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Abstract. In this paper, we propose a new and generic methodology for the analysis of texture
anisotropy. The methodology is based on the stochastic modeling of textures by anisotropic fractional
Brownian fields. It includes original statistical tests that permit to determine whether a texture is
anisotropic or not. These tests are based on the estimation of directional parameters of the fields by
generalized quadratic variations. Their construction is founded on a new theoretical result about the
convergence of test statistics, which is proved in the paper. The methodology is applied to simulated
data and discussed. We show that on a database composed of 116 full-field digital mammograms,
about 60 percent of textures can be considered as anisotropic with a high level of confidence. These
empirical results strongly suggest that anisotropic fractional Brownian fields are better-suited than
the commonly used fractional Brownian fields to the modeling of mammogram textures.
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1. Introduction

Texture analysis is an important generic research area of machine vision. This issue is raised in
numerous applications (e.g. biomedical image analysis, analysis of satellite imagery or content-based
retrieval from image databases). There is a wide variety of texture analysis approaches. Some of them,
such as Markov random field modeling [22] or fractal analysis [46], are based on the description of
image textures with stochastic models. In such approaches, texture features are usually derived from
the estimation of model parameters. The stochastic model beyond fractal analysis is the fractional
Brownian field which is a multi-dimensional extension of the famous fractional Brownian motion
implicitly introduced in [41] and defined in [44]. This field is mathematically defined as the unique
centered Gaussian field, null at origin, with stationary increments, isotropic, and self-similar of order
H ∈ (0, 1). Its variogram (see Section 2.1 for the definition) is of the form v(x) = CH |x|2H ,∀x ∈ R

2,
with | · | as the Euclidean norm. Parameter H, called the Hurst index, is a fundamental parameter
which is an indicator of texture roughness and is directly related to the fractal dimension of the graph
sample paths 3 − H (see Equation (7)).

Fractal analysis has been largely used in medical applications [7, 15, 19, 20, 43]. In particular, it
was used for the characterization and classification of mammogram density [19], the study of lesion
detectability in mammogram textures [16, 29], and the assessment of breast cancer risk [19, 32].
Fractal analysis has also been used for the radiographic characterization of bone architecture and the
evaluation of osteoporotic fracture risk [7]. However, it is well-established that the anisotropy of the
bone is an important predictor of fracture risk [15, 36]. Hence fractal analysis with fractional Brownian
fields, which are isotropic by definition, is not completely satisfactory for this medical application.
Apart from this example, the assumption of texture isotropy can be a source of limitations for many
applications.

The study of random field anisotropy is a wide field of research in the Probability Theory. It
covers numerous open issues related to the definition and the analysis of anisotropy, the estimation of
anisotropic model parameters, and the simulation of anisotropic fields [4, 8, 12, 25, 11, 34, 37, 42, 10,
50]. The work presented here concerns the anisotropic fields defined in [12] by Bonami and Estrade,
by considering a large class of Gaussian fields (with stationary increments), for which the variogram
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(a) (b) (c) (d)

Figure 1. Field simulations. Simulation of (isotropic) fractional Brownian fields
using the Stein method for (a) h = 0.3 and (b) h = 0.7. Simulation of anisotropic
fractional Brownian fields using the spectral method for (c) h1 = 0.3 and h2 = 0.5 and
(d) h1 = 0.3 and h2 = 0.7.

v is characterized by a positive even measurable function f satisfying the relation

(1) ∀ x ∈ R
d, v(x) =

∫

Rd

∣∣∣eix·ζ − 1
∣∣∣
2
f(ζ)dζ

and the condition
∫

Rd

(
1 ∧ |ζ|2

)
f(ζ)dζ < ∞. Within this class, a field is isotropic whenever the so-

called spectral density f of this field is radial, and anisotropic when f depends on the direction arg(ζ)
of ζ. Bonami and Estrade gave several examples of anisotropic fields, among which those defined in
two dimensions by a spectral density of the form

(2) ∀ ζ ∈ R
2, f(ζ) = |ζ|−2h(arg(ζ))−2,

where h is a measurable π-periodic function with range [H, M ] ⊂ (0, 1) where H = essinf [−π,π)h and
M = esssup [−π,π)h. The definition of these fields extends the one of fractional Brownian fields, which
are obtained when the function h is almost everywhere constant and equal to the Hurst index H. When
h is not constant, the function h depends on the orientation and, consequently, the corresponding
field is anisotropic. We will refer to the fields defined by (2) as Extended Fractional Brownian Fields
(EFBF). Some simulations of EFBF are shown in Figure 1.

In our previous works [11], we addressed the problem of estimating the directional Hurst index of
an EFBF. We constructed and studied some orientation-dependant estimators based on generalized
quadratic variations. In this paper, we focus on the problem of statistically testing whether an EFBF
is isotropic or not. We construct some original null-hypothesis testing strategies that involve our
previous estimators.

Although related, the situation we deal with is rather different from that of our previous work
in which we showed the convergence of a single estimator obtained from the projection of a field in
an arbitrary direction. In this study, the construction of our anisotropy tests involves test statistics
which are defined as combinations of estimators in different directions. Hence, for the asymptotic
analysis of the test statistics, it is necessary to take into account the correlations between combined
estimators.

In this paper, we show a new convergence result which ensures the convergence of combined and
correlated estimators and gives a theoretical background to our anisotropy test strategy. This theo-
retical result is completed with a numerical analysis of anisotropic tests. Besides, we apply our tests
to full-field digital mammograms. We give original evidence of the relevance of anisotropic fractional
Brownian fields for the modeling of the textures of these images.

In Section 2, we recall elements about the estimation of the EFBF parameters which are required
for the understanding of the construction of our tests. Section 3 is devoted to the construction and
analysis of our anisotropy tests. In Section 4, we present the application of tests to mammograms.

2. Parameter estimation
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2.1. Definitions. Let (Ω,A, P) be a probability space. A d-dimensional random field X is a map from
Ω × R

d into R such that X(·, y) := X(y) is a real random variable on Ω for all y ∈ R
d. When d = 1,

such a field is called a random process. A random field is Gaussian if any finite linear combination of
its associated random variables is a Gaussian variable. A centered Gaussian field X is characterized
by its covariance function: (y, z) 7→ Cov(X(y), X(z)). A field X has stationary increments if the law
governing the field X(·+ z)−X(z) is the same as X(·)−X(0) for all z ∈ R

d. The law of a centered
Gaussian field X with stationary increments is characterized by its variogram which is defined by

(3) ∀y ∈ R
d, v(y) = E((X(y) − X(0))2).

Centered Gaussian fields which have stationary increments and a variogram of the form (1) are called
Gaussian fields with spectral density. The two-dimensional fields we focus on are of this kind, with
the spectral density of a form given by Equation (2).

The random field regularity is usually defined using Hölder exponents. For T > 0, sample paths of
X satisfy a uniform Hölder condition of order α ∈ (0, 1) on [−T, T ]d if there exists a positive random
variable A with P(A < +∞) = 1 such that

(4) ∀y, z ∈ [−T, T ]d, |X(y) − X(z)| ≤ A|y − z|α.

This equation gives a lower bound for the Hölder regularity of a field. The critical Hölder exponent β
of a field (if it exists) is defined as the supremum of α for which the Hölder condition (4) holds when
it equals the infimum of α for which the Hölder condition (4) does not hold (see Definition 5 of [12]).
Note that the value of β lies between 0 and 1 and equals 1 if X is differentiable.

From an image point of view, the critical Hölder exponent is related to the roughness of the texture:
the rougher the texture, the smaller the field regularity.

As stated in the next theorem [12], the Hölder regularity of a Gaussian field with spectral density
(GFSD) can either be deduced from the local behavior of the variogram around 0 (condition (iii)) or
from the asymptotic behavior of the spectral density at high-frequencies (conditions (i) and (ii)).

Theorem 2.1. Let X be a GFSD and β ∈ (0, 1).
(a) Let 0 < α ≤ β ≤ γ < 1. If there exist A, B1, B2 > 0 and a positive-measure subset E of the unit
sphere Sd−1 of R

d such that for almost all ξ ∈ R
d,

(i) |ξ| ≥ A ⇒ |f(ξ)| ≤ B1|ξ|−2α−d;

(ii) |ξ| ≥ A and ξ
|ξ| ∈ E ⇒ |f(ξ)| ≥ B2|ξ|−2γ−d;

then, there exist δ > 0 and C1, C2 > 0 such that for all y ∈ R
d,

(iii) |y| ≤ δ ⇒ C1|y|2γ ≤ v(y) ≤ C2|y|2α.

(b) If Condition (iii) holds for any α, γ with 0 < α ≤ β ≤ γ < 1 then β is the critical Hölder exponent
of X.

For random processes (d = 1), we can use an extended definition of the Hölder regularity which
is meaningful when β ≥ 1 [12]. Let Y = {Y (t); t ∈ R} be a centered Gaussian random process with

stationary increments and variogram v. Let t ∈ R. If the sequence
(

Y (t+h)−Y (t)
h

)
admits a limit in

L2(Ω,A, P) as h → 0, Y is said to be mean-square differentiable at point t. We denote Y ′(t) the
corresponding limit, which is a centered Gaussian variable (see for instance page 27 of [2]). When
this holds for any t ∈ R

d, the variogram vY of Y is twice differentiable, the process Y ′ is stationary
and its variogram satisfies

(5) vY ′(t) = −
(
v′′Y (t) − v′′Y (0)

)
= lim

h→0
h−2

E (Y (t + h) − Y (t) − Y (h) + Y (0))2 .

Recursively, we can further define the n-time mean square derivative of a process Y as the mean
square derivative of the Y (n−1) (if it exists). We then define the extended Hölder regularity. Let
β = n + s, with n ∈ N and s ∈ (0, 1). We say that Y admits β as critical Hölder exponent, if Y is (a)
n-time mean square differentiable and (b) its nth mean square derivative admits s = β − n ∈ (0, 1)
as critical Hölder exponent. As stated in the following theorem, the extended Hölder regularity of a
process can also be deduced from the behavior of its variogram around 0 or the asymptotic decay of
its spectral density.
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Theorem 2.2. Let Y = {Y (t); t ∈ R} be a Gaussian random process with spectral density. Let
β = n + s, with n ∈ N and s ∈ (0, 1).
(a) Let 0 < α ≤ s ≤ γ < 1. If there exist A, B1, B2 > 0 such that for almost all ξ ∈ R,

(i) |ξ| ≥ A ⇒ B1|ξ|−2γ−2n−1 ≤ fY (ξ) ≤ B2|ξ|−2α−2n−1;

then,

(ii) the variogram vY is of class C2n in a neighborhood of 0;
(iii) there exists δ > 0 and C1, C2 > 0 such that for all t ∈ R,

|t| ≤ δ ⇒ C1|t|2γ ≤
∣∣∣v(2n)(t) − v(2n)(0)

∣∣∣ ≤ C2|t|2α.

(b) If Conditions (ii) and (iii) holds for any α, γ with 0 < α ≤ s ≤ γ < 1 then β is the critical Hölder
exponent of the process Y .

2.2. Regularity of an EFBF. According to (2), a direct application of Theorem 2.1 shows that the
critical Hölder exponent of an EFBF (in dimension d = 2) with directional Hurst index h is equal to
the minimal value H of h on [−π, π):

(6) H = essinf
[−π,π)

(h).

The critical Hölder exponent H of an EFBF will be called the minimal Hurst index. In the particular
case of a fractional Brownian field, the minimal Hurst index is the usual Hurst index. Since it gives
the Hölder regularity of an EFBF, the minimal Hurst index can be considered as a fundamental
parameter which characterizes the texture of an EFBF. Note also that the minimal Hurst index
of an EFBF is related to the Hausdorff and Box-counting fractal dimensions of its graph G(X) ={
(y, X(y)) ; y ∈ [−T, T ]2

}
(we refer to [27] for the dimension definitions). According to Theorem 6.1

of [50], since X satisfies assumption (C1) with N = d and Hj = H for 1 ≤ j ≤ d, we get

(7) dimHG(X) = dimBG(X) = 2 + 1 − H = 3 − H,

almost surely, for any T > 0. However, since it is direction-independent, the minimal Hurst index
does not capture any anisotropic feature of an EFBF.

In [12], Bonami and Estrade proposed to use windowed Radon transforms of a field to get infor-
mation about its anisotropy. These transforms are defined for any direction θ ∈ S1 by projecting a
field X along lines of R

2 directed by θ⊥ ∈ S1 with θ⊥ perpendicular to θ:

(8) ∀(θ, t) ∈ S1 × R, RρX(θ, t) =

∫

R

X(sθ⊥ + tθ)ρ(s)ds,

where ρ is a window function of the Schwartz class such that
∫

R
ρ(γ)dγ = 1. For any direction θ ∈ S1,

the obtained process RθX = {RρX(θ, t), t ∈ R} is Gaussian with a spectral density given by

(9) ∀p ∈ R, Rθf(p) =

∫

R

f(ξθ⊥ + pθ) |ρ̂(ξ)|2 dξ,

where f is the spectral density of X. When X is an EFBF, the spectral density of RθX checks
condition (i) of Theorem 2.2 for β = h(θ) + 1/2 [12]. As a consequence, the Hölder regularity of the
projected field RθX is equal to h(θ)+1/2. Hence, the regularity of a projected field is directly related
to the directional Hurst index of the field in the direction along which the projection is done.

Another approach for viewing a field X in a given direction consists in restricting X to lines oriented
in the direction. The restriction of a field X on a line ∆ identified by a point t0 of R

2 and a direction
θ of S1 is defined as X∆ = {X(t0 + tθ); t ∈ R}. If X is a GFSD, any restriction X∆ is Gaussian with
a spectral density given by

(10) ∀p ∈ R, f∆(p) =

∫

R

f(ξθ⊥ + pθ)dξ,

where f is the spectral density of X. When X is a two dimensional EFBF, the spectral density
of X∆ satisfies conditions (i) and (ii) of Theorem 2.1 for β = H = essinf [−π,π)(h) and any line ∆.
Consequently, the critical Hölder exponent of the restriction X∆ is constant and equal to the minimal
Hurst index, whatever the direction of the line ∆. Therefore, the Hölder regularity of line-restrictions
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of an EFBF does not provide any directional information about the Hurst index. However, let us
mention that line-restrictions can give some information about the topothesis function θ ∈ S1 7→ vX(θ)
of X (see [6] for instance).

2.3. Generalized quadratic variations. As previously mentioned, the Hurst index h(θ) of an
EFBF in a given direction θ can be deduced from the Hurst index of the projected field RρX(θ, ·)
perpendicular to this direction. As a consequence, the problem of estimating the directional Hurst
index of an EFBF reduces to the problem of estimating the Hurst indices of projected fields. But,
the projected fields of an EFBF can be considered as generalizations of fractional Brownian motions
(fBm). Hence, for the estimation of the directional Hurst index of an EFBF, it is possible and relevant
to use techniques which have been developed for the estimation of the Hurst index of a fBm.

Up to now, many estimators of the Hurst index of a fBm have been proposed (see [21] and [5]
and references therein for a review). The maximum likelihood estimator and the related Whittle
estimator [9] are often used to analyze fBm with long-range dependence (H ∈ (1/2, 1)). These
estimators are consistent and have an asymptotic normality. However the assumption that H > 1/2
is often restrictive. Other estimators are defined by filtering discrete observations of fBm sample
paths. This is the case for the wavelet-based estimators [1] or the generalized quadratic variations
studied in [35, 39]. Such estimators are particularly interesting: (i) they can deal with a large class
of Gaussian fields which includes all fBm without any restriction on the range of H, (ii) they are also
consistent and have an asymptotic normality. In [11], we constructed a technique for the estimation
of the directional Hurst index based on generalized quadratic variations [11].

We now present the principles of the estimation by generalized quadratic variations on a Gaussian
process Y with stationary increments and a spectral density f . Let

{
Y

(
k

N

)
; 0 ≤ k ≤ N

}

be an observed sequence. We consider the stationary sequence formed by second-order increments of
Y with step u ∈ N r {0}

(11) ∀ p ∈ Z, ZN,u(Y )(p) = Y

(
p + 2u

N

)
− 2Y

(
p + u

N

)
+ Y

( p

N

)
.

The generalized quadratic variations of Y of order 2 are then given by

(12) VN,u(Y ) =
1

N − 2u + 1

N−2u∑

p=0

(ZN,u(Y )(p))2 .

Note that

E(VN,u(Y )) = E((ZN,u(Y )(0))2) = E

(
Y

(
2u

N

)
− 2Y

( u

N

)
+ Y (0)

)2

.

Comparing this equation to Equation (5), we can interpret E(VN,u(Y )) as a second order discrete
derivative of the variogram of Y around 0. Moreover, according to Proposition 1.1 of [11],

E(VN,u(Y )) ∼
N→+∞

cHN−2Hu2H ,

for some cH > 0, whenever the spectral density f satisfies f(ξ) ∼
|ξ|→+∞

c|ξ|−2H−1, with H ∈
(
0, 7

4

)

and c > 0. Thus, we can intuitively define an estimator of H as

(13) ĤN =
1

2 log(2)
log

(
VN,2(Y )

VN,1(Y )

)
.

In [35] and Proposition 1.3 of [11], the convergence of this estimator to H with asymptotic normality
was shown under some appropriate assumptions on the variogram of Y or on its spectral density.

In the context of the EFBF, we use the generalized quadratic variations of the projected fields. We
denote VN,u(θ) the variations of the projection Y = RρX(θ, ·) defined by Equations (8) and (12). In
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Theorem 2.3 of [11], we established that

(14) ĥN (θ) =
1

2 log(2)
log

(
VN,2(θ)

VN,1(θ)

)
− 1

2
−→

N→+∞
h(θ),

almost surely and with asymptotic normality. This convergence is guaranteed provided that the
spectral density of RρX(θ, ·) satisfies

Rθf(ξ) = |ξ|−2h(θ)−2 + o
|ξ|→+∞

(
|ξ|−2h(θ)−2−s

)
,

for any s ∈ (0, 1), which is the case when h is continuously differentiable in a neighborhood of θ.

3. Anisotropy tests

In this section, we construct some statistical tests which make it possible to decide whether an
observed EFBF is anisotropic.

3.1. Definitions. Let X be an EFBF with a directional Hurst index h and a minimal Hurst index
H = essinf [−π,π) h. The field is isotropic if h ≡ H or at least, it can be considered as isotropic if
H = esssup [−π,π) h.

So, ideally, one could try to test

the null-hypothesis H0 : h ≡ H (isotropy) against
the alternative hypothesis H1 : ∃ θ1 6= θ2, h(θ1) 6= h(θ1) (anisotropy).

However, such a test requires the estimation of the Hurst index h in all directions. In practice, this
implies the discretization of the Radon transform in an arbitrary direction. But, when the direction
is neither horizontal nor vertical, such a discretization requires some interpolations of the observed
field. Hence, the estimation of the Hurst index can be biased.

In order to avoid interpolations and have a reliable implementation of the test, we restrict the test
definition to the vertical and horizontal directions. Let θ1 = (0, 1) and θ2 = (1, 0) be the vertical
and horizontal directions of the plane, respectively. Let h1 = h(θ1) and h2 = h(θ2) denote the Hurst
indices in those directions. We test the null hypothesis

H0 : h1 = h2 (weak isotropy I) against H1 : h1 6= h2 (anisotropy).

Let us emphasize that the null hypothesis does not imply isotropy of the field. However all isotropic
fields satisfy this condition. We call the situation described by H0 weak isotropy of the first type. As-
suming h is continuous in a neighborhood of θ1 and θ2, hypothesis H1 implies that H = essinf [−π,π) h 6=
esssup [−π,π) h and therefore the field is anisotropic. A statistic of this test is naturally defined as

(15) d̂ =
∣∣∣ĥ1 − ĥ2

∣∣∣ ,

where ĥ1 = ĥ(θ1) and ĥ2 = ĥ(θ1) are estimators of h1 and h2 defined in (14). We expect the value d̂
to be high when the field is anisotropic. Hence, the rejection interval associated to the test is of the
form

(16) R1 = {d̂ > c1}.
where c1 is a positive constant.

This first test evaluates the anisotropy between vertical and horizontal directions. Hence it cannot
detect anisotropic fields which have the same vertical and horizontal directional Hurst indices. In
order to attenuate this drawback, we set a second anisotropy test which takes into account the other
directions using an estimate of the minimal directional Hurst index H. We test

H0 : H = h1 = h2 (weak isotropy II) against H1 : H 6= h1 or H 6= h2 (anisotropy).

In that case, a test statistic is given by

(17) δ̂ =
∣∣∣max(ĥ1, ĥ2) − Ĥ

∣∣∣ ,
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where Ĥ is an estimator of the minimal Hurst index. The rejection interval of the second test is of
the form

(18) R2 = {δ̂ > c2}.
where c2 is a positive constant. Let us again emphasize that the null hypothesis does not imply the
isotropy of the field, while all isotropic fields satisfy this condition. We call the situation described
by H0 weak isotropy of the second type.

3.2. Convergence study. Now, we present a convergence result about the test statistic associated
to the first test.

Theorem 3.1. Let X be an EFBF with directional Hurst index h continuously differentiable in a
neighborhood of θ1 = (0, 1) and θ2 = (1, 0). Then, almost surely

ĥ1 − ĥ2 −→
N→+∞

h1 − h2,

where ĥ1 = ĥ(θ1) and ĥ2 = ĥ(θ1) are estimators of h1 = h(θ1) and h2 = h(θ2) defined in (14).
Moreover, there exists a positive constant γ2(h1, h2) that only depends on (h1, h2) such that,

√
N

(
ĥ1 − ĥ2 − (h1 − h2)

)
d−→

N→+∞
N

(
0, γ2(h1, h2)

)
.

This theorem ensures that under the null hypothesis H0 of the first test, we have

√
Nd̂

d−→
N→+∞

|N
(
0, γ2(h1, h1)

)
|

while under the assumption H1, almost surely, we have
√

Nd̂ −→
N→+∞

+ ∞.

It also implies that when N is large, the rejection bound c1 at a level of confidence α of the first
test is equal to γ2(h1, h1)/

√
N tα, where tα is the (1 − α/2)-quantile of the centered and normalized

Gaussian distribution. It gives a theoretical support to the construction of the first test.
This new theorem is proved in appendix A. The first statement directly follows from (14). Note

that ĥ1 and ĥ2 are correlated since they are based on windowed Radon transforms of the same field
X. Surprisingly, these correlations become negligible as the windowed Radon transform is performed.
Hence the two estimators ĥ1 and ĥ2 behave almost independently. This allows us to establish the
asymptotic normality of their difference formulated in the second statement of the theorem.

3.3. Implementation. In practice, we observe images on a rectangular grid of size M +1 × M +1,
where M = 2m for m ∈ N. In what follows, we assume that images are realizations of two-dimensional
EFBF observed on the subset {

(
k
M

, l
M

)
, 0 ≤ k, l ≤ M} of [0, 1]2. The gray-level value x(k, l) of the

image at pixel (k, l) corresponds to the value of the field at location
(

k
M

, l
M

)
.

Given an image, the question is to know whether it is the realization of an anisotropic random field
or not.

For the implementation of the anisotropy tests, we first discretize the different estimators involved
in the definition of the test statistics.

We compute discrete row- and column-wise averages (y1 and y2) of x:

(19) ∀ 0 ≤ k, l ≤ M, y1(l) =
1

M + 1

M∑

k=0

x(k, l) and y2(k) =
l

M + 1

M∑

l=0

x(k, l).

These averages represent discrete versions of the windowed Radon transforms, as defined by Equation
(8) in horizontal and vertical directions with a function ρ equal to 1 on [0, 1] and 0 outside (−1/M, 1+
1/M).
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For e = 1, 2, we then consider subsamples (ye (2νk))0≤k≤2−νM of ye, obtained with a sampling

factor ν ∈ N satisfying 2ν+1u < M . Next, we compute discrete quadratic variations vν
e,u of these

subsamples for dilation parameters u = 1, 2

(20) vν
e,u =

1

M̃ + 1

M̃∑

p=0

(ye(sp) − 2 ye(s(p + u)) + ye(s(p + 2u)))2,

with s = 2ν and M̃ = M/2ν − 2u.

Finally, according to (14), we define the discrete projection-based estimator ĥν
e of Hurst indices he

in directions e = 1, 2

(21) ĥν
e =

1

2 log(2)
log

(
vν
e,2

vν
e,1

)
− 1

2
.

In [11], we investigated the effect of the discretization on the estimation. We showed that for

e = 1, 2, the estimator ĥν
e converges to he, provided that

ν > m
he − H + 1/2

he + 1/2
.

This condition is purely theoretical and cannot be used in practice. Hence, we also studied experi-
mentally estimators on synthetic images for varying sampling factors ν. When ν is low, estimators
underestimate real values. As ν increases, estimators tend to be unbiased but their variances become
larger. For m = 9, we found a trade-off between bias and variance with a sampling factor ν = 2.

For the estimation of the minimal Hurst index H, we use a line-based estimator. We define discrete
line-restrictions zh

e of x in the row and column direction e = 1, 2.

(22) ∀ 0 ≤ k, l ≤ M, zk
1 (l) = x(k, l) and zl

2(k) = x(k, l).

We then compute the discrete quadratic variations wj
e,u of these restrictions

(23) wj
e,u =

1

M − 2u

M−2u∑

p=0

(zj
e(p) − 2 zj

e(p + u) + zj
e(p + 2u))2,

for u = 1, 2 and 0 ≤ j ≤ M . Next, we compute estimates ĥ0e of Hurst indices in row and column
directions e = 1, 2 as

(24) ĥ0e =
1

2 log(2)
log




M∑

j=0

wj
e,2/

M∑

j=0

wj
e,1



 ,

We finally consider the estimate of the minimal Hurst index given by

(25) ĥ0 = min(ĥ01, ĥ02).

The convergence of this line-based estimator to the minimal Hurst index as M tends to +∞ is shown
in [11]. Using synthetic data, we could also observe that this estimator had very good properties in
terms of bias and variance [11].

Using the discrete estimators presented above, we can define empirical statistics of the anisotropy
tests: d̂ν = |ĥν

1 − ĥν
2 | for the first test and δ̂ν = |max(ĥν

1 , ĥ
ν
2) − ĥ0| for the second test. We are then

able to give an empirical form to rejection intervals associated to the tests. For the first test,

(26) Rν
1 = {d̂ν > cν

1},
and for the second test,

(27) Rν
2 = {δ̂ν > cν

2}.
The different parameters of the rejections intervals, namely ν, cν

1 , and cν
2 remain to be set. Since

Theorem 3.1 does not provide an explicit value of the variance γ2(he, he), it cannot be used to fix the
rejection bound cν

1 . This theorem can neither be used either for setting an optimal sampling factor



9

h
0.1
0.2
0.3
0.4
0.5
0.6
0.7
T

d̂0±σ p
-0.02±0.1 89

0.±0.08 95
-0.01±0.09 93

0.±0.08 96
0.±0.08 97
0.±0.07 98
0.±0.06 99
0.±0.08 95

d̂2±σ p
0.±0.17 91

0.01±0.16 94
0.±0.16 94
0.±0.16 94

0.01±0.14 98
0.01±0.14 97

0.±0.13 99
0.±0.15 95

δ̂2±σ p
0.09±0.07 91
0.08±0.06 93
0.08±0.06 96
0.08±0.06 93
0.07±0.05 97
0.08±0.05 97
0.07±0.05 99
0.08±0.06 95

Table 1. Bias and variance of the test statistics d̂0, d̂2 and δ̂2 obtained on Stein’s
simulations of (isotropic) fractional Brownian fields. The value p is the percentage of
simulations classified as isotropic using the anisotropy test corresponding to the sta-
tistics.

ν. Hence, as described in the next section, the test parameters are set experimentally using synthetic
data.

3.4. Numerical Study. We generated a dataset of synthetic EFBF of size 512 × 512. This dataset
has two parts. The first part contains 7 subsets of 1000 isotropic fields obtained using the exact
simulation technique of Stein with 7 different Hurst index values [47]. The second part contains 6
subsets of 1000 fields simulated using the spectral method [11] with various pairs of parameter values

(h1, h2). We applied projection-based estimators ĥν
e (Equation (21)) with different sampling factors

ν for the estimation of Hurst indices of each simulated field in two directions (e = 1: row direction,
e = 2: column direction).

We evaluated the accuracy and precision of the estimation of the Hurst index difference d by
estimators d̂ν = |ĥν

1 − ĥν
2 |, for ν = 0, 2, and of δ by the estimator δ̂2. Results are reported in Tables 1.

Concerning the estimation of d, the accuracy depends on the Hurst index that is estimated. However,
the precision is quite stable: it is around 0.08 when ν = 0 and 0.15 when ν = 2. We used these
precision values as estimates of the standard deviation of the test statistic d̂ν . This allowed us to
set values of rejection bounds associated to the first test: c0

1 = 1.96 ∗ 0.08 ≃ 0.16 when ν = 0, and
c2
1 = 1.96 ∗ 0.15 ≃ 0.3 when ν = 2. In the same way, we set the bound associated to the second test:

c2
2 = 0.2.

After setting the parameters, we applied anisotropy tests to Stein’s simulations. We reported the
percentages of cases detected as isotropic are reported in Table 1. On isotropic simulations, the tests
yield few errors, whatever the value of the minimal Hurst index, but results are slightly better when
the Hurst index is high. The results of the first test for ν = 0 and ν = 2, and those of the second test
are not significantly different: the level of confidence of the tests is about 95 percent.

We also applied the tests to the anisotropic fields simulated with the spectral method. Results are
shown in Table 2. The first test for ν = 0 is more powerful than for ν = 2. When ν = 2, the test does
not detect the anisotropy when Hurst index differences |h1 − h2| are below 0.2 (between 74 and 84 %
of detection errors). However, the efficiency of the test is improved as differences increase. Similarly,
when ν = 0, the test is not efficient when Hurst index differences are below 0.2 (between 32 and 43
% of errors). However, it becomes more reliable when differences are above 0.3 (0 % of errors). As

mentioned previously, the statistic d̂0 used in the test with ν = 0 is more biased than the one with
ν = 2. However, the test yields better results with ν = 0 than with ν = 2 because statistic d̂0 is more
accurate than d̂2.

Concerning the second test, the results obtained with ν = 2 were better than with ν = 0, due to
the bias of the estimator d̂ν . Therefore, we only present results for ν = 2, when the bias of d̂ν is low.
These results are comparable to those of the first test for ν = 2.

The results obtained on anisotropic fields have to be interpreted carefully. Errors might not only
be due to statistical tests. They can also be due to the simulation method itself, which in contrast to
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first test (ν = 0)
0.3 0.5 0.7 0.9

0.3 98 41 43 0
0.5 97 0 0
0.7 100 32
0.9 100

first test (ν = 2)
0.3 0.5 0.7 0.9

0.3 93 74 21 6
0.5 95 84 22
0.7 99 79
0.9 99

second test (ν = 2)
0.3 0.5 0.7 0.9

0.3 56 93 36 17
0.5 89 86 17
0.7 96 78
0.9 100

Table 2. Results of the anisotropy tests obtained on spectral simulations of
anisotropic fractional Brownian fields. The value p is the percentage of simulations
classified into isotropic cases using the anisotropy test.
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Figure 2. A region of interest extracted from a mammogram and its vertical and
horizontal projections (case id. 83, feb05, rm).

the Stein’s method, is approximate. Hence, we cannot use these results to accurately evaluate risks
of second type of tests (i.e. the risk of deciding that a field is isotropic although it is wrong).

4. Application to mammograms

4.1. Material and methods. Our database has a total of 58 cases, each case being composed of full-
field digital mammograms of the left and right breasts of a woman. Images were acquired in medio-
lateral oblique position using a Senographe 2000D (General Electric Medical Systems, Milwaukee,
WI), with a spatial resolution of 0.1mm2 per pixel (image size: 1914x2294 pixels). Images are
courtesy of the Department of Radiology of the University of Pennsylvania. In each image of the
database, we extracted manually a region of interest of size 512×512 within the densest region of the
breast. As illustrated in Figure 2, we then computed the discrete row- and column-wise projections
of each region of interest (Equation (19)) and the estimates of the directional Hurst indices in both
directions (Equation (21), for ν = 0, 2). We also estimated the minimal Hurst index using the line-
based estimators given in Equation (25). Note that in mammograms, vertical (row) and horizontal
(column) directions (labeled 1 and 2) correspond to directions perpendicular and parallel to the chest
wall, respectively.

4.2. Mammogram regularity. The estimates of the minimal Hurst index we obtained using line-
based estimators on the extracted regions of interest are in the interval [0.18; 0.42], with an average of
0.31 and a standard deviation of 0.05. In Figure 3 (a) and (b), we see that the line-based estimates of
the minimal Hurst in both directions have equivalent empirical distributions and are approximately
equal on each image. This observation is consistent with the theoretical result that shows that line-
based restrictions of EFBF have same Hurst indices in all directions (see Section 3.3).

4.3. Mammogram anisotropy. In Figure 3 (c), we observe that horizontal and vertical Hurst index
estimates have similar distributions. Standard deviations of horizontal and vertical Hurst indices are
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Figure 3. (a) Histograms of the minimal Hurst indices of mammograms, estimated

using horizontal and vertical line-based estimators (ĥ01 and ĥ02). (b) Horizontal and
vertical line-based estimates of the minimal Hurst index on all mammograms. (c)
Histograms of the horizontal and vertical Hurst indices of mammograms estimated
using horizontal and vertical projection-based estimators (ĥ2

1 and ĥ2
2). (d) Horizontal

and vertical projection-based estimates of the minimal Hurst index on all mammo-
grams.

about 0.15 and their averages are 0.45 and 0.55, respectively. On average, the mammograms seems
slightly smoother in the direction parallel to the chest wall than in the perpendicular one. Besides,
ranges of minimal and directional Hurst indices are not the same. This is partly due to differences in
the precision of index estimators. However, since the range difference is above the precision, this also
indicates a texture anisotropy.

The mammogram anisotropy is further confirmed by results shown in Figures 4 (a), (b) and (c). In
these figures, we plotted the histograms of estimators which are used in the different anisotropy tests,
and represented the rejection bounds of these tests by red dashed lines. In Figure 4 (a), there are

about 14 % of the mammograms for which the difference estimate d̂2 is above the rejection bound.
In other words, the first anisotropy test defined for ν = 2 detects very few anisotropic textures in the
database. This is due to the lack of precision of the estimator d̂ν when the sampling factor ν = 2. In
Figure 4 (b), we see that the first anisotropy test for ν = 0 detects more anisotropic textures than
for ν = 2: there are about 43 % of detected anisotropic cases. Recall however that anisotropic cases
that have different vertical and horizontal Hurst indices cannot be detected by the first test. Such
cases are better detected by the second test. Indeed, on Figure 4 (c), we observe that the second test
(defined for ν = 2) detects about 60 % of anisotropic cases. All of these results have to be interpreted
carefully. They do not support the conclusion that in our database, there are 60 % of anisotropic
cases and 40 % of isotropic cases. They only mean that there is at least 60 % of cases which, according
to the EFBF model, can be considered as anisotropic with a confidence level of 95 %.

In Figure 5, we show some examples of extracted regions of interest, with their corresponding
estimator values and test decisions. Notice that in some cases (e.g. image (a)), the decision of the
first test (with ν = 0) is “anisotropy” whereas the one of the second test is “weak isotropy of the

second type”. This is due to the lack of precision of the estimator δ̂2 of the second test. Let us also
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Figure 4. Histograms of estimators (a) d̂2 = |ĥ2
1 − ĥ2

2|, (b) d̂0 = |ĥ0
1 − ĥ0

2|, and

(c) δ̂2 = |max(ĥ2
1, ĥ

2
2) − min(ĥ01, ĥ02)|. The red dashed lines represent the rejection

bounds of anisotropy tests corresponding to each estimator.

mention that in some cases (e.g. image (i)), the decision of the first test with ν = 2 is “anisotropy”
whereas it is “weak isotropy of the first type” with ν = 0. Such decision difference may be an effect
of the lack of accuracy of the estimator d̂0 of the first test.

5. Discussion and conclusion

The radiographic appearance of a breast mainly depends on the distribution and relative amount
of adipose and fibroglandular tissues it contains. Whereas the adipose tissues are radiologically
translucent and tend to produce dark images, the fibroglandular tissues attenuate X-ray and increase
the image brightness. The density of a mammogram refers to the bright image aspect caused by the
presence of fibroglandular tissues in the breast. At the end of the 60’s, Wolfe put forth the idea that
the breast cancer risk could be assessed from the observation of mammogram appearance and patterns
[49, 48]. This pioneer work gave rise to an important medical debate. Later on, some investigators
started focusing on the relationship between breast density and breast cancer risk [13, 14]. They
provided the first evidence that increased breast density is associated to an increased cancer risk.
This evidence was further confirmed by many subsequent epidemiological studies (see [31, 32] for an
exhaustive review). These studies have shown the medical importance of mammogram density.

In many epidemiological studies, the evaluation of the density is done qualitatively by radiologists
and is thus subject to inter-observer variability. Hence, early in the 90s, some investigators attempted
to define quantitative and automated measurements of the density using mathematical tools; see the
numerous references in the proceedings of the International Workshops on Digital Mammography
[3, 26, 28, 38, 45, 51]. In particular, some of these investigators used the fractal dimension as an
indicator of mammogram density [17, 18, 19]. More recently, some authors studied more deeply the
stochastic nature of mammogram density by using stochastic models such as 1/f noise models related
to fractional Brownian fields [16, 30, 33, 40]. As in the work presented here, these authors went into
much efforts to measure model parameters on mammograms and to empirically validate models.

Measurements of Hurst-related parameters on full-field digital mammograms and film mammo-
grams have been reported independently in several papers [16, 17, 19, 30, 33, 40]. Caldwell et al. [19]
and Byng et al. [17, 18] used the Box counting technique to estimate the fractal dimension on the
whole image. They reported estimations obtained on 70 film mammograms. Values are between 2.2
and 2.5 (with an estimated precision of 0.02), which corresponds to a minimal Hurst index between
0.46 and 0.77. Kestener et al. computed the Hurst index on small regions of size 512 × 512 of film
mammograms taken from the DDSM database [40]. The values of the Hurst index are in [0.20; 0.35]
and [0.55; 0.75] for regions of interest with predominant adipose and dense tissues, respectively. In
[33], authors used a spectral method for the estimation of the regularity coefficient β of the 1/f noise
model. On 104 regions extracted from 26 full-field digital mammograms, β ∈ [1.32; 1.44], which cor-
responds to H ∈ [0.33; 0.42]. In another study, the same authors reported values β = [1.42, 1.51], i.e.
H = [0.42; 0.51] on extracted regions of 60 film mammograms [30]. These values are in accordance
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

image case id. ĥmin ĥ2
1 ĥ2

2 d̂2 IR d̂0 IR δ̂2 IR
(a) 95, jun03, lm 0.32 0.33 0.25 0.07 I 0.19 A 0.01 I

(b) 76, oct03, lm 0.36 0.38 0.43 0.05 I 0.05 I 0.07 I
(c) 74, dec04, lm 0.39 0.50 0.32 0.18 I 0.01 I 0.11 I
(d) 86, mar05, lm 0.33 0.35 0.44 0.05 I 0.28 A 0.11 I
(e) 83, feb05, lm 0.37 0.52 0.45 0.08 I 0.17 A 0.15 I
(f) 85, mar05, lm 0.26 0.48 0.45 0.03 I 0.15 A 0.22 I
(g) 73, dec04, lm 0.35 0.72 0.55 0.17 I 0.22 A 0.37 A
(h) 83, feb05, rm 0.32 0.73 0.47 0.26 A 0.01 I 0.41 A
(i) 85, mar05, rm 0.26 0.39 0.75 0.36 A 0.14 I 0.49 A

Figure 5. Some regions of interest extracted from mammograms with their estimated
indices. Columns IR give the decisions of the anisotropy tests based on the estimators
d̂0, d̂2 and δ̂2 (A=anisotropic, I=isotropic).

with those obtained independently in [16]. The values we obtained using the line-based estimators
are close to those obtained by Heine et al. [33] on full-field digital mammograms: they are slightly
lower probably due to (a) the estimation technique difference and (b) to the selection of the regions
of interest which in our study can be of low density.

Similarly to [16, 30, 33], our experiments confirm the relevance of fractional Brownian models for
the characterization of mammogram density. However, they also reveal that the isotropy assumption
which is behind the mammogram modeling of [16, 30, 33] is not valid in many cases: around 60
percent of the mammogram textures we studied could be considered as anisotropic with a high level
of confidence. Hence, we conclude that the EFBF model is more realistic and relevant than a simple
fractional Brownian field model for the description of mammogram textures.

From a medical point of view, this conclusion suggests the anisotropy should be taken into account
for the analysis of mammogram density and the evaluation of breast cancer risk. However, the
establishment of a relationship between anisotropy and breast cancer risk is beyond the scope of
this paper. The present research can be seen as an encouraging starting point for future medical
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investigations. Up to now, we have shown that the EFBF model enables to extract some significant
density features which are not captured by the usual fractional Brownian field model. We have
also constructed a mathematical methodology for analyzing those features. In collaboration with
radiologists, we plan to further evaluate the medical relevance of density anisotropy for the assessment
of breast cancer risk and for the analysis of lesion detectability.

The interest of this paper is not restricted to results concerning the mammogram application.
The methodology we proposed for characterizing and testing the anisotropy of fractional Brownian
textures is generic. We believe that this methodology could be useful in many medical applications,
such as the analysis of osteoporosis from bone radiographs. The methodology includes some original
statistical tests of anisotropy, based on estimates of directional Hurst indices. We showed a new
theoretical result about the estimator convergence, which gives a mathematical foundation to the
construction of those tests. The statistical tests were also validated on simulated data.

Appendix A. Proof of Theorem 3.1

Proof. The key point of the proof relies on the introduction of auxiliary estimators. Let θ1 = (0, 1)
and θ2 = (1, 0). Let N, u ≥ 1 and let us denote ZN,u(θ1), respectively ZN,u(θ2), the second-order
increments of RρX(θ1, t) =

∫
R

X(s, t)ρ(s)ds, respectively RρX(θ2, t) =
∫

R
X(t, s)ρ(s)ds, as defined

by (11). We consider estimators defined from generalized quadratic variations VN,u(θ1) and VN,u(θ2)
of ZN,u(θ1) and ZN,u(θ2), according to (12), by

TN,u(θ1) = VN,u(θ1)/E (VN,u(θ1)) and TN,u(θ2) = VN,u(θ2)/E (VN,u(θ2)) .

Without loss of generality we can also assume that h1 = h(θ1) ≤ h2 = h(θ2). Usual computations on
generalized quadratic variations lead to

TN,u(θe) −→
N→+∞

1 a. s. with
√

N (TN,u(θe) − 1) −→
N→+∞

N (0, σu,u(he)),

for e, u ∈ {1, 2}, where for v ∈ {1, 2}

(28) σu,v(he) = Cu,v

(
he +

1

2

)
/(uv)2he+1E

(
he +

1

2

)2

,

with Cu,v(H) = 4
∑
p∈Z

(∫
R

e−ipξ(1 − e−iuξ)2(1 − eivξ)2|ξ|−2H−1dξ
)2

= Cv,u(H) and

E(H) =
∫

R

∣∣(e−iξ − 1)2
∣∣2 |ξ|−2H−1dξ, which are finite positive constants for H ∈ (0, 2) (see Theorem

2.3 of [11] for instance). It is straightforward that the vector (TN,u(θe))1≤e,u≤2 converges to (1)1≤e,u≤2

almost surely as N → +∞. Let us prove the asymptotic normality. Let us remark that for any
(ae,u)1≤e,u≤2 positive number one can write

∑

1≤e,u≤2

ae,u (TN,u(θe) − 1) =
1

E (VN,1(θ1))

∑

1≤e,u≤2

ae,u
E (VN,1(θ1))

E (VN,u(θe))
(VN,u(θe) − E (VN,u(θe))) .

From Proposition 1.1 of [11] we get

ae,u
E (VN,1(θ1))

E (VN,u(θe))
= be,uN−2(h1−he)

(
1 + O

N→+∞
(N−1)

)
,

with be,u = ae,u
E(h1+ 1

2
)

E(he+
1

2
)
u−2he−1 ≥ 0. Let us write

∑

1≤e,u≤2

be,uN−2(h1−he) (VN,u(θe) − E (VN,u(θe)))
d
=

n(N)∑

k=1

λk,N

(
ε2
k,N − 1

)
,
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where n(N) = 4N − 8, (εk,N )1≤k≤n(N) is a sequence of independent standard Gaussian variables and

(λk,N )1≤k≤n(N) are the eigenvalues of the covariance matrix of






√
be,uN−2(h1−he)

N − 2u + 1
ZN,u(θe)(p); 1 ≤ e, u ≤ 2, 0 ≤ p ≤ N − 2u




 .

Let s2
N = Var




∑

1≤e,u≤2

be,uN−2(h1−he) (VN,u(θe) − E (VN,u(θe)))



. Following a Lindeberg condition

[23] we obtain

(29) s−1
N

∑

1≤e,u≤2

be,uN−2(h1−he) (VN,u(θe) − E (VN,u(θe))) −→
N→+∞

N (0, 1),

as soon as max
1≤k≤n(N)

|λk,N | = o
N→+∞

(sN ). On the one hand, an upper bound for max
1≤k≤n(N)

|λk,n| is given

by

c1 max
1≤e,u≤2

max
0≤p≤N−2u

∑

1≤e′,u′≤2

N−(2h1−he′−he+1)
N−2u′∑

p′=0

∣∣Cov
(
ZN,u(θe)(p), ZN,u′(θe′)(p

′)
)∣∣ ,

for some positive constant c1. According to Proposition 1.2 of [11], one can find c2 > 0 such that for
any 1 ≤ u, u′ ≤ 2,

N−2u′∑

p′=0

∣∣Cov
(
ZN,u(θe)(p), ZN,u′(θe)(p

′)
)∣∣ ≤ c2N

−2he−1 log(N),

for any 0 ≤ p ≤ N − 2u. There remains to consider the covariance terms between ZN,u(θ1) and
ZN,u′(θ2). Using the spectral representation of the random field X we get

Cov
(
ZN,u(θ1)(p), ZN,u′(θ2)(p

′)
)

=

∫

R2

ei
pξ2
N e−i

p′ξ1
N (1 − eiu

ξ2
N )2(1 − e−iu′ ξ1

N )2f(ξ)ρ̂(ξ1)ρ̂(ξ2)dξ,

where ρ̂(ξe) =
∫

R
eisξeρ(s)ds is the Fourier transform of the window function, which belongs to the

Schwartz class since ρ does. Therefore
∣∣Cov

(
ZN,u(θ1)(p), ZN,u′(θ2)(p

′)
)∣∣ ≤ c3N

−4,

with

c3 = (uu′)2
∫

R2

ξ2
2ξ

2
1f(ξ)ρ̂(ξ1)ρ̂(ξ2)dξ < +∞.

As a result, for any 1 ≤ u, u′ ≤ 2 and e 6= e′,

N−2u′∑

p′=0

∣∣Cov
(
ZN,u(θe)(p), ZN,u′(θe′)(p

′)
)∣∣ ≤ c3N

−3,

such that this part will not interfere with the previous asymptotics. Therefore,

max
1≤k≤n(N)

|λk,N | = O
N→+∞

(N−2h1−2 log(N)).

On the other hand, since (ae,u)1≤e,u≤2 are positive numbers, using the fact that

Cov
(
ZN,u(θe)(p)2, ZN,u′(θe′)(p

′)2
)

= 2Cov
(
ZN,u(θe)(p), Ze′,u′(θe′)(p

′)
)2 ≥ 0,

we get

s2
N ≥

∑

1≤e,u≤2

b2
e,uN−4(h1−he)Var (VN,u(θe)) ≥ c4N

−4h1−3,
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from Proposition 1.2 of [11], for some c4 > 0. Then (29) holds. Let us remark that sN

E(VN,1(θ1)) =

√
N

(√
aΓ(h1, h2)at + O

N→+∞
(N−1)

)
with a = ( a1,1 a1,2 a2,1 a2,2 ) and

Γ(h1, h2) =





σ1,1(h1) σ1,2(h1) 0 0
σ2,1(h1) σ2,2(h1) 0 0

0 0 σ1,1(h2) σ1,2(h2)
0 0 σ2,1(h2) σ2,2(h2)



 .

Hence we get an asymptotic normality for
∑

1≤e,u≤2

ae,u (TN,u(θe) − 1), for any set (ae,u)1≤e,u≤2 of

positive numbers. Using tightness criterion and uniqueness of the limit law we can claim that√
N (TN,u(θe) − 1)1≤e,u≤2 −→

N→+∞
N (0, Γ(h1, h2)).

By Taylor Formula for the function

g(x1,1, x1,2, x2,1, x2,2) = log

(
x1,2

x1,1

)
− log

(
x2,2

x2,1

)

(see Theorem 3.3.11 in [24] for instance) we get that almost surely log
(

TN,2(θ1)
TN,1(θ1)

)
−log

(
TN,2(θ2)
TN,1(θ2)

)
−→

N→+∞

0 with
√

N
(
log

(
TN,2(θ1)
TN,1(θ1)

)
− log

(
TN,2(θ2)
TN,1(θ2)

))
d−→

N→+∞
N

(
0, a0Γ(h1, h2)a

t
0

)
for a0 = ∇g(1, 1, 1, 1) =

( −1 1 1 −1 ).

From (14), with ĥ1 = ĥ(θ1) and ĥ2 = ĥ(θ2), we have

2 log(2)
(
ĥ1 − ĥ2

)
= log

(
E (VN,2(θ1))

E (VN,1((θ1))

)
+log

(
TN,2(θ1)

TN,1(θ1)

)
−

(
log

(
E (VN,2(θ2))

E (VN,1(θ2))

)
+ log

(
TN,2(θ2)

TN,1(θ2)

))
,

with for e ∈ {1, 2}, by Proposition 1.1 of [11],

E (VN,2(θe))

E (VN,1(θe))
= 22he+1

(
1 + o

N→+∞

(
1/
√

N
))

.

Then,

ĥ1 − ĥ2 = h1 − h2 +
1

2 log(2)

(
log

(
TN,2(θ1)

TN,1(θ1)

)
− log

(
TN,2(θ2)

TN,1(θ2)

))
+ o

N→+∞

(
1/
√

N
)

,

such that, with γ2(h1, h2) =
a0Γ(h1,h2)at

0

4 log(2)2
,

ĥ1 − ĥ2 −→
N→+∞

h1 − h2 a.s., with
√

N
(
ĥ1 − ĥ2 − (h1 − h2)

)
d−→

N→+∞
N

(
0, γ2(h1, h2)

)
.
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