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Infinitely Divisible Cascades to Model
the Statistics of Natural Images

Pierre Chainais, Member, IEEE

Abstract—We propose to model the statistics of natural images, thanks to the large class of stochastic processes called Infinitely
Divisible Cascades (IDCs). IDCs were first introduced in one dimension to provide multifractal time series to model the so-called
intermittency phenomenon in hydrodynamical turbulence. We have extended the definition of scalar IDCs from one to NV dimensions and
commented on the relevance of such a model in fully developed turbulence in [1]. In this paper, we focus on the particular 2D case. IDCs
appear as good candidates to model the statistics of natural images. They share most of their usual properties and appear to be
consistent with several independent theoretical and experimental approaches of the literature. We point out the interest of IDCs for

applications to procedural texture synthesis.

Index Terms—Stochastic processes, picture/image generation, fractals, image processing and computer vision, statistical, image

models.

1 INTRODUCTION

Y “natural images,” one usually means gray-level images

from the real world. Statistical inference may be of great
use in analyzing and understanding such images, for
example, using Bayesian procedures for object tracking,
pattern recognition, and analytical performance analysis. To
this aim, there is a need for probabilistic models of natural
images [2], [3], [4]. For instance, as far as object recognition is
concerned, assuming the background is a Gaussian noise
always yields underestimates of the probability of false
alarm. Another motivation for pursuing image statistics has
been to understand the architecture of animal visual systems.
Efficient systems take advantage of statistical structure in
their input signals aiming at both denoising and compact
representation. Note that there is a large array of applications
thatbenefit from the advances in modeling of image statistics:
texture synthesis, image compression, image classification,
image denoising, and so forth. In this context, an image is
treated as a realization of a spatial stochastic process defined
on some domain in IR”. We emphasize that the purpose of
such models is to capture the main common statistical
features of a large class of images. In general, such models
have no ambition to generate some realistic picture from a
single stochastic process realization without any a priori
information, even though they often provide us with methods
for texture synthesis.

In this framework, let us first recall some usual assump-
tions commonly used in the statistical modeling of natural
images. Despite the anisotropy of the real world due to
gravity and the dissymmetry between the floor and the sky,
models for natural images are usually assumed to be
homogeneous and isotropic. Since this is not yet an easy task,
to build such models, one can propose homogeneous and
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isotropic models to describe the statistics of natural images.
Precisely, the processes presented below obey both true
homogeneity and isotropy. Note that they can take inhomo-
geneity and anisotropy into account as well within rather soft
limitations (see [1]). As already mentioned, it is commonly
accepted [2], [3], [4], [6], [7],[8], [9], [10] that the power density
spectrum of natural images follows a power law of the form
S(k) o< 1/k*™", which is a signature of the scale invariance
property. For instance, a value of 7 = 0.19 was observed by
Ruderman and Bialek [9]. It is also known that observed
distributions are non-Gaussian. Peaked distributions with fat
tails are reported in experimental works [2], [3], [4], [11], [12],
[13], [14]. In contrast with a Gaussian process, which would
be completely determined by its second-order statistics,
higher order statistics have to be considered here. As a
consequence, most of the difficulty encountered in the search
for arelevant model comes from the fact that it should be scale
invariant, as well as non-Gaussian. A candidate as a scale
invariant Gaussian model could be the fractional Brownian
sheet, a 2D extension of the fractional Brownian motion [15],
[16]. However, applications call for more versatility so that
there is actually a need for a larger family of non-Gaussian
scale invariant models.

Thus, stochastic processes modeling natural images
should be non-Gaussian scale invariant processes. Such
properties appear as well in the statistical analysis of
intermittency in turbulent fluid flows [1], [17], which
motivated the multifractal formalism approach [18], [19],
[20]. This analogy between turbulence and natural images
wasalready proposed in previous works [4],[21]. In the works
by Turiel etal. [21], [22], amultifractal analysis was carried out
and the Extended Self-Similarity property [17], [23] was used.
As a consequence, there are evidences that multifractal
processes [20] could be good models for natural images. Note
that the multifractal analysis can be embedded within the
framework of infinitely divisible scaling [24], [25]. In this
framework, the scale invariance property is associated to the
power law scaling behavior of higher order moments of
velocity increments in a turbulent flow. This behavior is
connected to the description of the evolution of the probability
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Fig. 1. Examples of natural images from the van Hateren Data Basis [5].

density functions (pdfs) of velocity increments from Gaussian
at a large scale to non-Gaussian at a small scale. We will see
below that similar connections can be used for images. For
instance, the scaling behavior of the moments of box-averaged
intensities (respectively, wavelet coefficients) will describe
the evolution of pdfs of box-averaged intensities (resp.
wavelet coefficients) from large to small scales. The frame-
work of infinitely divisible scaling [1], [24], [25], [26], [27]
makes this connection explicit and gave hints to the construc-
tion of infinitely divisible cascades (IDCs).

Infinitely divisible cascades (IDCs) [28], [29], [30], [31],
[32], [41] are a family of multifractal processes that were
introduced in one dimension as a randomized version of the
canonical multiplicative cascades by Mandelbrot [33]. Their
definition has been extended from one dimension to N (N >
2) dimensions in [1], [34]. In two dimensions, IDCs provide us
with a versatile model for images that has a power law
spectrum (x £~*) and non-Gaussian distributions controlled
by the choice of few parameters. Their scaling properties can
be precisely prescribed as well. The main purpose of this
article is to show that 2D IDCs appear as a very good
candidate to model the statistics of natural images. Moreover,
IDCs provide us with a tool for procedural texture synthesis
so that many applications can be considered.

The paper is organized as follows: Section 2 recalls on
multifractal analysis and multiplicative cascades and gives
the main definitions and properties of IDCs. We will remark
that IDCs meet most of the known properties of natural
images listed above (for example, scale invariance and non-
Gaussian distributions). Even the “mysterious” robustness of
scaling properties to nonlinear transformations (for example,
I, logl, and I*...) can be understood in this approach.
Section 3 reviews and comments on several recent models of
natural images. The IDC approach permits a better under-
standing of both experimental observations and theoretical
models in a consistent framework. We shed some light on
existing connections between IDCs and the description of the
dependence of natural image statistics on the resolution by
using a Fokker-Planck equation. We also comment on the link
between IDCs and Gaussian scale mixtures (GSMs). We
introduce the Bessel I forms as a subclass of IDCs of particular
relevance. Section 4 reports on the statistical analysis of a set
of natural images from the Van Hateren data basis [5] to
illustrate the relevance of IDCs to model natural images.
Finally, Section 5 reports on the versatility of IDCs for
procedural texture synthesis, thanks to their many degrees of
freedom. Some other possible applications are considered.

2 INFINITELY DiviSIBLE CASCADES IN
N DIMENSIONS
2.1 Background

The purpose of this section is to recall on the necessary
theoretical background about multifractal processes and

multiplicative cascades to make this paper self-contained
for the reader not familiar with such approaches.

2.1.1 Multifractal Processes

Scaling has been observed for many years in a large number
of fields including natural phenomena: turbulence in
hydrodynamics, rhythm of human heart in biology, spatial
repartition of faults in geology, traffic in computer net-
works, financial markets, and so forth. The multifractal
formalism [17], [20], [35] has become one of the most
popular frameworks to analyze signals that exhibit power
law scaling. For a one-dimensional (1D) process, this latter
term refers to the power law behavior of the absolute
moments of the increments 6, X(z) = X(x +r) — X(x) of a
process X. Then, the scaling behavior is described by a set
of multifractal exponents 7(g) such that'

E[8,X ()| ~ Cpr? (1)

where IE denotes mathematical expectation. For instance,
statistically self-similar processes such as fractional Brow-
nian motions [36] with Hurst exponent H fit into this
framework with 7(q) = ¢H4. When X(x) is a non-negative
process, it is rather considered as the density of a
multifractal measure. Then, (1) must be written for the
associated measure (the integral of the density) of intervals
of size r. Doing so yields scaling laws of the form

asr — 0,

Ee, ()" ~ Cyr™@ asr — 0

(2)

for box averages &,(z) =1 Zf://; X(z')dz'. The so-called
multifractal formalism establishes conditions under which
property (1) or (2) and a multifractal behavior are equivalent.
When the multifractal formalism holds, the local regularity of
the trajectories of the process (the multifractal spectrum) is
fully characterized by the set of exponents 7(¢q). However, this
framework is restrictive in at least two ways. First, in real-
world applications, one is usually confined to observing
power laws in a given range of scales 7,,;;, < 1 < 7,4, Which
we then prefer to call multiscaling to distinguish it from
multifractals. Multiscaling is usually considered as the best
approximation to (1) or (2) and as the first step toward the use
of the multifractal formalism. However, although (1) and (2)
are sensitive to the limiting behavior only, it may not capture
some richness in the progression at all observable scales.
Second, exact power laws may not provide an accurate
description of the scaling behavior of data or models.

The need for an appropriate mathematical framework
substituting (1) was met with the infinitely divisible scaling
[1], [24], [25], [26], [27]. This setting allows for more flexible

1. A definition which works for any process is
7(¢q) = liminf, g log, E|§, X (x)|".
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scaling and, thus, better fitting of data and honors the
contribution of all scales in a range of interesting scales
Toin < T < Trar as follows:

]E|67X(I)‘q = Cq exp[—T(q)n(r)], Timin <r S Tmaz (3)

where n(r) is some monotonic function. The infinitely
divisible scaling framework generalizes (1), which is
recovered by choosing n(r) = —Inr. Such a behavior is
analyzed in terms of a cascading mechanism through the
scales from 7,4, to 7y,;,, whereas the multifractal analysis
applies to any process (see footnote 1) and is concerned
with local properties in the limit of fine scales but not finite
scales. Note that both multifractal analysis and infinitely
divisible scaling can be formulated using wavelet coeffi-
cients [26], [27], [37], [38].

Although analysis tools for multiscaling processes have
been widely developed for a long time, tools for synthesis of
processes with prescribed and controllable infinitely divi-
sible scaling have been proposed only recently [1], [28], [29],
[30], [31], [32], [39], [40], [41]. Multiplicative cascades have
always played a central role to this purpose in intimate
connection with multifractals.

2.1.2 From Multiplicative Cascades to Infinitely Divisible
Cascades

The ingredient common to cascades is an underlying multi-

plicative construction that is iterated through the scales. The

canonical binomial cascade as introduced by Mandelbrot [33],

[42] may be viewed as the archetype of multifractal random

measures. It can be defined via the iterative products

ﬁn(x) = H VV/k = ﬁnfl(m) H Wn,k' (4)

{(j.k):1<j<n,xel;ji} {k:xel, .}

Here, I, stands for the nested dyadic intervals [k277, (k +
1)277) and W;; denotes independent and identically dis-
tributed (ii.d.) positive random variables of mean one
(IEW;;, = 1). By construction, 3, is constant over each interval
I, . By considering the 3, as densities, one can study their
distribution functions X,,(z) = f(f Bn(u)du. As positive mar-
tingales, these converge weakly to a limiting measure X [43],
[44], which exhibits self-similarity and a multifractal behavior
in the form of (1). Attractive from a signal processing point of
view is the iterative aspect of (4), which allows for fast tree-
based synthesis algorithms. This underlying tree structure is
inherited from the nested arrangement of the /; ;,, which may
be represented by the points ((k+1/2)27/,277) in the
(space,scale)-plane, see Fig. 2a. However, such cascades have
two major drawbacks. They are not strictly stationary since the
construction is not time-shift invariant; this may result in
“blocking effects.” Further, by construction, the scaling of
moments is log2-periodic and favors the scale ratio equal to 2.
In particular, self-similarity is only approximate since it is
obeyed for dilations by a factor 2" only.

Following a more recent idea by Barral and Mandelbrot
[28], one may overcome both drawbacks by replacing the
rigid nested arrangement of multipliers W . of the binomial
cascade by a planar Marked Poisson point process
{(z;,r;,W;)}, where 1) the z; are i.i.d. uniformly distributed
on IR with density 1, 2) the r; are i.i.d. random variables on

;( 0 X \y
(©) (d

Fig. 2. “Time-scale” construction of multiplicative cascades.
(a) Nested dyadic tree geometry behind the binomial cascade.
(b) Stationary discrete geometry behind the CPC. (c) Stationary
continuous geometry behind the IDC. The shaded cone indicate the
region that determine the value of the cascade at location . (d) The
dependence between Q,(z) and Q,(y) stems entirely from the measure
of the intersection of two cones C,(z) and C,(y).

(0, 1) with density 1/r% and 3) the W; are ii.d. positive
random variables. This leads to the Multifractal Product of
Cylindrical Pulses (MPCP), also called compound Poisson
cascades (CPCs)—see Fig. 2b. More precisely, introducing the
cone Co(z)={(z,r): 0 <r <lx—7r/2<2 <z+1/2},
the CPC reads as

Qx) =[]

(wi,ri)€C ()

Q=2 )

E[Q¢(z)]
Note that the binomial cascade uses similarly all multipliers
W r such that ((k+1/2)27/,277) € Cy-;(z). To obtain simple
power law scaling for the CPC, one ensures that each
“frequency band” of scales over the octave between 27/~
and 27/ contributes on the average the same number of
multipliers to Q,(z). This choice yields an expected number
of Poisson points in Cy(x) proportional to —log¢, just as for
binomial cascades. Then, true stationary multifractal mea-
sures are built, which obey power law scaling in the form of
(2), where ¢,(z) = f:jr'//; o(z)dx.

The N-dimensional version of CPC defined below results
from a natural generalization of the 1D definition [1], see
Fig. 3a: The intensity of the Poisson point process (x;,r;) is
then described by the control measure dm(x, r) = cdxdr/r**1
on the space-scale half-plane P":=R" x IR" such that
m(Cy) = log(1/¢). The choice m(C;) = log(1/¢) ensures scale
invariance. Note that the large scale in the definition of C,(x)
has been arbitrarily set to 1 without loss of generality so that
resolution ¢ belongs to (0, L = 1]. Choosing a large-scale L #
1reduces toachange of units (x,7) — (x - L,r - L). Moreover,
to extend the class of images to be synthesized, this definition

Wi,

may be generalized by introducing some localized integra-
tion kernel® f(x) # W[_1/21/2/(x) in (5)

2. This may rejoin the random wavelet expansions evoked in [10].
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(b) ()

Fig. 3. (a) Space-scale cone defining Q(x) at x(x,y). Fora CPC, Q, is
the product of those random multipliers W;(z;,y;,r;) that belong to the
cone Cy(x). (b) and (c) Examples of CPC using different integration
kernels: (b) f(x) = cos(n||x||) for ||x|| € (—1/2,1/2) and O elsewhere; (c)

f(x) = cos(my/ (x1/a)” + (z2/b)?) for ||x|| € (—1/2,1/2) and O elsewhere,
which introduces an anisotropic elliptical shape in the synthesis.
- ; ()
Qu(x) = ————~. (6)
/()
E\[L W,

The integration kernel f will play the role of some
geometrical object in the image. This definition (6) may
also be useful to attenuate small-scale discontinuities or to
take into account some geometrical features of the images
under study, see Figs. 3b and 3c. General definitions and
mathematical results are recalled in the Appendices (which
can be found at http://computer.org/tpami/archives.htm).
An algorithm for synthesis is described in [1].

Noting that compound Poisson distributions are infinitely
divisible and that

In Q¢(x) o In

[ w)-

(xi,77)€C ()

)

(i) €€ (%)

In WL' (7)

onemay read theright-hand term above as aspecific (discrete)
case of arandom measure A (Cy) of the set C/(x). This leads to
the general definition of anIDC @),(x) based on the summation
of an infinitely divisible random measure dM(x,r) (see
Appendices (which can be found at http://computer.org/
tpami/archives.htm) or, for example, [1] for definitions)

exp [ f(X) dM (X', r")
E[exp [ f(%) dM(x/,7")]’
where M (Cy), see Fig. 2¢, is a random variable distributed by

some infinitely divisible distribution G on IR with moments
generating function G(¢) = exp[—p(q)m(Cy)]. Possible choices

Qu(x) = (8)

slope~ -1.84 ~ —(2+tau(2))

bﬂ(hismqmm(WTJ))
3 3 3 3
%
\
Jog 10 S;lemrum(sl)

?Navelet ceff (j) /o ° °

(b) (©)

log, (k)

Fig. 4. (a) Example of a realization of a CPC @, (gray levels) with
7(2) ~ —0.16—see (12) about the role of 7(2). (b) Estimated (log)
histograms of normalized wavelet coefficients at various octaves j: they
are all clearly non-Gaussian (Gaussian = parabola). (c) Power law
spectrum of Q,(x) as a function of k= ||k| over two decades: the
observed slope is prescribed by the choice of 7(2).

for distribution G are the Gaussian distribution, Poisson and
compound Poisson distributions, Gamma and stable laws,
and so forth. This is basically the most general definition of an
Infinitely Divisible Cascade (IDC). IDCs can be seen as
generalized continuous multiplicative cascades.

Among the full generality of infinitely divisible cascades,
the family of compound Poisson cascades (CPC) [28] plays a
special role for both historical and practical reasons. CPCs
have been widely used to describe the statistics of turbulent
flows [17], and they are easy to synthesize numerically [31].
Note that a Gaussian cascade is infinitely divisible but does
not belong to the family of CPCs since the Gaussian
distribution is not a compound Poisson distribution [45].
We will mostly focus below on CPCs as given by (6).

2.2 Properties

2.2.1 Homogeneity and Isotropy

An immediate consequence of the definition is that @, is a
stationary/homogeneous positive random process with the nor-
malization IEQ), = 1. Stationarity is ensured by the invariance
to translations of both the control measure dm(x, r) and the
cone of influence C;(x). The symmetry of the cone’s shape
generates an isotropic structure as well. Some anisotropy may
be obtained by choosing some anisotropic integration kernel

f(x).

2.2.2 Log-Infinitely Divisible Distribution

When f is a constant cylindrical pulse,® Q/(x) has a log-
infinitely divisible distribution. In other words, ¥ = log Q, has
an infinitely divisible distribution G,(Y") described by its
moment generating function Gy(q) = exp[—p(q)m(Cy)],
where ©(q) = p(q) — qp(1); recall that the function p(q) is
associated to the infinitely divisible random measure
dM(x,r) in (8) For 1nstance, Q¢ might be log-Normal with
plq) = pg+% ¢* and ¢(q) =% q(1 — q). Fora CPC, Gy(Y) is a
compound P01sson distribution: The Poisson distribution

3. f(x) =1 on the disk of radius 1/2 and zero elsewhere.
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associated with the point process (x;,7;) is compound with
the distribution of the logarithm of the i.i.d. random multi-
pliers logW;. In this case, ¢(¢) =1—IEWY!+ ¢(IEW —1).
Departures from the normal law are visible on the histograms
of wavelet coefficients at various scales as well, see Fig. 4b.

2.2.3 Scaling

Power law scaling behaviors are intimately connected to the
particular choice of the control measure [1], [29], [31], [32], [46]

dr

= dea 9)

dm(x,r)
where V), is the volume of the sphere of radius 1/2 in
N dimensions (for example, dm(x,r) = 4/mr3drdx in 2D).
Then, m(C,) = —log r so that turning to local averages over a
spherical volume V}, ¢,(x) = Vi /x| <r Qi(x) dx', one gets

IE[Q¢(x)"] = exp[—(q)

m(Cp)] = ¢°19, (10)

Ee, (x)? ~ 77 for r < 1, (11)

where ¢(q) = p(q) — gp(1), and 7(q) = ¢(q) at least within
some limited range of values of ¢ [1], [47], or 7(q) =
Je(qf(x))dx in the most general case from (8) (if the
integral converges, see Proposition 2.6 in [48]). Note the
different status of Q(x), which is a local quantity, and
er(x), which is a space-averaged quantity. We emphasize
that not only second-order statistics but also higher order
statistics are prescribed as well. Note that these scaling
behaviors are robust in a certain sense since they are
preserved when elevating )y to some power a > 0, which
corresponds to a nonlinear gamma correction. The multi-
fractal formalism [19], [20] tells us that these scaling
behaviors can be equivalently interpreted in terms of the
regularity of Q(x). A trivial constant image Q(x) =1
corresponds to 7(¢) = 0 for all ¢. On the contrary, the more
7(¢) is nonlinear, the less regular is Q(x), and the widest is
the class of singularities in Q. This ability of IDC to capture
a wide class of regularity is valuable as far as the modeling
of natural images—with textures and edges—is concerned.

2.2.4 Correlations
Turning to autocorrelation functions, one has at small

scales [1]

E[Q(0)Q(x)] o< x| for [x| < 1, (12)

where 1 is the largest scale where the cascade begins. As a
classical consequence of the multiplicative construction, one
also has [1], [29], [31], [49]

cov(log Qr(0),1og Q(x)) o ©"(0)log x| for [x| < 1.  (13)

2.2.5 Power Law Spectrum

The behavior of correlation functions above is consistent with
the observation of a power law spectrum (defined as the
squared modulus of the Fourier transform) for both processes
Q¢ and log Q(x). For I(x), a power law spectrum o k~+7(2)
with 7(2) < 0 is expected, whereas a o k™2 spectrum is
expected for log I(x) (for example, see the appendix in [8] by
Ruderman)—see Fig. 4c. This is a desired property for the
modeling of natural images.

As a consequence, the scale invariance property (at least
considered as the presence of a power law spectrum) can be
observed both on (), and log Q,. This remark is of particular
relevance when dealing with the statistical modeling of the
intensity /(x) of natural images or of its logarithm log I(x).
With little paradox, both quantities may display power law
correlations and, therefore, a power law spectrum (see, for
example, Section Calibration invariance in [8]).

3 IDC vERsSus SoME ExISTING MODELS

We have seen that IDCs provide us with a large class of non-
Gaussian scale invariant models, with a precise control of their
scaling properties and probability densities. Moreover, using
(8), geometrical degrees of freedom may be introduced as
well; these are studied elsewhere [1] and can be used for
texture synthesis (see Section 5). In this section, we first
comment on the ingredients that 2D IDCs share with several
existing models of natural images. At this point, let us
remark that the human eye is roughly a logarithmic sensor
[50], which means that if I is the image intensity, the eye is
roughly sensitive to log I. Consequently, we will propose to
use multiplicative models for the intensity of an image /(x) (=
Qi(x)) or, equivalently, additive models for the contrast
o(x) x logI(x) (=log Q¢(x)). We mainly focus on recent
models proposed in [10], [13], [51], [52], [53], [54], [55], and
[56]. We also show how IDCs give a way to the description of
the distributions of an image observed at various resolutions,
thanks to a Fokker-Planck equation. Finally, we introduce an
interesting subclass of IDC models that we propose to call
Bessel I forms.

3.1 Mumford and Gidas Infinitely Divisible Model

The approach proposed by Mumford and Gidas in [10]
shares a lot of properties and assumptions with the 2D IDCs,
which were initially built for the modeling of turbulent flows
[1], [29], [31], [41]. However, we claim that the IDC
framework brings new insights and perspectives to the
modeling of natural images. Let us comment on the
mathematical and axiomatic approach to the modeling of
natural images proposed by Mumford and Gidas in [10].
According to these authors, relevant models should be non-
Gaussian, display scale invariance, and make use of the
infinitely divisible distributions family. IDCs precisely fulfill
all these constraints in two dimensions (or even in
N > 2 dimensions). Mumford and Gidas also suggest the
use of a 1/r% distribution of scales exactly like in the chosen
control measure dm(x,r) oc 1/r3. This power law distribu-
tion has strong connection to scaling properties. Only the
choice dm(x,r) o« 7~ ensures power laws multiscaling. This
link was studied in details for 1D IDCs in [29], [31], [32] and
for the dead leaves models in [8], [51], [57]. However, other
choices might be considered that lead to the so-called
“extended self-similarity” (ESS) previously introduced in
turbulence [21], [23], [31], [32].

Such assumptions have quantitative consequences on
distributions and correlations as well. For instance, a crucial
property of natural images is that the covariance C7(x;, X3) of
the intensity I (= Q) obeys a power law Cj(x;,x2) x
Ixy — x;| . This is a consequence in the real space of the
power spectrum in the Fourier space. Precisely, one of the
initial motivation of the construction of IDC was to obtain
power law correlations IE[Q¢(0)Q(x)]—see (12) and Fig. 10.
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Only few models are able to reproduce so precisely the two-
points-correlation structure of natural images—see [8], [14],
[58], [57] (Fig. 10) where a dead leaves model is proposed.
Furthermore, a usual property of multiplicative cascades is
that the covariance Clog (X1, X2) of the logarithm of intensity
log I behaves as log||xs — x|, see (13) and Fig. 10. Such
property was used as a starting point to model the intensity I
(not log I) by Mumford and Gidas [10] since it is connected to
scale invariance and rotational symmetry. We emphasize that
this property receives some intuition in the framework of
multiplicative cascades. Indeed, log || x2 — x; || simply reads as
the average number of common ancestors {W;, (x;,r;) € Ce(x1) N
Ci(x2)} of the respective values of I(x;)= Q(x;) and
I(Xg) = QK(XQ).

At this point, note that Mumford and Gidas” model for
the intensity [ is similar to an additive log-IDC model that
we would rather propose to model log I not I. We suggest
to use a multiplicative model for the intensity I and an
additive model for its logarithm log I within the consistent
framework of IDC. Former works have usually focused
separately on I or log I only. Within the IDC framework, the
links between properties observed on I and log I are made
explicit, thanks to the great amount of existing work by
mathematicians, as well as physicists, on multifractal
processes. Up to our knowledge, no other framework has
been clearly proposed that considers the statistical proper-
ties of both I and log I in such a consistent manner.

Eventually, the notion of clutter is given a rather precise
meaning in [10] by using infinitely divisible distributions.
This notion of clutter becomes even clearer in the framework
of IDC since it can be identified in a quantitative manner to
log(1/¢) (¢ is the resolution of an IDC), which is the average
number of multipliers W; used to get Q,(x): The smaller the ¢
is, thelarger the range of scales in the image and the larger the
clutter. The quantity log(1/¢) (¢ < 1) is usually called the
depth of the cascade. More precisely, the cascade @, can be
decomposed here in as many successive “subcascades” as
wanted by iterating the relation Qg Qo - Qe/ where Qf,
¢ < ¢,isbuilt using truncated cones C/ intherange ¢ < r < ¢'.

3.2 A Basic Physical Interpretation of CPC

Among the whole family of IDC, CPCs are the most
comfortable to work with since they receive some intuitive
physical interpretation as far as the modeling of images is
concerned. Indeed, taking the logarithm in (6), we get

ZlogW f( ) (14)

Thus, the process Qy(x) can be interpreted as the intensity
I(x) resulting from the scattering of light by a random
superposition of transparent cylinders of sizes {r;} placed
above positions {x;} and with i.i.d. random transparency W;.
This simplistic description points to the resemblance between
CPCs and other classical approaches in image modeling
where elementary objects of random sizes are distributed in
space following a Poisson point process [2], [59]. In contrast
with the dead leaves models, no occlusion is considered here.
Note that, beyond 2D IDCs, one may also propose to use a
3D IDC model and then study its 2D projections.

Another interesting phenomenology can be proposed in
the spirit of the recent work by Geusebroek [53], [54]. In this
approach, theincidentlight on an optical sensor (for example,
human eye and camera) is described as the result of a series of

log Q(x

multiple reflections and diffractions by objects in an
enlightened 3D space. The measured intensity /(x) would
be modeled as the product of the intensity of a source of light
by the product of a random number of random multipliers
(attenuation factors). In brief, the idea is that light coming
from the source (for example, the sun) is affected by multiple
reflections on macroscale objects, as well as by interreflec-
tions, due to the microscopic roughness of objects before it
reaches the optical sensor (for example, a camera). Only a
fraction of light is reflected at each interaction. This is one
more approach that naturally leads to multiplicative cas-
cades. Furthermore, Geusebroek implicitly suggests that an
analysisin terms of infinitely divisible scaling may be relevant
when he refers to the seminal paper by Castaing and Dubrulle
[24]. Insummary, approaches based on the physical modeling
of natural images seem to naturally point to IDC.

3.3 Transported Generator Models (TGMs) and
Bessel K Forms

Written in the form of (14), CPCs look quite similar to the
TGMs proposed by Grenander and Srivastava in [13] and
[52]. These authors have shown that a well-chosen random
distribution of the profiles of random objects, the gen-
erators, could capture the variability of different types of
scenes with very few free parameters.

We briefly recall below the main ingredients of the TGM,
as described in [52]. This model assumes that

1. the a; are i.i.d. standard normal,

2. the scales p; are ii.d. uniform on the interval [0, L],
3. the locations x; are samples from a homogeneous
2D Poisson process, with intensity A > 0, and
4. a;s, gis, x;s, and p;s are independent of each other.

The image formation is then modeled by

n X — X;
Z a; gi -
i

i 3

I(x) =

(15)

Each object with generator g;(x) in the scene contributes to the
pixel value I(x) according to a;g; (p (x —x;)). Here, x is the
pixel location in 7 = [0, L] x [0, L], g; : 7—IR" is a generator
of arandomly chosen object, p; € [0, L] is a random scale, and
a; is arandom weight associated with g;. In short, it consists of
the random linear combination of n randomly weighted
random profiles.

This model aims at deriving probability models on an
image by implicitly incorporating the variability of its
ingredients. In this approach, Srivastava et al. [52] focus
on the distribution of the gradient image 01/0z or of filtered
images I (x) = F % I(x), where FU) is some band
pass filter (for example, a Gabor filter). Under some
assumptions, explicit computations in [13] lead to an
analytic expression of the distribution function of the
gradient image, namely Bessel K forms. Multidimensional
distributions can also be explicitly denved These results are
extended to the filtered intensity IU) in [52]. The interest of
Bessel K forms is illustrated by their simple dependence on
two parameters (p, ¢) that can be fitted to different images.
They can be used for clutter classification, target recognition,
and texture synthesis.

Despite their original rooting in different motivations,
TGM (additive models) and CPC (multiplicative models)
share many common features. Let us compare (15) to (14).
Applied to some filtered image V) in place of log I(x), the
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TGM above strikingly resembles the logarithm log Q¢(x) of
some special CPC with log-normal multipliers W; (then,
logW; = a; are i.i.d. normal variables) and a uniform
distribution for r; = p; in place of the usual 1/ r’—see
(9)—and a random kernel (generator) f(x) = g;(x). Recall
that we usually identify the intensity I to )y and its logarithm
log I to log Q. Therefore, a fundamental difference between
TGM and CPC lies in the quantity to be modeled: TGMs deal
with gradient images 91 /0x or filtered images IV, whereas
CPCs deal directly with log I and 1.

For both models, TGM and CPC, marginal distributions
cannot be derived analytically in the most general case
because of the nonconstant terms g;(x) or f(x) (see
Section 2.2.3). This is the reason why Grenander and
Srivastava [13] proposed an empirical model using a GSM
of scaled I" densities, which led them to the family of Bessel
K forms, which are (again!) infinitely divisible (but not
compound Poisson). As a consequence, gradient images
with Bessel K form statistics may be built, at least
theoretically (see Section 2.1.2). However, their exact
numerical synthesis may result to be difficult since they
do not enter the family of CPCs. Most importantly, such
synthetic images would be self-similar. Contrary to IDC,
note that self-similarity was not explicitly taken into
account in the construction of the TGM. Using IDC, one
can build self-similar images associated to any Bessel K
form, at least as a theoretical object. In addition to Bessel K
form marginal distributions, such IDC gradient images
would display the usual statistical properties of natural
images, for example, a power law spectrum and power law
correlations with prescribed exponents.

Interestingly, a remark in [52] on the link between the
generator g and the Bessel K form parameters (p, ¢) might be
of interest for IDC as well. Srivastava et al. note that p is small
when g has sharp distinct boundaries and becomes greater as
the frequency of occurrence (the intensity of the Poisson point
process) increases. Given the similarity between TGMs and
CPCs, this remark transposes to give instructive indications
on how to choose the kernel f in (8) to tune the parameter p.

Finally, in [13], Grenander and Srivastava give a list of
possible generalizations of their approach to get some
desirable properties like inhomogeneity in space, local
anisotropy, control on the regularity and smoothness of an
image, prescribed departures from Gaussianity, and so forth.
We emphasize that most of these generalizations can be
obtained with IDC. IDC may account for inhomogeneity in
space in at least two ways. One may play on the dependence of
dM (x, ) on x either through the functional form of the control
measure dm(x, r) or using a resolution /(x) depending on the
position x. One may also change the kernel f(x) from place to
place, even at random as in the TGM. Models of random
cascades on discrete trees [56], [60], [61] cannot play with
inhomogeneity at will with the same versatility. These tree-
based constructions suffer from the constraints imposed by
the underlying discrete tree: only places corresponding to
leaves of the tree (dyadic intervals) can be modified. Some
local anisotropy may be introduced, thanks to the geometry of
the kernel f(x): this function acts like a shape parameter. Its
support may not be a disk as for a cylindrical pulse and may
display some anisotropy and dissymmetry (for example, an
ellipse, a square, a star, a random shape, and so forth). The
regularity and smoothness of the resulting image can be
controlled as well. To this respect, the choice of the kernel
function results crucial since its regularity determines
(through a nonlinear process) the fine scale regularity of the

image I = (. Last, almost any departure from Gaussian
distribution can be obtained since the W; can be any non-
Gaussian suitable variable: heavy tailed distributions yield
more “intermittent” images. As a conclusion, the numerous
degrees of freedom of IDC may permit tosuitalarge variety of
sets of images (countryside, urban zone, indoor scenes, and so
forth), see Section 5 as well.

3.4 IDC and the Fokker-Planck Equation

The scale invariance property of natural images is linked to
the absence of any characteristic scale in vision. The finer
visible details of an image depend on the resolution at
which the scene is observed. The sensor involves the sieving
or box averaging of the scene at some limiting pixel size.
Moreover, a large class of images is fractal [62]. Hence,
more and more details appear when zooming in. This
section aims at proposing a model to describe the influence
of this finer scale of observation, the resolution, thanks to
the link between IDC and a Fokker-Planck equation. This
link was originally pointed out in [25] and [63] to describe
the scale dependence of the statistics of a turbulent velocity
field. It was also used in [64] to describe the intermittency
phenomenon in turbulent flows. Our purpose is to adapt
such ideas to natural images.

For a given visual sensor, details are lost due to an increase
in the distance of observation or, equivalently, to a decrease in
resolution that results in an averaging process (for example,
textured regions become uniform regions). At infinitely large
resolution r — +o0, alogarithmic sensor would see a limiting
image with uniform average log-intensity log I,; then, the
distribution is Py (logI) = iy, (log I). At the intermediate
resolution 7 =1 (scale 1 may correspond to the length of
correlation in the image), correlations and fine details may be
lost and only the large-scale variability described by some
distribution P, remains. At an infinitely small resolution
r — 0, as the sensor gets closer to the scene, more and more
details appear, and one expects that distributions become
more and more leptokurtic (heavy tailed). This is much like a
diffusion process where time would be replaced by the scale
parameter n(r) = log(1/r). In particular, » = 1 corresponds to
the “initial condition” at n(r = 1) = 0. As r tends to the +o0,
n(r) goes to the —oo: details are averaged together, and P,
concentrates onto a Dirac centered on the averaged log-
intensity log /, of the class of images to be modeled. As r goes
to 0, n(r) tends to co: more and more details arise, still
respecting the fundamental self-similarity property and
power law scaling.

One may want to model this phenomenon for each image by
a diffusion equation on I(x, r), where the time is replaced by a
scale parameter r, asin [65]. We rather propose to model a class
of images by modeling the evolution of the distributions P, of
Y =log I,, where I, is the intensity of the image observed at
resolution r (the conditions which ensures that I, is a well-
defined random variable rely on the theory of martingales
[28], [31], [46]). I, may be seen as a low-pass filtered version
(for example, I, = ¢,, see Section 2.2.3) of a limiting image
with infinitely small resolution. To describe this evolution,
we use the natural link between IDCs and Fokker-Planck
equation that we recall below.

For simplicity, let us first consider the case of a
Gaussian cascade for which 7(¢) = —Cyq+ %qg in (10).
Then, rewriting scaling property (10), we get that P.(Y =
logl,) has the following moment generating function
P.(g) = E[e"]
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Po(q) =e 7. By(q)

- 16
= eXp{ <C1q+%q2) -n(T')] - Pi(q) 1o
where the Cj are the cumulants of G in (8). For a self-
similar IDC obeying a power law scaling behavior as in
(10), one has n(r)=—logr (n(1)=0, n(r) — +oco as
r — 0). Deriving with respect to n(r) and using the
correspondence between successive powers of ¢ in the

development of 7(¢q) = —Cigq +?% ¢® and the derivatives in
the operator U = —6’1% —5—%3‘%, we get
oP, Cy )\ &
=(C — P. 17
= (cu+ G P (")
0
U Y -9,
P, _ P, | C &°P, 18
{ai = -\ 5+ G5 (18)
P,»:l = Pl (n(l) = 0)

Therefore, P, obeys a Fokker-Planck equation. This argu-
ment extends to other infinitely divisible distributions,
thanks to the theory of semigroups [25], [45], and (18) takes
the general form ([45, Remark, p. 296])

OP,
on
where U is the operator that describes the evolution of P,

with 7. For compound Poisson distributions, the Fokker-
Planck equation becomes

—UP,, (19)

or, 0P,

on )%
where F' is the distribution of logW. Note that the self-
similarity of images betrays a scale dilation invariant
behavior, which is equivalent to a log-scale translation
invariance. Let us remark that, at resolution » =1, the
intensity of each pixel is the sum of the underlying details
down to infinitely small scale (¢ — 0). In general, the
distribution P, cannot be determined explicitly; one may
simply expect that P be close to a Gaussian due to a “Central
Limit Theorem” effect (that is, at » = 1, the image would be
modeled by Gaussian white noise). The evolution of
distribution P, is then governed in (19) from quasi-Gaussian
P, to far from Gaussian ().

Such a model using a Fokker-Planck equation describes
the transition of distributions from the limiting “badly
resolved” to the limiting “infinitely well resolved” image as
a diffusion process. It explicitly takes into account the
statistical self-similarity property of natural images. Such an
approach might be extended to a family of band pass
filtered versions of an image (for example, the IV in [52]) or
to wavelet coefficients [25], [66].

3.5 IDC and Gaussian Scale Mixtures

We already noted in Section 3.2 that the Bessel-K forms
proposed by Grenander and Srivastava [13] are indeed
GSMs of scaled I' densities. The theoretical development of
the previous section leads us to further study the link
between IDC and GSMs [55], [56]. It is easily seen that (16)
actually accounts for the evolution of the pdfs of Y, = loge,
from a large scale r; to a smaller one r, through the
equivalent convolution operation

—(1-EW)

—cP, 4 c¢Fx P, (20)

P, = Gy p (21)

where G is an infinitely divisible distribution with a
moment generating function G(q) o< e 7@, Thus, the rela-
tionship between scales r; and 7, is described by the so-
called propagator G,, ,, = G*A""1"2) where G is called the
“kernel,” and An(rq,r2) is the “number of steps” of the
cascade from 7, to 7. Reading G, ,, as the distribution of a
random variable &, ,, =logW,, ,, independent of Y, =
loge,, and Y,, =loge,,, we get

ery (%2) £ Wy, (31, %2) - &5, (%1), (22)

where £ stands for equality of distributions. Thus, ¢,, can
be expressed as the product of ¢, and an independent
positive scalar random variable W, ., the multiplier. This is
precisely the structure of a general scale mixture for a given
distribution of ¢,, at some reference scale r; (for instance,
one may choose r; = 1). It reduces to a GSM if ¢,, is a zero-
mean Gaussian variable.

Equations (21) and (22) extend to wavelet coefficients [26],
[27], [37], [38], [49], [67] in place of ¢,. Then, a GSM may
appear since it is usually expected that wavelet coefficients
have Gaussian statistics at large scales. IDCs are therefore
consistent with the modeling of natural images by GSMs as
proposed by some authors [2], [3], [55], [56]. We emphasize
that the complete description of an IDC is formally equivalent
to the complete description of the correlation structure of
those hidden random multipliers W, ., (x1, x2) evoked above,
for any (x1, 1) and (x2,72), recall Section 3.6.

As far as the simulation of some given image is concerned,
(21) tells us that matching wavelet coefficients marginals at all
scales is a minimum condition to achieve; but this is not
sufficient. For instance, Field [12] proposed to use i.i.d.
random variables to simulate wavelet coefficients indepen-
dently at each scale. Such an approach prescribes no multi-
scale correlations but only second-order time correlations
(thatis, the spectrum). Heeger and Bergen [68] have proposed
an iterative scheme to match both pixel values histograms
and steerable pyramid coefficients (or wavelet coefficients)
histograms. We see this scheme as an implicit numerical
method to solve (21). Moreover, by imposing the consistency
between local information (pixel values) and multiscale
properties (steerable pyramid), this scheme imposes some
multiscale correlation structure. Wei and Levoy [69] and
Gallagher and Kokaram [70] have also proposed multiscale
methods for texture synthesis that try to implicitly learn the
local structure of a texture at various resolutions. Wainwright
et al. [55], [56] have proposed to use GSMs based on an
underlying multiplicative cascade (with hidden multipliers)
on wavelet coefficients. Thus, interestingly, not only margin-
als and second-order correlations are imposed, but multiscale
correlations at higher orders are controlled as well. This latter
approach sounds closely connected to the random wavelet
cascades proposed by Arneodo et al. [71] in turbulence.

3.6 Multivariate Statistics

In addition to non-Gaussian behavior of marginal statistics,
IDC have nontrivial multivariate statistics. Fig. 5 shows the
jointand conditional histograms of the wavelet coefficients of
an IDC. These observations are quite similar to those by
Wainwright and Simoncelli (see Fig. 4 in [55] or Fig. 1 in [2]).
These results can also be compared to the irregular
polyhedralike shapes found by Lee et al. [57] in contour
surfaces of histograms of occlusion models. Such properties
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i )

Fig. 5. Bivariate histograms of the wavelet coefficients associated with different basis functions for one single CPC image (compare to Wainwright
and Simoncelli [55]). Top row shows contour plots of log probability. (a) and (b) are for different spatial offsets (same scale and orientation), (c) is for
different orientations (same scale and nearly same position), (d) corresponds to a pair at adjacent scales (same orientation and nearly same
position), (e) is for remote neighbors at large spatial offset. Bottom row shows some conditional distributions: brightness corresponds to larger

frequency, and (j) is the CPC image itself.

are usually linked to the occurrence of simple geometries in
images with partially constant intensity regions and sharp
discontinuities.

We emphasize that such observations are consistent with
an underlying multiplicative cascade. Let us assume that we
are studying two random variables X; and X, (for example,
two wavelet coefficients at different positions, scales, or
orientation). Moreover, let us assume that there exists some
random variable z independent of X; and X, such that
X5 L..x 1. Denoting by p. the pdf of z one has, for
the conditional pdf, p(Xs|X1) = p(2X;1|X;1) = Wll‘pz(z) =
p,(%) Therefore, one expects that the width of p(Xs|X;)
increases linearly with | X|, which yields this characteristic
butterfly pattern on the bottom row of Figs. 5f, 5g, 5h, and 5i.

3.7 Bessel | Forms

This section reports on a particular family of compound
Poisson distributions, which we propose to call Bessel I forms,
in analogy with Bessel K forms. Bessel I forms appear as a
family of simple compound Poisson models depending on
one parameter only. Their numerical synthesis is simple and
theoretical computations can be carried out explicitly. More-
over, an equivalent model was previously introduced by
Castaing [66], and Chainais [1], [25] to model the distributions
of velocity increments measured in a turbulent fluid flow.
These models may be relevant to describe the statistics of
natural images as well.

The main ingredients of the construction of Bessel I
forms are the following. Let /' (respectively, F') denote the
pdf of the multipliers W (respectively, w = log W) of a CPC
as defined in (6) with a cylindrical kernel f = 1p ,. As a
particular case of interest, we consider the choice

F(w) =Xe™,
o F(W) = WAt

w € (—00,0],

(23)
A>0, Welo,1].

The case A =1 corresponds to uniformly distributed
variables W in [0, 1]. For a scale invariant CPC with
m(Cy) = clog(1/¢) (¢ > 0), the distribution G,(Y) of Y =
log Q¢ = log I takes the following explicit form:
X (elog(1/0)" .,
Gy = eSO py ), o)
=0 '

where F** is the kth convolution of F. After some
computations, one gets a distribution G,(Y) with an atom
¢ at the origin and described for Y < 0 by

o~ (eAlog(1/0) Y]
G(’(Y) =/ ; k'(k— 1)|€*MY‘ )
Y]

Gi(Y) = Z"\/)\clog(l/f)ﬁh@ Aclog(1/0)[Y]), (25)
where I is the modified Bessel function of the first kind of
order 1 [45]. This distribution G/ in (25) is infinitely divisible
since it is a compound Poisson distribution. In the context of
natural images, we propose to call them Bessel I forms in
reference to Bessel K forms. The corresponding scaling
exponents are given by

cqlg—1) ,
dw*w@%WA+D@+M' (26)

In the work by Castaing [66], the parameter A = 1/T is
interpreted as the inverse of a “temperature” 7" of a turbulent
flow.For A <« 1 (hightemperatureT" > 1), F'(W) concentrates
around O (see (23)). One expects to observe dark images witha
lot of black regions associated to small values of ) = I and
some isolated white points associated to rare extreme values
of I. For A > 1 (low temperature T' < 1), F(W) concentrates
around 1, and the e "I term in (25) is rapidly decreasing as
Y — —oo: one expects to observe rather homogeneous
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Fig. 6. Examples of a CPC associated to Bessel | forms with parameters
(a), (b), and (c) A =0.1, 1.0, and 10, respectively.
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Fig. 7. (a) and (b) Averaged spectrum of intensity of 400 images from
van Hateren data basis [5] compared to CPC images. (c) and
(d) Averaged histograms of the intensity of 400 van Hateren and CPC
images, respectively.

images with few isolated small values—compare Figs. 6a, 6b,
and 6c¢. In fact, the effect of ) is combined with the effect of the
resolution ¢ in the product Aclog(1/¢). The smaller the
resolution 0 < ¢ < 1, the deeper the cascade. The quantity
clog(1/¢) is a measure of the clutter in the image so that the
bigger clog(1/¢), the heavier the tails of the distribution.
Therefore, one may tune both parameters A and clog(1/¢) to
model a large class of empirical log-intensity distributions.
We emphasize that images associated to Bessel I forms can be
easily synthesized numerically—see Fig. 6.

4 EXPERIMENT

This section aims at demonstrating that IDC images obey
most of the statistical properties usually observed on natural
images. To this purpose, we systematically carry out the
statistical analysis of a set of 400 simulated IDC images and
compare it to the analysis of a set of 400 images from the van
Hateren database [5]. We show that IDCs clearly obey
nontrivial properties of natural images so that we can state
that IDCs are a very good candidate to model natural images.

4.1 Intensity Is Scale Invariant and Non-Gaussian

Fig.7ashows the average power spectrum of the intensity / of
a set of 400 images from the van Hateren data basis [5]. The
estimated slope is about —1.8, which is consistent with other
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Fig. 8. (a) and (b) Averaged Fourier spectrum (squared amplitude of the
Fourier components) of log-intensity of 400 images from van Hateren
data basis [5] compared to 400 CPC images. (c) and (d) Averaged
histograms of log-intensity of 400 van Hateren and CPC images,
respectively.

estimates reported in the literature [2], [3], [9], [10]. For
images simulated using IDC, the spectrum is o 1/k**7(). By
choosing some adequate distribution of the multipliers W; of
CPCs, we set 7(2) ~ —0.2, which yields a spectrum oc 1/k'®
(see Section 2.2), as can be checked in Fig. 7b.

The histograms of intensity / of the 400 Van Hateren and
CPC images are shown in Figs. 7c and 7d. Although no
parameter has been adjusted here, a similar functional
shape is observed with a slow decrease in the log-log plot.
Intensity is clearly non-Gaussian in both cases. The
histogram has a maximum that is close to zero and displays
a slow decrease toward high values.

4.2 Log-Intensity Is Scale Invariant and
Non-Gaussian

Fig. 8a shows a power spectrum estimated from the contrast
log I on a set of 400 images from the van Hateren data basis
[5]. The estimated slope is about —2, which is consistent
with other estimates reported in the literature [2], [9], [10].
For images simulated using CPC, the spectrum has a oc 1/k?
behavior as well, see Fig. 8b.

The histograms of log I for the 400 van Hateren and CPC
images are shown in Figs. 8c and 8d. No parameter has been
adjusted here. The similarity between both histograms is
rather approximate and essentially limited to a strong
skewness to the left. The log-intensity is clearly non-Gaussian
in both cases. Note that such a histogram is difficult to
estimate precisely on images from the van Hateren data basis
due to a lack of quantification (limited to 12 bits).

4.3 Coarse-Grained Intensity Obeys Multifractal
Scaling

Fig. 9 shows the results of the multifractal analysis of the

images from the van Hateren database. Fig. 9a checks for the

relevance of such an analysis. A clear scaling behavior of the
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Fig. 9. Multifractal analysis of a set of 400 images from the van Hateren
database. (a) Observation of the behavior IEcd o r7(@) over nearly five
octaves for one individual image. (b) The averaged observed exponent
7(q) display a nonlinear behavior; error bars correspond to the empirical
95 percent confidence intervals.

form (see (10)) IE[e?] ~ 7@ (0 < ¢ < 3) is observed on
individual images. The empirical 95 percent confidence
intervals show that the exponents 7(¢) estimated from the
set of images significantly depart from a linear behavior, see
Fig. 9b. As a consequence, a multifractal approach is relevant.
Recall that IDCs were originally designed to obey statistical
properties observed onsignals probed in turbulent fluid flows
(cf. the multifractal formalism). Here, we see that they share
higher order statistical properties with naturalimages as well.
Note that we donot pretend that each image is multifractal
in any region, but only that, on the average, a multifractal
model like IDC may be relevant when dealing with the
statistical properties of a large set of natural images. Natural
images combine various kind of singularities due to the
presence of edges, where strong variations occur, and
textured regions (that may be multifractal themselves).

4.4 Correlations of [ and log /

Another quantity to look at is the correlation of the
intensity Cr(x) = IE[1(0)I(x)], respectively, of the contrast
(log-intensity) Ciog7(x) = IE[log I(0)log I(x)]—see Fig. 10.
According to Mumford and Gidas [10], as a consequence
of the scale invariance property, a relevant model should
display a power law correlation function for the intensity.
Figs. 10a and 10b shows this behavior for the set of
400 images from the van Hateren data basis. This is also a
classical property of multiplicative cascades. For IDC,
these correlations are known to be, respectively, Cr(x)
x|™ and Cies(x) o log |x|—see Figs. 10c and 10d. We
emphasize that such nontrivial properties are consistent
with the results on power spectrum densities even though
it is more difficult to check. Note that the apparent
variance in Figs. 10a and 10b is due to the averaging over
all directions. A much smoother curve (suggesting less
variance) would be observed for the horizontal or vertical
correlations only for instance. Despite a larger correlation
length in the horizontal direction than in the vertical one,
the qualitative behavior remains the same for all direc-
tions for ||x|| < 64 pixels.

4.5 IDC versus Ruderman and Bialek’s Analysis

In [4], [8], [9], Ruderman and Bialek report on the statistical
analysis of a set of 54 images taken in the woods of
Hacklebarney State Park in central New Jersey. They study
the link between non-Gaussian distributions and the
inhomogeneity of gradients by defining the coarse-grained
log-contrast ¢y(x) of ¢ =log(I/I,) in an N x N block

] \§|gpe~-0.o4 g.‘m\\ ope ~~0.05
S “ K
w g M"\w
° =
g g \\\1
- LW 499
6.8]
¢ ! Iogmlxl 2 0 T 2 log Ix 3 4 5
(@) (b)
1.
1
- slope ~ 7(2) | = slope ~ 7"(0)
g P \
S 8 \
g s
w g N
e 4 \
g ) \
w \\
05
25 ES o -6 5 4 2 ] 0

(©) (d)

Fig. 10. (a) and (b) Correlation functions for I and log I estimated from a
set a 400 natural images from van Hateren database. One observes that
E[I(0)I(x)] « |x|* and E[logI(0)logI(x)] o log |x|. (c) and (d) For CPC,
E[Q,(0)Q,(x)] & |x|® over nearly two decades: The observed slope
exponent is prescribed by the choice of ¢(2); IE[log Q,(0)log Q,(x)]
log |x| betrays a multiplicative correlation structure.

surrounding each point x. Denote by oy the variance of
¢n(x) for fixed N. Then, the normalized quantities
¢n(x)/oy are found to be close to identically distributed.
We show below that this is again consistent with the IDC
approach. Let w be a random variable distributed by the
common (zero mean and unit variance) distribution of the
on(x)/on, and let W = e*. Denote by Iy(x) = exp[¢n(x)].
Using our notations, the result in [4], [9] can be rewritten as
in law

¢](\7FVX) ingw PN ¢A’(X) lov o (27>

= In(x) "= W,

Thus, a multiplicative hierarchy appears (in law) as the
(geometrically) averaged intensity /y(x) over N x N pixelsis
concerned. This gives some precise sense to the “hidden
multipliers” evoked in [2], which sound much like the
Novikov’s “breakdown coefficients” in turbulence [72]. This
observation advocates once more for the interest of the IDC
framework. The quantity oy then appears as a measure of the
clutter at scale N that can be interpreted as the depth of a
multiplicative cascade—see Section 3.1. As already men-
tionedin Section 3.5, the results by Wainwright and Simoncelli
[55], [56] based on the GSM model also advocate for this
hidden multiplier structure by studying the local variance.
Such a “self-similarity” of the log-contrast histograms is
expected on IDC images with on o 7(2) log N. Fig. 11 shows
numerical results obtained from several independent
realizations of 512 x 512 images generated using an IDC.
Rescaled histograms have very similar shapes, Fig. 11b. Let
us recall that Ruderman [4] expected a power law
dependence of the form oy o< N7”. Therefore, linear
regressions in the log-log plots of oy versus N gave v ~
—0.2 (which is a small exponent) as a rough estimate on
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Fig. 11. (a) Example of a realization of a CPC with the same parameters
as for all other figures, and (b) illustration of the self-similarity of coarse-
grained log-contrast histograms over scales N = 27 for 0 < j < 7 (from
N =1 to 128). (c) Log-log plot of the standard deviation oy of ¢y
distribution as a function of N; (d) log-linear plot of the standard
deviation o of ¢ distribution as a function of N.

images taken in the woods, Fig. 11c. However, a log-log plot
often hides many details: both the N™” model and the A —
Blog N model fit the data equally well in a log-log plot.
When modeling images as IDCs, we are rather led to
propose a model of the form oy ~ A — Blog N, see Fig. 11d
where a log-linear plot is shown. Here is one more evidence
of the relevance of IDC for the modeling of natural images
even though further study would be needed to discriminate
between these models. This might be of importance when
optimizing some denoising method for instance.

5 PROCEDURAL TEXTURE SYNTHESIS

5.1 Some Possibilities

Eventually, we want to put the emphasis on the potential use
of IDC in two dimensions for procedural texture synthesis.
We mentioned above the many degrees of freedom of IDCs,
for example, in Section 3.2. Scaling exponents can be
prescribed, the scaling range can be precisely defined, there
is no preferred scale ratio as in discrete constructions so that
properties are observed over a continuum inspace and scale, a
wide class of non-Gaussian models are available, geometrical
features (for example, anisotropy) can be taken into account,
and so forth. Playing with the control measure dm(x, ), the
distribution of multipliers F'(W), the local resolution ¢(x), the
regularity and geometry of the kernel f(x), and so forth, one
may obtain a wide variety of textures. Once more, we point to
the easy implementation of CPC as well. Several examples are
presented in Fig. 12.

Most texture synthesis methods actually use an additive
approach relying on the use of some functional basis like
wavelets [56], [70], [73] or morphlets [60]. Then, many simple
actions like zooming in or locally modifying any region of an
image are difficult mainly because of the use of a discrete
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Fig. 12. Examples of textures obtained using CPC with different kernels:
gray levels and 3D surface representations.

Fig. 13. Principle of the synthesis of a texture directly on a curved
manifold using a CPC and an example of a texture directly generated on
a sphere using a CP (gray levels)

tree-based construction. Some blocking effects may appear.
CPCs avoid the blockiness of tree-based methods and permit
to define the texture locally without any constraint on the
geometry of the region of interest. Aliasing, zooming,
inhomogeneity, anisotropy, and so forth can be controlled
locally in a very easy manner. For instance, finer details could
be progressively and dynamically generated as more and
more small scales are needed. Moreover, CPCs permit to
adapt the resolution locally to avoid aliasing artifacts.
Furthermore, the integration kernel f(x) in (6) plays a role
similar to that of the wavelet in a random wavelet expansion,
but it is not assigned to any deterministic position. Last, the
choice of some basic pattern f(x) results in some particular
texture [74], see Fig. 12.

5.2 Textures on Manifolds

Another advantage of IDCs is that the synthesis of a CPC on a
manifold results rather simple. It suffices to work with the
cone Cy(x) around the normal to the manifold at
position x—see Fig. 13. Provided that the curvature of the
manifold is not too large (radius R > 1), the algorithm
generalizes naturally: 1) generate a random Poisson point
process within a spherical corona R < |[x| < R+ 1, 2) gen-
erate associated random multipliers I; with givenlaw £, and
3) compute Q¢(x) on the sphere of radius R using (6). Thisis a
very interesting direction of work since it permits to avoid
classical artifacts due to the classical mapping of a planar
texture on a curved surface, for example, a sphere [74]. Fig. 13
shows the result of the direct synthesis of a CPC on a sphere:
there is no pole nor equator artifact in contrast with what
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happens with the usual texture mapping. Remarkably, even
with no use of any perspective effect, the picture seems to be
3D, whereas it is only a 2D projection. Another possibility
would be to synthesize and cut a 3D IDC texture with respect
to the desired manifold to deduce the 2D texture on this
manifold.

5.3 Software

Software and demos are available from our Web page.
Note that IDCs in N dimensions may also result as
useful to synthesize multifractal scalar fields (3D, (for
example, turbulent dissipation field), dynamical textures
(3D =2D +t, for example, moving texture), dynamical
3D scalar fields (4D =3D+t, for example, moving
3D cloud), and so forth). For instance, one can obtain a
multifractal film as a series of multifractal pictures with
multifractal time evolution. The film is obtained by
taking each image as a 2D slice of a 3D scalar field
generated using a CPC; the third dimension is used as a
time parameter. Then, each image is a multifractal image;
the time evolution of one particular pixel is multifractal
as well. A sample of such a film can be downloaded
from our Web site.

6 CONCLUSION

In summary, we have presented a new family of stochastic
processes for the modeling of natural images, namely, IDCs.
This family of multifractal processes was first designed to
model scalar fields in turbulent fluid flows [1], [29], [30],
[41]. From a theoretical point of view, IDCs are mathema-
tically sound [1], [28], [31], [46]. Our purpose was to show
that IDCs fulfill most of the desired properties a “good
model” of natural images should have, including nontrivial
multivariate statistics [2], [55], [57].

Notably, the IDC framework shares many properties with
the work by Mumford and Gidas [10] where an axiomatic
approach relying on the use of infinitely divisible distribu-
tions was proposed. However, there are important differ-
ences between IDCs and this former approach. Above all,
IDCs belong to the family of multiplicative cascades, whereas
Mumford and Gidas rather used a purely additive approach.
We have shown that IDCs provide a way to describe the self-
similar behavior of both the intensity / and its logarithm log I
within a consistent framework. The clutter notion, as defined
in [10], then receives a quantitative meaning as the depth
log(1/¢) of amultiplicative cascade. Among the full generality
of the IDC framework, the CPCs are particularly attractive
since they receive a rather intuitive physical interpretation,
which can be compared to other works [13], [52], [53], [54],
[59], where natural images are modeled by the projection of a
random distribution of objects in space. In particular, we have
focused on the TGMs and Bessel K forms proposed by
Grenander and Srivastava in [13], [52]. We have shown that,
under some conditions, the logarithm of a CPC and a TGM
could be seen as similar models. These approaches give
complementary insights to the modeling of natural images.
Turning to the modeling of the distributions of multiscale
quantities (for example, wavelet coefficients), we have shown
an interesting correspondence between IDC models and
some Fokker-Planck equation, which describes the depen-
dence of their statistics on the scale of observation. We have
shown that changing the scale of observation amounts to a
forward or backward evolution of the probability densities
(for example, of the wavelet coefficients) governed by this

Fokker-Planck equation. This last remark has led us to shed
some light on the deep connections between the IDCs and the
GSMs proposed by Wainwright and Simoncelli [55], [56].
Both of them rely on the introduction of “hidden multipliers”
to describe the correlation structure of an image. Referring to
the infinitely divisible Bessel K forms proposed by Grenander
and Srivastava [13] to model the gradient image intensity, we
have introduced the Bessel I forms to directly model the
intensity itself. We advocate for the use of Bessel I forms,
which are special CPCs that depend on one parameter only, to
model the intensity /(x) of natural images. Bessel I forms can
be easily synthesized numerically. They may be relevant to
model pdfs of an image at different resolutions.

To make our claim even more convincing and concrete, we
have analyzed a set of 400 images from the van Hateren
database [5]. We have estimated histograms, spectra, correla-
tion, and multifractal scaling properties both on the intensity
I(x)and onitslogarithm log I (sometimes called the contrast).
All our observations are consistent with the IDC framework.
Even the “paradoxical” analogies between observations on I
and log I can be consistently understood in this approach.
Therefore, IDCs appear as a very rich theoretical framework
as far as the modeling of natural images is concerned. They
are consistent with the usual assumptions of most of the
already known models, and they shed a new light on
interconnections between various approaches.

Finally, we focused on the application of IDC to procedural
texture synthesis. The large number of degrees of freedom of
IDC and, above all, CPC (for example, scaling properties,
local control of inhomogeneity, and anisotropy) makes them
very easy to play with for aesthetic purpose. CPCs can evenbe
synthesized directly on a manifold, for example, a sphere,
while preserving all their statistical properties, with no
mapping artifacts. Furthermore, 3D textures can also be
obtained using IDCs, aswellas 2D + t or 3D + t animated and
dynamical textures. Software and examples can be down-
loaded from our Web page.

Some interesting research remains to be done around
IDCs. One direction is the study and the optimization of
image processing tools based on a Bayesian approach under
the assumption that images belong to some class of IDC. We
expect that efficient Bayesian methods might be elaborated
using some IDC model, for instance, in the spirit of the work
by Fadili and Boubchir [75] or even by adapting someideas by
Wainwright et al. [56]. An IDC-based image processing
method would benefit from their ability to precisely model
the statistical features of natural images and to locally take
into account the geometrical properties of an image where
preferential directions, edges, and varying textures play a
central role. Another important direction is the application of
IDC to the modeling of various physical systems like
turbulent scalar fields, clouds, porous media, and so forth.
This is the subject of ongoing work.

Part of the results presented in this paper were commu-
nicated to Groupe de recherche et d’études du traitement du
signal et des images (GRETSI "05) [74] and to International
Conference on Image Processing (ICIP '05) [34].
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