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Estimation d’un biais, cas de la variance

Gauche : estimateur biaisé; droite : non biaisé
X gaussien, n = 5; B = 1000; MC = 1000

moyenne du biais -4.94e-4 (pour 0) et -0.1861 (à comparer à 2)



Intervalle de confiance, cas de la moyenne

X gaussien (10,25), n = 10 et moyenne empirique µ̂ = 9.946
x = (−2.41,4.86,6.06,9.11,10.20,12.81,13.17,14.10,15.77,15.79)

B = 100; IC à 95% = [6.27,13.19] à comparer au théorique
[6.85,13.05]. Graphe : comparaison à une distrib. normale de
moyenne 10, variance 25.



Intervalle de confiance, cas de la moyenne

X non gaussien : student t-4; n = 10 (moyenne nulle, variance
t/(t − 2)

B = 100; IC à 95% = [−0.896,0.902] (pas de valeur théorique).
Graphe : comparaison à une estimation MC, 1000 répliques.



Illustration du Bootstrap par blocs
worrying observation of nonpreser-
vation of stationarity has been
reported in [25]. A resampling
scheme in which the length of each
block is randomly chosen (the so-
called stationary bootstrap) provides
a solution to this problem [26]. See
the paper by Politis [27] for some
recent dependent data bootstrap
techniques.

The observations made above
show that the very appealing simplici-
ty of the standard bootstrap resam-
pling technique is somehow lost in
the dependent data bootstrap meth-
ods. Also, the amount of evidence
supporting the empirical validity of
those procedures is still limited. This
leads to an unpopular conclusion that
the bootstrap novice should attempt a
model-based approach when dealing
with non-i.i.d. data, especially when
only limited knowledge of the data
dependence structure is available.
Nevertheless, there are practical cases
in which a model-based approach
combined with dependent data boot-
strap is powerful.

We now close our dependent data bootstrap treatment with
an example from radar.

MICRO-DOPPLER ANALYSIS
The Doppler phenomenon often arises in engineering applica-
tions where radar, ladar, sonar, and ultra-sound measurements
are made. This may be due to the relative motion of an object
with respect to the measurement system. If the motion is har-
monic, for example due to vibration or rotation, the resulting
signal can be well modeled by a frequency modulated (FM) signal
[28]. Estimation of the FM parameters may allow us to deter-
mine physical properties such as the angular velocity and dis-
placement of the vibrational/rotational motion which can in turn
be used for classification. The objectives are to estimate the
micro-Doppler parameters along with a measure of accuracy,
such as confidence intervals.

Assume the following amplitude modulation (AM)-FM signal
model:

s(t) = a(t) exp{ jϕ(t)}, (1)

where the AM is described by a polynomial: a(t;ααα) =
∑q

k=0 αktk

and ααα = (α0, . . . ,αq) are the termed AM parameters. The phase
modulation for a micro-Doppler signal is described by a sinusoidal
function: ϕ(t) = −D/ωm cos(ωmt + φ).

The instantaneous angular frequency (IF) of the signals is
defined by

ω(t;βββ) ! dϕ(t)
dt

= D sin(ωmt + φ), (2)

where βββ = (D,ωm,φ) are termed the FM or micro-Doppler
parameters.

The micro-Doppler signal in (1) is buried in additive noise so
that the observation process is described by X(t) = s(t) + V(t),
where V(t) is assumed to be a colored noise process. Given obser-
vations {x(k)}n

k=1 of X(t), the goal is to estimate the micro-
Doppler parameters in βββ as well as their confidence intervals.

The estimation of the phase parameters is performed using a
time-frequency Hough transform (TFHT) [29], [30]. The TFHT
we use is given by

H(βββ) =
n−(L−1)/2+1∑

k=−(L−1)/2

Pxx[k,ωi(n;βββ)),

where ω(t,βββ) is described in (2), and Pxx[k,ωi(n;βββ)) is the
pseudo-Wigner-Ville (PWVD) distribution, defined as

Pxx[k,ω) =
(L−1)/2∑

l=−(L−1)/2

h[k]x[k + l]x∗[k − l]e− j 2ω, (3)

for k = −(L − 1)/2, . . . , n − (L − 1)/2, where h[k] is a win-
dowing function of duration L. An estimate of βββ is obtained
from the location of the largest peak of H(βββ) , i.e.,
β̂ββ = arg maxβββ H(βββ) . Once the phase parameters have been

[FIG6] An example of the principle of moving block bootstrap. (a) Original data and (b) block
bootstrapped data. Note that some blocks from the original data appear more than once and
some do not appear at all in the bootstrapped data.
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Recherche d’un maximum : ne marche pas bien !

x selon loi uniforme sur [0, θ];
maximum estimé θ̂ = max(X1, ...,Xn)
θ = 1; n = 50; B = 1000 ; MLE donne θ̂ = 0.9843.

BS non paramétrique ; paramétrique (Weibull)



Estimation d’un modèle AR(1)

Xt + aXt−1 = Zt (stationnaire, blanc, gaussien, centré)
a = −0.6; n = 128; B = 1000

Comparaison à 1000 répliques MC. σ̂ de 0.0712 par BS,
0.0694 par MC, 0.0707 par MLE.



Exemple de réduction de bruit

ALTERNATIVE DEPENDENT DATA
BOOTSTRAP METHODS
Several questions may be asked at
this stage: how can one bootstrap
non-i.i.d. data without imposing a
parametric model? Can one resample
the data nonparametrically? First
answers to these questions have been
provided by Künsch [22], who introduced the concept of resam-
pling sequences (chunks) of data. The method is referred to as the
moving block bootstrap. In essence, rather than resampling with
replacement single data points, sets of consecutive points are
resampled to maintain, in a nonparametric fashion, the structure
between neighboring data points. The segments chosen for boot-
strapping can be either nonoverlapping or overlapping. To illus-
trate this concept, we use a sequence of Iskander’s eye aberration
data measured by a Hartmann-Shack sensor [23]. The data is
sampled at approximately 11 Hz and is composed of 128 data
points. We divide the sequence into nonoverlapping blocks of 16
samples each, as illustrated in the top panel of Figure 6. The
blocks are then resampled to obtain the bottom panel of Figure 6.

We note that the resampling of
blocks of data is based on the
assumption that the blocks are i.i.d.
This is the case when the data rep-
resents a process that is strong mix-
ing. This means, loosely speaking,
that the resampling scheme
assumes that the data points that

are far apart are nearly independent.
If the data are to be divided into segments, the length of each

segment as well as the amount of overlap may become an issue.
Although automatic procedures for selecting these parameters
have been developed [24], in many practical situations, the
dependence structure of the sample may still need to be estimat-
ed or at least examined. The problem may become even more
complicated if the original data is nonstationary. There are
reported cases where moving block bootstrap techniques show a
certain degree of robustness for nonstationary data (see the chap-
ter by Lahiri in [8]). On the other hand, it is not guaranteed that
the moving block bootstrap estimates from a stationary process
would themselves result in stationary processes. This somewhat

[FIG5]  Results of the speech signal analysis experiment. (a) The original signal s(t) corresponding to the vocal part of “Reis” and its
noise-reduced version ŝ(t). (b) The estimated residuals and (c) their covariance structure. (d) The Estimated coefficients of the AR(11)
model and 90% confidence intervals.

50 100 150 200 250
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Samples

M
ag

ni
tu

de

 

 
Clear Speech
Noise-Removed

(a)

50 100 150 200 250
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Samples

R
es

id
ua

ls

(b)

(c)

−150 −100 −50 0 50 100 150
−0.5

0

0.5

1

1.5

2

2.5

Lag

C
ov

ar
ia

nc
e 

V
al

ue

0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

Order

P
ar

am
et

er
 V

al
ue

 

Noise-Removed
Clear Speech

(d)

IEEE SIGNAL PROCESSING MAGAZINE [15] JULY 2007

THE BOOTSTRAP HAS THE POWER
TO SUBSTITUTE TEDIOUS AND

OFTEN IMPOSSIBLE ANALYTICAL
DERIVATIONS WITH

COMPUTATIONAL CALCULATIONS.



Exemple : analyse micro-Doppler

estimated, the phase term is demodulated and the amplitude
parameters α0, . . . ,αq are estimated via linear least-squares.

We now turn our attention to the estimation of confidence
intervals for D and ωm using the bootstrap. Given estimates for
ααα and βββ, the residuals are obtained by subtracting the estimat-
ed signal from the observations. The resulting residuals are not
i.i.d., and a dependent data bootstrap would seem a natural
choice. Due to some difficulties with a dependent data boot-
strap approach with real data, we chose to whiten the residuals
by estimating parameters of a fitted AR model. The innovations
are then resampled, filtered, and added to the estimated signal
term to obtain bootstrap versions of the data, as discussed pre-

viously. By reestimating the parameters many times from the
bootstrap data, we are then able to obtain confidence intervals
for the parameters of interest. This is demonstrated using
experimental data.

The results shown here are based on an experimental radar
system, operating at carrier frequency fc = 919.82 MHz. After
demodulation, the in-phase and quadrature baseband channels
are sampled at fs = 1 kHz. The radar system is directed towards
a spherical object, swinging with a pendulum motion, which
results in a typical micro-Doppler signature. The PWVD of the
observations is computed according to (3) and shown in Figure
7(a). The sinusoidal frequency modulation is clearly observed.

[FIG7] (a) The PWVD of the radar data. (b) The PWVD of the radar data and the micro-Doppler signature estimated using the TFHT. (c)
The real and imaginary components of the radar signal with their estimated counterparts. (d) The real and imaginary parts of the
residuals and their spectral estimates.
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Exemple : analyse micro-Doppler

IC à 95%

Using the TFHT, we estimate the micro-Doppler signature as
discussed above and plot it over the PWVD in Figure 7(b). The
AM parameters of the signal are then estimated. The radar data
and the estimated AM-FM signal term are shown in Figure 7(c),
while the residuals obtained by subtracting the estimated signal
from the data are shown in Figure 7(d) together with their peri-
odogram and AR-based spectral estimates. The model appears to
fit the data well, and coloration of the noise seems to be well
approximated using an AR model.

After applying the bootstrap with B = 500, the estimated dis-
tribution of the micro-Doppler parameters and the 95% confi-
dence intervals for D and ωm are obtained and shown in Figure 8.

This example shows that the bootstrap is a
solution to finding distribution estimates for
D̂ and ω̂m, a task that would be tedious or
even impossible to achieve analytically.

GUIDELINES FOR USING THE BOOTSTRAP
Let us summarize the main points from our
discussion. Is it really possible to use the
bootstrap to extricate oneself from a difficult
situation as anecdotally Baron von
Münchhausen did? There are many dictionary
definitions of the word bootstrap. The one we
would like to bring to the readers’ attention
is: “to change the state using existing
resources.” With this definition, the answer to
our question is affirmative. Yes, it is possible
to change our state of knowledge (e.g., the
knowledge of the distribution of parameter
estimators) based on what we have at hand,
usually a single observation of the process.

However, for the bootstrap to be successful, we need to identify
which resampling scheme is most appropriate. The initial deci-
sion must be based on the examination of the data and the prob-
lem at hand. If the data can be assumed to be i.i.d. (the unlikely
scenario in real world problems, but useful in simulation studies),
standard bootstrap resampling techniques such as the independ-
ent data bootstrap can be used. Should the data be non-i.i.d., we
should consider first a parametric approach in which a specific
structure is assumed (see Figure 9). If this can be done, we can
reduce the seemingly difficult problem of dependent data boot-
strap to standard resampling of the assumed i.i.d. model error
estimates (residuals). If a model for the data structure cannot be

IEEE SIGNAL PROCESSING MAGAZINE [18] JULY 2007

[FIG8]  The bootstrap distributions and 95% confidence intervals for the FM parameters (a) D and (b) ωm.

71.7 71.8 71.9 72 72.1 72.2 72.3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

D/(2π)  (Hz)

Boostrap Confidence Interval for D

 

Bootstrap Dist.
Initial Estimate
95% CI

(a)

3.037 3.038 3.039 3.04 3.041 3.042 3.043 3.044 3.045 3.046
0

50

100

150

200

250

300

350

400

450

ωm /(2π) (Hz)

Boostrap Confidence Interval for ωm

 

 
Bootstrap Dist.
Initial Estimate
95% CI

(b)

[FIG9]  A practical strategy for bootstrapping data.
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Sélection de modèle linéaire

N (0,1) t3
Model β BS AIC MDL BS AIC MDL

(0,0,b2,b3) 100 91 98 99 89 98
(0,b1,b2,b3) 0 5 1 1 5 1
(b0,0,b2,b3) 0 3 1 0 3 1
(b0,b1,b2,b3) 0 2 0 0 3 0



Sélection de modèle AR

Méthode β = 1 β = 2 β = 3 β = 4
BS 28.0 65.0 5.0 2.0
AIC 17.8 62.4 12.6 7.2
MDL 43.2 54.6 2.1 0.1



Stabilisation de variance
Std du coefficient de corrélation sans stabilisation de variance



Stabilisation de variance
Fonction stabilisatrice de variance



Stabilisation de variance
Std du coeff de corrélation après stab. variance

Fonction estimée Transformation de Fisher
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