M2 SC – Usages du hasard Bootstrap, illustrations

Pierre BORGNAT

CNRS, Équipe Sisyphe (Signaux, Systèmes and Physique) Laboratoire de Physique de l'ENS de Lyon, Université de Lyon

Estimation d'un biais, cas de la variance

Gauche : estimateur biaisé; droite : non biaisé X gaussien, n = 5; B = 1000; MC = 1000

moyenne du biais -4.94e-4 (pour 0) et -0.1861 (à comparer à 2)

・ロット (雪) (日) (日)

Intervalle de confiance, cas de la moyenne

X gaussien (10,25), n = 10 et moyenne empirique $\hat{\mu} = 9.946$ x = (-2.41, 4.86, 6.06, 9.11, 10.20, 12.81, 13.17, 14.10, 15.77, 15.79)

B = 100; IC à 95% = [6.27, 13.19] à comparer au théorique [6.85, 13.05]. Graphe : comparaison à une distrib. normale de moyenne 10, variance 25.

Intervalle de confiance, cas de la moyenne

X non gaussien : student t-4; n = 10 (moyenne nulle, variance t/(t-2)

B = 100; IC à 95% = [-0.896, 0.902] (pas de valeur théorique). Graphe : comparaison à une estimation MC, 1000 répliques.

・ コット (雪) (小田) (コット 日)

Illustration du Bootstrap par blocs

▲ロ▶▲圖▶▲≣▶▲≣▶ ≣ のQで

Recherche d'un maximum : ne marche pas bien !

x selon loi uniforme sur $[0, \theta]$; maximum estimé $\hat{\theta} = \max(X_1, ..., X_n)$ $\theta = 1; n = 50; B = 1000$; MLE donne $\hat{\theta} = 0.9843$.

ヘロマ ヘ動 マイロマー

Estimation d'un modèle AR(1)

 $X_t + aX_{t-1} = Z_t$ (stationnaire, blanc, gaussien, centré) a = -0.6; n = 128; B = 1000

Comparaison à 1000 répliques MC. $\hat{\sigma}$ de 0.0712 par BS, 0.0694 par MC, 0.0707 par MLE.

Exemple de réduction de bruit

200

Exemple : analyse micro-Doppler

Sac

Exemple : analyse micro-Doppler

Sélection de modèle linéaire

		$\mathcal{N}(0,1)$			t ₃	
Model β	BS	AIC	MDL	BS	AIC	MDL
$(0, 0, b_2, b_3)$	100	91	98	99	89	98
$(0, b_1, b_2, b_3)$	0	5	1	1	5	1
$(b_0, 0, b_2, b_3)$	0	3	1	0	3	1
(b_0, b_1, b_2, b_3)	0	2	0	0	3	0

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

Sélection de modèle AR

Méthode	$\beta = 1$	$\beta = 2$	$\beta = 3$	$\beta = 4$
BS	28.0	65.0	5.0	2.0
AIC	17.8	62.4	12.6	7.2
MDL	43.2	54.6	2.1	0.1

Stabilisation de variance

Std du coefficient de corrélation sans stabilisation de variance

◆ロ▶★舂▶★≧▶★≧▶ 差 のなぐ

Stabilisation de variance

Fonction stabilisatrice de variance

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Stabilisation de variance

Std du coeff de corrélation après stab. variance

Transformation de Fisher

・ コット (雪) (小田) (コット 日)

Bibliographie et sources

 Les images ont été empruntées aux ouvrages et articles suivants :

- A. Zoubir, R. Iskander, "Bootstrap techniques for Signal Processing", CUP, 2004

- A Zoubir, B. Boashash, "The Bootstrap and its Application in Signal Processing", IEEE - Signal Processing Magazine, p. 56, 1998

 - A. Zoubir, R. Iskander, "Bootstrap Methods and Applications : A Tutorial for the Signal Processing Practitioner" IEEE - Signal Processing Magazine 24(4), p. 10-19, 2007.

• Autres ouvrages de référence :

- Efron, B.; Tibshirani, R. (1993). An Introduction to the Bootstrap. Boca Raton, FL: Chapman & Hall/CRC.

- Efron, B. (1982). The jackknife, the bootstrap, and other resampling plans. 38. Society of Industrial and Applied Mathematics CBMS-NSF Monographs.