt relatively

to Zt ⇐⇒ P(yt|y1:t−1, x1:t, Z1:t)= P(yt|y1:t−1, x1:t−1,

Z1:t), ∀t > 1.

The absence of a causal relation from xt to yt corre-
sponds to the independence between the present of
y and the past of x, conditionally to the past of y
and the extra information (Z1:t). Further, the lack of
instantaneous causality is symmetrical with respect to
x and y, since it simply states that x and y at time t are
independent conditionally on their joint past and on the
past of Z .

These definitions enable us to construct a graph
from a multivariate time series as follows (Eichler 1999;
Dahlaus and Eichler 2003). Each time series is associ-
ated to a node. Two types of edges may exist between
two nodes. A directed edge from node x to node y
will mean that x Granger causes y with respect to the
remaining time series, and an undirected edge between
x and y will mean that x instantaneously causes y
with respect to the other observed time series, stacked
in Z . The undirected nature of the latter edge is a
consequence of the symmetry of instantaneous causal-
ity. Precisely, let Xt be an M-dimensional time series,
whose components are denoted as xi,t, i = 1, . . . , M.
Let (V, Ed, Eu) be the associated mixed graph, where V
is the vertex or node set, Ed is the set of directed edges
and Eu is the set of undirected edges. The cardinal of V
is M. The vertices in V are labelled by i = 1, . . . , M, and
vertex i will correspond to process xi unambiguously.
Then, the edge sets are defined via

1. ∀i ∈ V, j ∈ V, (i, j) $∈ Ed ⇐⇒ xi,t does not cause x j,t

relatively to X\{xi, x j}t)
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2. ∀i ∈ V, j ∈ V, (i, j) $∈ Eu ⇐⇒ xi,t does not instanta-
neously cause x j,t relatively to X\{xi, x j}t

where X\{xi, x j}t is the (M − 2)-dimensional process
constructed from Xt by deleting components i and j.
(V, Ed, Eu) defines a Granger Causality graph.

3 Directed information theory

This section reviews the essential tools from directed
information theory, but not from a communication the-
ory point of view. Our purpose is instead to recast some
results and definitions within the framework of depen-
dence analysis between stochastic processes. The link
between directed information measures and Granger
causality graph will be developed in the next paragraph.

3.1 Directional dependence between two stochastic
processes

For the sake of readability, this paragraph focuses
upon studying the relations that may occur between
two processes only, namely x and y. The role played
by the existence of other observed process, outlined
previously, and the importance of accounting for such
‘extra information’ is deferred to a later discussion.

From a probabilistic point of view, this dependence
structure is encoded in the joint probability mea-
sures P(xn1 , . . . xnN ; yn1, . . . ynN ) for all N and all times
n1, . . . , nN in Z. To introduce the different definitions,
we restrict the presentation to the dependence between
vectors constructed from the time series. The exten-
sion to stochastic processes is discussed in Section 3.3.
Furthermore, we assume in the sequel that the
measures are absolutely continuous with respect to
Lebesgue measure, and we will work with probability
density functions.

If there is no dependence structure, or if the
processes are independent, it is well known that
the joint probability density functions factorize into
p(xn1 , . . . xnN ) × p(yn1 , . . . ynN ). Consider the Kullback–
Leibler divergence DKL( f ||g) = E f [log f (x)/g(x)],
where E f [.] is the expectation operator (or ensemble
average) with respect to the probability density
function f . The Kullback–Leibler divergence provides
a measure of information when wrongly assuming
a random variable as distributed from g when it is
in fact distributed from f . Choosing for f the joint
probability density function between two processes,
and for g the product of the marginals then leads to

a measure of independence, the well-known mutual
information

I(x1:t; y1:t) = E
[

log
p(x1:t; y1:t)

p(x1:t)p(y1:t)

]
. (2)

Mutual information is a positive quantity (which is a
property inherited from the Kullback–Leibler diver-
gence) and is zero if and only if the two processes
are independent (Pinsker 1964; Cover and Thomas
1993). However it suffers from being symmetrical with
respect to x and y and consequently it is useless when
it comes to measuring directionality in the dependence
structure.

This symmetrical behavior appears to be closely re-
lated to the symmetry of the factorization of the joint
probability density function p(x1:t; y1:t) = p(x1:t)p(y1:t)
under the hypothesis that the processes are inde-
pendent. Alternately, the following factorization is
introduced:

p(x1:t; y1:t) = ←−p (x1:t|y1:t)
−→p (y1:t|x1:t) (3)

←−p (x1:t|y1:t) =
t∏

i=1

p(xi|x1:i−1, y1:i−1) (4)

−→p (y1:t|x1:t) =
t∏

i=1

p(yi|x1:i, y1:i−1). (5)

If we consider the link between x and y as a channel
with input x and output y, the term −→p (y1:t|x1:t) de-
scribes the feedforward link whereas ←−p (x1:t|y1:t) de-
scribes the feedback term. In the absence of feedback
in the channel the input x at time t does not depend on
the past of the output up to time t − 1, and the feedback
factor reduces to ←−p (x1:t|y1:t) = p(x1:t).

Mutual information is a divergence measure be-
tween the actual joint probability density function
and its factorized equivalent expression when indepen-
dence holds. In order to assess directionality, Massey
suggests to compare the joint probability to the alterna-
tive factorization ←−p (x1:t|y1:t)p(y1:t), which correspond
to a situation of no influence of x onto y but of the ex-
istence of feedback from y to x. A very simple example
is given by xt = αxt−1 + βyt−1 + vt and yt = γ yt−1 + wt

where vt and wt are white noises independent from each
other.

The directed information is defined as

I(x1:t → y1:t) = E
[

log
p(x1:t; y1:t)

←−p (x1:t|y1:t)p(y1:t)

]
. (6)

Comparing this definition with Eq. (2) it is observed
that the difference lies in the term p(x1:t) which is re-
placed here by the term ←−p (x1:t|y1:t). This shows that the
directed information and mutual information will be
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equal when there is no feedback. The main properties
of the directed information are now summarised. In
the sequel, the delay operator D : xt −→ xt−1 is de-
noted as Dxt for a signal and Dx1:t = (0, x1, . . . , xt−1) =
(0, x1:t−1) for a vector. Different proofs of the results
presented hereafter exist, the simplest of which relies
on the use of Kullback–Leibler divergence properties.
For detailed proofs, refer to Massey (1990), Kramer
(1998), Tatikonda (2000) and Amblard and Michel
(2009a). The properties are as follows.

1. The directed information is positive.
2. The directed information is smaller than, or equal

to the mutual information.
3. Equality between the directed information and the

mutual information occurs if and only if there is no
feedback.

4. The directed information decomposes as

I(x1:t → y1:t) + I(Dy1:t → x1:t) = I(x1:t; y1:t) (7)

The first three points are fundamental from a commu-
nication point of view. Points 2 and 3 mean that mutual
information overestimates the quantity of information
flowing from one signal to another. This has been used
by information theorists to provide tighter bounds for
the capacity of a channel with feedback. The third point
ensures that directed information theory leads to the
usual theory if there is no feedback. The last point
is important as it shows how the information shared
by two stochastic processes is decomposed into the
sum of information flowing in opposite directions. A
similar decomposition will be found in the sequel, in
the framework of causal conditioning. The purpose of
the next section is to provide appropriate definitions
for causal conditioning and to open new perspectives
for directed information.

3.2 Causal conditioning, causal conditional directed
information

An alternative formulation for directed information
may be easily obtained:

I(x1:t → y1:t) =
t∑

i=1

I
(
x1:i; yi

∣∣y1:i−1
)
, (8)

where I(x; y|z) is the conditional mutual information
between x and y given z. Directed information may also
be expressed as a function of Shannon entropies as

I(x1:t → y1:t) = H(y1:t) −
t∑

i=1

H
(
yi

∣∣x1:i, y1:i−1
)
. (9)

This expression should be compared to the expression
of mutual information below

I(x1:t; y1:t) = H(y1:t) −
t∑

i=1

H
(
yi

∣∣x1:t, y1:i−1
)
. (10)

It appears that the only difference lies in the time
horizon over which the conditioning is performed in
the conditional entropy. For the mutual information,
conditioning is performed for each time over the whole
observation of x. For the directed information, condi-
tioning for the term at time i is performed from the time
origin up to time i. Kramer suggested referring to this
conditioning as ‘causal conditioning’. We keep the same
name but propose a slightly different presentation for
it. Causal conditional entropy is defined as

H(y1:t||x1:t) = −E
[
log −→p (y1:t|x1:t)

]
. (11)

It quantifies the information that remains when observ-
ing y once x has been causally observed. The directed
information is then recovered by subtracting the latter
quantity from the entropy of y:

I(x1:t → y1:t) = H(y1:t) − H(y1:t||x1:t). (12)

Causal conditioning and usual conditioning can be
mixed. Kramer proposes the following rule: when read-
ing from left to right, the first type of conditioning is
applied. Thus, according to this rule, we define

H(y1:t
∣∣x1:t

∣∣∣∣z1:t) = H(y1:t, x1:t
∣∣∣∣z1:t) − H(x1:t

∣∣∣∣z1:t) (13)

H(y1:t
∣∣∣∣x1:t

∣∣z1:t) =
t∑

i=1

H(yi|y1:i−1, x1:i, z1:t) (14)

These two definitions highlight a non commutative
property between classical and causal conditioning. In
Eq. (13), the definition is similar to the definition of
usual conditional entropy as the difference between the
joint entropy of x and y and the entropy of x alone. In
Eq. (14), the conditioning on z is global (compared to
the conditioning on x which is causal). In that sense, in
this definition, the conditioning variable z is not neces-
sarily a signal synchronous with signals x and y. Instead,
Eq. (13) does not make sense if zt is not synchronous
with xt and yt.

Finally, a causal conditional directed information can
be defined. Mimicking the definition of conditional
mutual information ( I(x; y|z) = H(y|z) − H(y|x, z) ),
causal conditional directed information is defined as

I(x1:t → y1:t
∣∣∣∣z1:t) = H(y1:t

∣∣∣∣z1:t) − H(y1:t||x1:t, z1:t)

=
t∑

i=1

I
(
x1:i; yi

∣∣y1:i−1, z1:i
)
. (15)
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This quantity will be of crucial importance when deal-
ing with multivariate time series. Furthermore, it ap-
pears in the sum of two directed information quantities
flowing in opposite directions. Actually, it can be shown
that

I(x1:t → y1:t) + I(y1:t → x1:t)

= I(x1:t; y1:t) + I(x1:t → y1:t||Dx1:t). (16)

In this expression, the term I(x1:t → y1:t||Dx1:t) is
named instantaneous exchange information and can be
written as

I(x1:t → y1:t||Dx1:t) =
t∑

i=1

I
(
x1:i; yi

∣∣y1:i−1, x1:i−1
)

(17)

=
t∑

i=1

I
(
xi; yi

∣∣y1:i−1, x1:i−1
)
. (18)

The last equation is obtained since x1:i|x1:i−1 = xi|x1:i−1.
Furthermore, this equation illustrates that the instan-
taneous information exchange is symmetrical in the
signals x and y.

The importance of instantaneous information ex-
change appears also in the following decomposition
of the causal conditional directed information. Recall
the following chain rule for the conditional mutual
information (Cover and Thomas 1993)

I(x, y; z|w) = I(x; z|w) + I(y; z|w, x). (19)

Applying it to I
(
x1:i; yi

∣∣y1:i−1, z1:i
)

leads to

I(x1:t → y1:t||z1:t) =
t∑

i=1

(
I
(
x1:i−1; yi

∣∣y1:i−1, z1:i
)

+ I
(
xi; yi

∣∣x1:i−1, y1:i−1, z1:i
))

= I(Dx1:t → y1:t||z1:t)

+ I(x1:t → y1:t||Dx1:t, z1:t). (20)

Here, the second term is the instantaneous information
exchange causally conditioned by the third time series
z. Likewise, the decomposition holds for the directed
information

I(x1:t → y1:t) = I(Dx1:t → y1:t)

+ I(x1:t → y1:t||Dx1:t). (21)

3.3 Rates for stationary processes

All definitions introduced above make sense for
processes that evolve within a finite dimensional phase
space. Extending these definitions to the study of
stochastic processes requires some care. Actually the
information related quantities (such as entropy) are

extensive. If a stochastic process visits a phase space
whose dimension increases with t, information quanti-
ties often diverge linearly as a function of time. Thus it
makes sense to introduce information rates, as defined
below; these definitions extend the classical rates found
in the literature:

I∞(x; y) = lim
t→+∞

1
t

I(x1:t; y1:t) (22)

I∞(x → y) = lim
t→+∞

1
t

I(x1:t → y1:t) (23)

I∞(x → y||z) = lim
t→+∞

1
t

I(x1:t → y1:t||z1:t). (24)

All limits are assumed to exist, and the previous quan-
tities are named mutual information rate, directed in-
formation rate and causal conditional directed infor-
mation rate, respectively. A fundamental result allows
a simpler expression of the rates when the processes
are jointly stationary. When dealing with discrete val-
ued processes (and with slightly more involvement,
continuous random processes), one can establish that,
assuming stationarity, the directed information rates
can be written as

I∞(x → y) = lim
t→+∞

I(x1:t; yt|y1:t−1) (25)

I∞(x → y||z) = lim
t→+∞

I(x1:t; yt|y1:t−1, z1:t). (26)

A proof of the first equality may be found in Kramer
(1998); a proof for the second equality can be derived
by following the same lines. Extending these equalities
to continuous random processes relies upon the tools
developed in Pinsker (1964), Gray and Kieffer (1980)
and Gray (1990). These equalities extend the famous
result for the entropy rate

lim
t→+∞

1
t

H(x1:t) = lim
t→+∞

H(xt|x1:t−1). (27)

Interestingly, applying the preceding results to the de-
composition of the directed information in Eq. (21)
leads to

I∞(x → y) = lim
t→+∞

I(x1:t−1; yt|y1:t−1)

+ lim
t→+∞

I(xt; yt|x1:t−1, y1:t−1) (28)

= I∞(Dx → y) + I∞(x → y||Dx), (29)

where I∞(x → y||Dx) is the instantaneous informa-
tion exchange rate. The other term is the limit of
I(x1:t−1; yt|y1:t−1), which is a particular instance of
Schreiber’s transfer entropy (Schreiber 2000; Kaiser
and Schreiber 2002). We thus name I∞(Dx1:t−1 → y)

the transfer entropy rate. This result, already men-
tioned in Amblard and Michel (2009a), allows to recast
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all results and approaches found in the literature within
a unique and simplified framework. Further, it high-
lights the fact that stationarity is implicitly present in
Schreiber’s intuition, and that instantaneous informa-
tion exchange between processes is beyond the scope
of his work. The decomposition can be easily done for
the conditional rates, and leads to

I∞(x → y||z) = I∞(Dx → y||z)

+ I∞(x → y||Dx, z). (30)

This provides an implicit definition of conditional trans-
fer entropy rate and conditional instantaneous informa-
tion exchange rate. Furthermore, let us mention that in
all the preceding discussion, the conditioning process
z can be a multivariate process. We are now ready to
link directed information theory and Granger causality
graphs.

4 Causal information measures to infer Granger
causality graphs

When confronted with a multidimensional time series,
a fundamental question is to study its dependence
structure. The approach investigated here consists of
inferring a graphical model underlying the process that
is able to account for causal relationships. A good
candidate for such a model is a Granger causality graph
(Dahlaus and Eichler 2003). Let Xt be the random
multivariate process of interest, and x1, x2 two of its
components. Recall that in a Granger causality graph
which models a multivariate process Xt, the absence of
a directed edge from nodes x1 to node x2 is equivalent
to the conditional independence expressed by

P(x2,t|x1,1:t−1, x2,1:t−1, X\{x1, x2}1:t)

= P(x2,t|x2,1:t−1, X\{x1, x2}1:t). (31)

Similarly, the absence of an undirected edge expresses
the equality

P(x2,t|x1,1:t, x2,1:t−1, X\{x1, x2}1:t)

= P(x2,t|x1,1:t−1x2,1:t−1, X\{x1, x2}1:t). (32)

In these expressions X\{x1, x2} stands for the multivari-
ate process X without components x1 and x2.

The problem of inferring a graph from the observed
data can then be viewed as a problem of assessing
Granger causality between ordered pair of nodes, say
x and y. This is done relative to the remaining nodes
of the graph that form the additional observed process
X\{x1, x2}.

In view of the previous definitions, we need mea-
sures to assess conditional independence on the past
and conditional independence between present sam-
ples. Such measures were defined in the previous sec-
tions, within an information theoretic framework. We
can now state the main results of the paper:

Let (V, Ed, Eu) be the Granger causality graph of a
multivariate process Xt. Then

1. ∀i ∈ V, j ∈ V, (i, j) $∈ Ed ⇐⇒ I∞(Dxi → x j||X\
{xi, x j}) = 0

2. ∀i ∈ V, j ∈ V, (i, j) $∈ Eu ⇐⇒ I∞(xi → x j||Dxi, X\
{xi, x j}) = 0.

To state it differently, we have the two following
assertions:

– Conditional transfer entropy rate is a well adapted
measure in order to assess Granger causality be-
tween two nodes with respect to the remaining
available set of observations.

– Conditional instantaneous information exchange
rate quantifies the instantaneous causality between
two nodes relative to the other observed time series
(recalling that each node of the graph accounts for
a time series).

As a corollary, we can state that there is no edge
(directed or undirected) between two nodes i and j if
and only if the causal conditional directed information
rate I∞(x → y||X\{xi, x j})) is equal to zero.

These assertions were proven in a previous work for
the simpler case of Gaussian processes (Amblard and
Michel 2009a, b). In Barnett et al. (2009) for the case
of bivariate Gaussian processes, the author establishes
that transfer entropy can be used to assess Granger
causality. However, instantaneous causality is not men-
tioned by these authors. A sketch of a proof for the
general case is given below.

Firstly, let x and y be two processes such that
x does not cause y relative to a third multivariate
process X (which does not contain x nor y). Test-
ing Granger causality relies upon a Markov chain
dependence model x1:t−1 → y1:t−1 → yt where all de-
pendence is considered conditioned on X1:t. Accord-
ing to the assumption ‘x does not cause y’, we have
I(x1:t−1; yt|y1:t−1, X1:t) = 0. Therefore, the sum of such
terms in Eq. (20) equals zero as well. This allows to
assert that for processes that are not ‘Granger causally’
related, the conditional transfer entropy rate is zero.

Conversely, if the rate is zero, since it is defined as
the limit of a sum of positive terms, each individual
terms is necessarily equal to zero. Then since condi-
tional independence is equivalent to the nullity of the
corresponding conditional mutual information, we may
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conclude that the processes are not ‘Granger causally’
related.

The second assertion is shown in the same way.

5 Discussion

In this paper, we establish that Granger causality
graphs can be obtained using directed information
measures. The emphasis was put on adapted tools for
investigating Granger causal relationships, namely the
conditional transfer entropy rate and the conditional
instantaneous information exchange rate. Interestingly,
the sum of these two measures constitutes the causal
conditional directed information rate.

We illustrated that directed information theory may
be thought as a fundamental extension of information
theory, especially in the case of neuroscience applica-
tions. Actually, feedback is a fundamental ingredient
for modeling and studying the brain structures at all
scales. Directed information, as it is presented here,
is shown to be an effective tool to assess connectivity
in the brain. It will have fundamental applications in
understanding the processing of information and/or
coding information in the brain.

Although these results are satisfactory from a theo-
retical point of view, some difficulties remain when it
comes to develop practical estimators for the different
information related quantities introduced so far. The
remainder is devoted to discussing some practical
implementation issues related to the inference of a
Granger causality graph.

Firstly, we have to assume ergodicity and sta-
tionarity of the signals if we want to estimate the
information rates from a single realization of the
multivariate process. The stationarity assumption fur-
ther simplifies the analysis, since this assumption sim-
plifies the definition of information rates. In the case
of real neural data, the stationarity property is usually
satisfied over certain time scales only (it is thus highly
context dependent). Regarding ergodicity, this assump-
tion is required, as otherwise time averaging cannot
replace ensemble averages, which may lead to severe
practical difficulties for evaluating statistical quantities.

Secondly, rates are defined as limits and in general
cannot be evaluated. It is thus usual to introduce a
finite length observation window, over which the in-
formation measures are evaluated. However, this ap-
proach replaces limits by finite size samples and does
not warrant that the initial conditions are forgotten; it
may introduce some systematic bias in the analysis, as
illustrated for example in Amblard and Michel (2009a)
for the case of information flows between the compo-

nents of two dimensional AR(1) processes. Once the
limitation to finite size samples has been accepted, the
estimation of conditional mutual information quantities
required has to be performed. Many estimators can be
applied. Although we will not describe here the wealth
of mutual information literature (interested readers
may find interesting reviews in Beirlant et al. (1997),
Paninski (2003) and Hlavackova-Schindlera et al.
(2007), and references therein, it is worth mentioning
recent promising works on the use of k-nearest neigh-
bors to estimate entropies and (conditional) mutual in-
formation (Kozachenko and Leonenko 1987; Kraskov
et al. 2004; Frenzel and Pompe 2007; Leonenko et al.
2008; Wang et al. 2009). One of the most attractive
features of these techniques lies in the fact that they
are almost free of parameters like bin sizes or kernel
widths. This allows to tackle a wide variety of situations,
ranging from continuous valued processes to point
processes, as illustrated in Victor (2002). However,
some drawbacks include the computational burden and
the absence of theoretical results for the rate of con-
vergence. Nevertheless, extensive Monte-Carlo simula-
tions have proved the good behavior of these estimators
in moderate dimensions (up to 5 or 6) (Kraskov
et al. 2004; Frenzel and Pompe 2007; Amblard et al.
2008). Let us also mention an ingenious trick ex-
plained in Frenzel and Pompe (2007). For the con-
ditional mutual information I(x1:n; y1:n|z1:n), only the
time samples of z that share as much information as
possible with x are taken into account to estimate
I. This allows to effectively reduce the dimension.
Another rarely considered difficulty lies in the different
natures and properties of neural data. As outlined
in the introduction, neural data may behave as point
processes, exhibit some long range dependencies and
are often non-stationary. These properties (and lack of
properties) make the estimation issue very difficult, and
the estimation of information measures, despite a lot of
beautiful works, remains a challenging field of research.
In this respect prospective works may concern the
use of approximate measures based on Gram–Charlier
or Edgeworth expansion of the densities (Michel and
Flandrin 1996).

The second issue met in practice is the detection
issue: assuming that some information rate related mea-
sure estimate is available, it must be decided whether
an edge exists or not within the graph. This is a classi-
cal problem of statistical testing theory for which the
empirical information rate serves as a test statistics.
Theoretically, if it is zero, no edge is placed between
the nodes of interest. As the measure will practically
not be zero we have to choose a threshold over which
the measure is decided to be significantly non zero. The
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most popular approach to solve this problem is due to
Neyman and Pearson. It consists in optimizing the test
under the constraint that false positive decision error
rate (making the wrong decision that an edge exists)
remains below some chosen value, referred to as the
test ‘significance level’.

Of course the level is a probability, and evaluating its
value requires a knowledge of the probability density
function of the estimated information rate (serving as
the test statistics here) under the null hypothesis. Since
the test statistics used is a very complicated nonlinear
transform of the data, this probability measure is hardly
known. The thresholds to apply may be evaluated by
using bootstrapping strategies, surrogate data or ran-
dom permutations (Good 2005). This is of course only
possible at the expense of an increase in computational
load. Finally, the last problem at hand is that of multiple
testing that must be correctly handled. It is known that
when multiple testing is performed, as is the case when
deciding the presence of edges between multiple pairs
of nodes, controlling the level of the test is not easy
(Lehmann and Romano 2005).
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