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Overview of the lecture
• General objective: revisit classical data analysis

techniques (most used in signal and image processing) in
the context of discrete structures such as networks and
signals defined on graphs.

• The things we will discuss:
• Introduce you to the emerging field of graph signal & image

processing
• Basic of spectral analysis of graphs, and on the graph

Laplacian
• Harmonic analysis on graphs: wavelets
• Examples: denoising on graphs; communities;...

• Organization:
1. This introduction with several examples
2. Spectral analysis of the Laplacian; properties
3. Spectral graph Fourier transform, operators and wavelets
4. Laplacian pyramid, graph downsampling; applications
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Introduction: on signals and graphs
• My own bias: I work in the SISYPHE (Signal, Systems

and Physics) group in statistical signal processing, located
in the Physics Laboratory of ENS de Lyon

• I have worked also on Internet traffic analysis, and on
studies of complex systems

• Strong bias: nonstationary and/or multiscale approaches

• Hence, I will talk about
data analysis and processing for network

• Examples of topics that we study:

Technological networks (Internet, mobile phones, sensor
networks,...)
Social networks; Transportation networks (Vélo’v)
Biosignals: Human brain networks; genomic data; ECG
...
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Introduction: on signals and graphs

Why data analysis and processing is useful for networks?

• Many examples of data having both labels or values
(“signals”) and relational properties (graphs)

• Non-trivial estimation issues (e.g., non repeated measures;
variables with large distributions (or power-laws); ...)

→ advanced statistical approaches
• large networks

→ multiscale approaches
• dynamical networks

→ nonstationary methods

p. 4
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Examples of networks from our digital world

LinkedIn Network Citation Graph Vehicle Network

USA Power grid Web Graph Protein Network
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Examples of graph signals

Minnesota Roads USA Temperature fcMRI Brain Network

Image Grid Color Point Cloud Image Database
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Typical problems
[P. Vandergheynst, EPFL, 2013]

EPFL – Signal Processing Laboratory (LTS2)
http://lts2.epfl.ch

Some Typical Processing Problems
3

Semi-Supervised Learning

Analysis / Information Extraction

Denoising

Compression / Visualization

Earth data source: Frederik Simons
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Recovery of signals on graphs
[P. Vandergheynst, EPFL, 2013]

• Denoising of a signal with Tikhonov regularization

arg min
f
||f − y ||22 + γf>Lf

EPFL – Signal Processing Laboratory (LTS2)
http://lts2.epfl.ch

Simple Motivating Examples
! Tikhonov regularization for denoising:

5

argminf

�
||f � y||22 + �fT Lf
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Writing Tikhonov denoising as a Graph filter
[P. Vandergheynst, EPFL, 2013]

• It is easy to solve this regularization problem in the spectral
domain

arg min
f

τ

2
||f − y ||22 + f>Lf ⇒ Lf∗ +

τ

2
(f∗ − y) = 0

• Move to the spectral domain of the Laplacian

L̂f∗(i) +
τ

2
(f̂∗(i)− ŷ(i)) = 0, ∀i ∈ {0,1, ...N − 1}

• Solution:
f̂∗(i) =

τ

τ + 2λi
ŷ(i)

• This is a 1st-order “low pass” filtering

p. 9
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Recovery of signals on graphs
[P. Vandergheynst, EPFL, 2013]

• Limit of Tikhonov regularization

arg min
f
||f − y ||22 + γf>Lf

EPFL – Signal Processing Laboratory (LTS2)
http://lts2.epfl.ch

Simple Motivating Examples
! Tikhonov regularization for denoising:

5

argminf

�
||f � y||22 + �fT Lf
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Recovery of signals on graphs
[P. Vandergheynst, EPFL, 2013]

• Denoising of a signal with Wavelet regularization

arg min
a
||W>a− y ||22 + γ||a||1

EPFL – Signal Processing Laboratory (LTS2)
http://lts2.epfl.ch

Simple Motivating Examples
! Tikhonov regularization for denoising:

! Wavelet denoising:

5

argminf

�
||f � y||22 + �fT Lf
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EPFL – Signal Processing Laboratory (LTS2)
http://lts2.epfl.ch

Simple Motivating Examples
! Tikhonov regularization for denoising:

! Wavelet denoising:

5

argminf

�
||f � y||22 + �fT Lf
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• Wavelets will be described later on in the lectures... Stay
tuned.
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Generalized translations
[Shuman, Ricaud, Vandergheynst, 2014]

• Classical translation:

(Tτg) (t) = g(t − τ) =
∑

R
ĝ(ξ)e−i2πτξe−i2πtξdξ

• Graph translations by fundamental analogy:

(Tnf ) (a) =
N−1∑

i=0

f̂ (i)χ∗i (n)χi(a)

• Example on the Minnesota road networks

(a) (b) (c)

Figure 7: The translated signals (a) T200f , (b) T1000f , and (c) T2000f , where f , the signal shown in Figure 1(c), is a normalized

heat kernel satisfying f̂(�`) = Ce�5�` . The component of the translated signal at the center vertex is highlighted in magenta.

4.3. Properties of the Generalized Translation Operator

Some expected properties of the generalized translation operator follow immediately from the generalized
convolution properties of Proposition 1.

Corollary 1: For any f, g 2 RN and i, j 2 {1, 2, . . . , N},
1. Ti(f ⇤ g) = (Tif) ⇤ g = f ⇤ (Tig).

2. TiTjf = TjTif .

3.
PN

n=1(Tif)(n) =
p

Nf̂(0) =
PN

n=1 f(n).

However, the niceties end there, and we should also point out some properties that are true for the
classical translation operator, but not for the generalized translation operator for signals on graphs. First,
unlike the classical case, the set of translation operators {Ti}i2{1,2,...,N} do not form a mathematical group;
i.e., TiTj 6= Ti+j . In the very special case of shift-invariant graphs [24, p. 158], which are graphs for which
the DFT basis vectors (9) are graph Laplacian eigenvectors (the unweighted ring graph shown in Figure 5(c)
is one such graph), we have

TiTj = Th�
(i�1)+(j�1)

�
mod N

i
+1

, 8i, j 2 {1, 2, . . . , N}. (26)

However, (26) is not true in general for arbitrary graphs. Moreover, while the idea of successive translations
TiTj carries a clear meaning in the classical case, it is not a particularly meaningful concept in the graph
setting due to our definition of generalized translation as a kernelized operator.

Second, unlike the classical translation operator, the generalized translation operator is not an isometric
operator; i.e., kTifk2 6= kfk2 for all indices i and signals f . Rather, we have

Lemma 1: For any f 2 RN ,

|f̂(0)|  kTifk2 
p

N⌫ikfk2 
p

Nµkfk2. (27)

Proof.

kTifk22 =

NX

n=1

 
p

N

N�1X

`=0

f̂(�`)�
⇤
` (i)�`(n)

!2

= N

N�1X

`=0

N�1X

`0=0

f̂(�`)f̂(�`0)�
⇤
` (i)�

⇤
`0(i)

NX

n=1

�`(n)�`0(n)

= N

N�1X

`=0

|f̂(�`)|2 |�⇤
` (i)|2 (28)

 N⌫2
i kfk22. (29)

10
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Empirical mode decomposition on graphs

• Objective: decompose a graph signal in various
“elementary” modes in a data-driven and non stationary
approach

[N. Tremblay, P. Flandrin, P. Borgnat, 2014]

p. 13
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Fourier transform of signals
“Signal processing 101”
The Fourier transform is of paramount importance:
Given a times series xn, n = 1,2, ...,N, let its Discrete Fourier
Transform (DFT) be

∀k ∈ Z x̂k =
N−1∑

n=0

xne−i2πkn/N

Why ?
• Inversion: xn = 1

N
∑N−1

k=0 x̂ke−i2πkn/N

• Best domain to define Filtering (operator is diagonal)
• Definition of the Spectral analysis (FT of the

autocorrelation)
• Alternate representation domains of signals are useful:

Fourier domain, DCT, time-frequency representations,
wavelets, chirplets,...p. 14
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Spectral analysis of networks

Spectral theory for network
This is the study of graphs through the spectral analysis
(eigenvalues, eigenvectors) of matrices related to the graph:
the adjacency matrix, the Laplacian matrices,....

Notations
G = (V ,E ,w) a weighted graph

N = |V | number of nodes
A adjacency matrix Aij = wij
d vector of strengths di =

∑
j∈V wij

D matrix of strengths D = diag(d)
f signal (vector) defined on V

p. 15
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Relating the Laplacian of graphs to Signal Processing

Laplacian matrix
L or L laplacian matrix L = D − A

(λi) L’s eigenvalues 0 = λ0 < λ1 ≤ λ2 ≤ ... ≤ λN − 1

(χi) L’s eigenvectors Lχi = λi χi

A simple example: the straight line

←→ L =




...

... −1 0 0 0 0

... 2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2 ...
0 0 0 0 −1 ...

...




For this regular line graph, L is the 1-D classical laplacian operator
(i.e. double derivative operator):

its eigenvectors are the Fourier vectors, and its eigenvalues the
associated (squared) frequencies

p. 16
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A fundamental analogy
[Shuman et al., IEEE SP Mag, 2013]

Objective: Definition of a Fourier Transform adapted to
graph signals

f : signal defined on V ←→ f̂ : Fourier transform of f

Fundamental analogy
On any graph, the eigenvectors χi of the Laplacian matrix L will
be considered as the Fourier vectors, and its eigenvalues λi the
associated (squared) frequencies.

• Works exactly for all regular graphs (+ Beltrami-Laplace)
• Conduct to natural generalizations of signal processing

p. 17
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The graph Fourier transform

• f̂ is obtained from f ’s decomposition on the eigenvectors χi :

f̂ =




< χ0, f >
< χ1, f >
< χ2, f >

...
< χN − 1, f >




Define χ = (χ0|χ1|...|χN − 1) : f̂ = χ> f

• Reciprocally, the inverse Fourier transform reads: f = χ f̂
• The Parseval theorem is valid:
∀(g,h) < g,h >=< ĝ, ĥ >

p. 18
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Fourier modes: examples in 1D and in graphs

LOW FREQUENCY: HIGH FREQUENCY:

p. 19
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More Fourier modes

χ1

χ14

χ3

χ73

p. 20
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Alternative fundamental spectral correspondance
• With the Normalized Laplacian matrix

L = I − D−1/2AD−1/2

- Related to Ng. et al. normalized spectral clustering
- Good for degree heterogeneities
- Related to random walks
- For community detection

• With the random-walk Laplacian matrix (non symmetrized)

Lrw = D−1L = I − D−1W

- Better related to random walks
- Used by Shi-Malik spectral clustering (and graph cuts)

• Using the Adjacency matrix
- Wigner semi-circular law
- Discrete Signal Processing in Graphs (good for
undirected graphs) [Sandryhaila, Moura, IEEE TSP, 2013]

p. 21
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Filtering

Definition of graph filtering
We define a filter function g in the Fourier space.

It is discrete and defined on the eigenvalues λi → g(λi).

f̂ g =




f̂ (0) g(λ0)

f̂ (1) g(λ1)

f̂ (2) g(λ2)
...

f̂ (N−1) g(λN − 1)


 = Ĝ f̂ with Ĝ =




g(λ0) 0 0 ... 0
0 g(λ1) 0 ... 0
0 0 g(λ2) ... 0
... ... ... ... ...
0 0 0 ... g(λN − 1)




In the node-space, the filtered signal f g can be written:
f g = χ Ĝχ> f

p. 22
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For a graph with multiscale structure
finest scale (16 com.):

coarser scale (4 com.):

fine scale (8 com.):

coarsest scale (2 com.):

p. 23
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Spectral analysis: the χi and λi of a multiscale toy graph

Mode #
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Cuts, clustering and communities
The good, the bad and the ugly

• Networks are often inhomogeneous, with important links,
hubs, clusters, or communities (modules)

• These are observed in various types of data on networks:
social, technological, biological,...

• Importance of cuts: the min-cut max-flow theorem.
These are two primal-dual linear programs.
The max value of a flow = the min capacity over all cuts.

• For clusters and communities, see the extensive surveys:

[S. Fortunato, Physic Reports, 2010]

[von Luxburg, Statistics and Computating, 2007]

p. 25
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Some examples of networks with clusters or
communities

• Social face-to-face interaction networks

Mesure et analyse d’un réseau social Menaut Rémi

grand nombre d’évènements espacés dans le temps. En considérant l’instantanéités des courtes fenêtre
temporelle, nous pouvons construire pour une fenêtre temporelle une structure discrète (N, L) qui liste
les nœuds et les liens du réseaux pour une fenêtre temporelle donnée. Nous pouvons aussi utiliser
une représentation algébrique en considérant la matrice d’adjascence du réseau. Dans la suite, nous
utiliserons surtout cette représentation.

L’obtention de la matrice d’adjascence à partir des données bruts se fait en plusieurs étape que
nous détaillons ici. Grâce à de précédentes études, nous savons qu’il faut un temps d’interaction entre
deux badges de 20 s pour que ce contact soit enregistré avec une probabilité de plus de 99% [2]. Nous
discrétisons donc le temps en fenêtres temporelles de 20 s. Ensuite pour chaque fenêtre temporelle t,
nous construisons la matrice d’adjacence At du réseau. Il s’agit d’une matrice carrée de la taille du
nombre de participants. Ses coefficients At

ij valent 1 si les individus i et j ont eu un contact pendant
les 20 s de la fenêtre temporelle t ou 0 sinon. De plus, puisque nous ne différencions pas les cas où i
voit j aux cas où j voit i, la matrice At est symétrique.

Dans toute la suite et dans un souci d’allègement du discours, nous appellerons une fenêtre tempo-
relle un instant.

2 Premières analyses

2.1 Analyse du graphe agrégé

Une première méthode de visualisation du réseau consiste à construire son graphe agrégé. Pour cela,
il faut considérer la matrice d’adjacence agrégée du réseau : Aag =

P
t At. Le graphe obtenu est alors

statique : il ne dépend plus du temps. Le coefficient Aag
ij est appelé le poids de la liaison ij. Il correspond

au nombre d’instants pendant lesquels i et j étaient en contact. Le graphe peut alors être construit en
symbolisant chaque individu par un nœud puis en traçant un lien (d’épaisseur proportionnel au poids)
entre les nœuds i et j s’ils ont eu un contact.

Les graphes agrégés traçés sur la Figure 1 représentent les graphes agrégés des deux semaines de
mesures au laboratoire. Ils ont été tracés à l’aide du logiciel Gephi. La couleur d’un nœud donne son
appartenance à une équipe du laboratoire. Le placement des points a été fait à partir de l’algorithme
Force Atlas. Nous pouvons aussi constater un regroupement des nœuds d’une même équipe ce qui sera
étudié plus précisément dans la partie 4.

(a) Semaine 1 (b) Semaine 2

Figure 1 – Graphes agrégés des deux semaines de mesure. Chaque nœud représente un individu et
l’épaisseur d’un lien est proportionnelle à son poids. La couleur d’un nœud code l’équipe du laboratoire
dont il fait partit : Bleu : équipe 1, Rouge : équipe 2, Vert : équipe 3, Jaune : équipe 4, Orange : autre.

De nombreuses quantités peuvent être définies à partir de ce graphe agrégé [11]. Nous nous concen-

3

(Lab. physique, ENSL, 2013) (école primaire, Sociopatterns)

• Brain networks [Bullmore, Achard, 2006]

10   neurons
11

fMRI
10  voxels

0.3 Hz

5

Parcellation

Time series

Connectivity
using wavelets

Graphs of 
cerebral connections

Challenge 1: Robustness and hierarchical 
                     analysis of brain connectivity

Challenge 2: Brain networks clustering Challenge 3: Longitudinal study of brain networks

GRAPHSIP project challenges

p. 26
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Some examples of networks with clusters or
communities

• Mobile phones (The Belgium case, [Blondel et al., 2008])
• Scientometric (co)-citation (or publication) networks

[Jensen et al., 2011]

Modules often overlap with 

properties/functions of nodes

Data mining perspective:

Uncovering communities might 

help to uncover hidden properties 

between nodes

Why looking for modules?

  

Laboratoire de physique ENSL 
sous-thématiques, taille nœud = nb articles

réseau plutôt bien connecté (hors physique théorique)
Question : quels ponts entre sous-thématiques ?

p. 27
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Purpose of community detection?

someone

p. 28
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Purpose of community detection?

someone

ei Π=−1

p. 28
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Purpose of community detection?

1) Gives us a sketch of the network:

ei Π=−1

p. 29
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Purpose of community detection?
1) Gives us a sketch of the network:

ei Π=−1

2) Gives us intuition about its components:

ei Π=−1 ?
p. 29
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Methods to find clusters or communities

• I will not pretend to make a full survey... Some important
steps are:

• Cut algorithms (classical problem in computer science)
• Spectral clustering (seen as relaxed cut problem)
• Modularity optimization (there arrive the physicists)

[Newman, Girvan , 2004]
• Greedy modulatity optimization a la Louvain (computer

science strikes back) [Blondel et al., 2008]
• Ideas from information compression (and random walks)

[Rosvall, Bergstrom, 2008]

p. 30
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From graph cuts to spectral clustering
• Graph cuts in 2 (or bisection): find the partition in two

groups of nodes that minimize the cut size (i.e., the number
of links cut)

• Exhaustive search can be computationally challenging
• Also, the cut has to be normalized correctly to find groups

of relevant sizes
• One usual metric:

the Ratio-Cut between sets I and J of nodes

R(I, J) =
∑

i∈I,j∈J

Aij

and

RatioC(A, Ā) =
1
2

R(A, Ā)

|A| .

p. 31
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Spectral clustering for min-cut

• Spectral interpretation: compute the cut as function of the
adjacency matrix A

• We have R =
1
2

∑

i,j in6=groups

Aij .

This is equal to the cut size between the two groups
• Let us note si = ±1 the assignment of node i to group

labelled +1 or −1

• R =
1
2

∑

i,j

Aij(1− sisj) =
1
4

∑

i,j

Lijsisj =
1
4

s>Ls

• Hence, the problem reads as:

mins s>Ls

p. 32
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Spectral clustering for min-cut

• Let us assume the spectral decomposition of the Laplacian
(to be seen later on):

Lij =
N−1∑

k=1

λk (χk )i(χk )j

• The optimal assignment vector (that minimizes R) would
be si = (χ1)i . . . if there were no constraints on the si ’s...
Note: χ1 is known as the the Fiedler vector.

• However, si = +1 or −1...
• Approximated solution: si = sign((χ1)i).

• The estimated groups are still close to χ1.

p. 33
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Spectral clustering for min-RatioCut
• Normalization by the size of the sets: minA⊂V RatioC(A, Ā)
• The same problem written in a relaxed form introducing:

f(i) = +

√
|Ā|
|A| if i ∈ A and f(i) = −

√
|A|
|Ā| if i ∈ Ā

Then, ||f|| =
√
|V | and f>1 = 0.

• Finally, one has

f>L f = |V | · RatioC(A, Ā).

• Hence, problem with relaxed constraints:

minf f>L f
such that f>1 = 0, ||f||2 =

√
|V|

• This allows also for Spectral clustering of data represented
by networks

cf. [von Luxburg, Statistics and Computating, 2007]
p. 34
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Spectral clustering

• Example of spectral bisection on an irregular mesh

 

 

 

 

 

 

 

 

� It is not guaranteed to minimize �, but it often does very well. 

 

� The spectral partitioning based on the Laplacian (Fiedler, 1973, 

Pothen, Simon and Liou, 1990) is a poor approach for detecting 
natural community structure in real-world networks. 

- 8 - 

p. 35
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Spectral clustering

• Example of spectral bisection on data irregularly spread in
a space

19

Ipython Notebook example !• It’s good, very good in fact for clustering

• However, not really good for natural modules / communities

p. 36
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Quality of a partition: the Modularity

• Problems with spectral clustering:
1) No assessment of the quality of the partitions
2) No reference to comparison to some null hypothesis (or
“mean field”) situation

• Improvement: the modularity [Newman, 2003]

Q =
1

2m

∑

ij

[
Aij −

didj

2m

]
δ(ci , cj)

where 2m =
∑

i di .
• Q is between −1 and +1 (in fact, lower than 1− 1/nc if nc

groups)

p. 37
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Quality of a partition: the Modularity
• Interpretation: di dj

2m is, for a null model as a Bernoulli
random graph (with prob. 2m/N/(N − 1) of existence of
each edge), the fraction of edges expected between nodes
i and j .
(Note: in fact, it’s best seen as a Chung-Lu model (2002))

• Re-written in term of groups, it gives

Q =
nc∑

c=1

[
lc
m
−
(

dc

2m

)2
]

where lc is the number of edges in group c and dc is the
sum of degrees of nodes in group c.

• Consequence: the larger Q is, the most pronounced the
communities are

• Algebraic form: modularity matrix B = A
2m − dd>

(2m)2 and

Q = Tr(c>Bc) for a partition matrix c (size nc × N) of the
nodes.p. 38
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Community detection with modularity
• By optimization of Q
• For instance: by simulated annealing, by spectral

approaches,...
• Works well, better than spectral clustering.

 

 

 

 

 

 

 

 

 

 

� Example: (the division into equal-sized group by the standard 
spectral partitioning method) and (modularity method) 
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• Better algorithm: the greedy (ascending) Louvain approach
(ok for millions of nodes !) [Blondel et al., 2008]

p. 39
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Multiscale community structure in a graph

Classical community detection algorithms do not have this
“scale-vision“ of a graph. Modularity optimisation finds:

Where the modularity function reads:
Q = 1

2N
∑

ij

[
Aij − di dj

2N

]
δ(ci , cj)

p. 40
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Multiscale community structure in a graph
Q=0.80 :

Q=0.74 :

Q=0.83 :

Q=0.50 :

All representations are correct but
modularity optimisation favours one.

• Added to that: limit in resolution for modularity [Fortunato,
Barthelemy, 2007]

p. 41
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Integrate a scale into modularity

• [Arenas et al., 2008] Remplace A by A + rI in Q. Self-loops.

• [Reichardt and Bornholdt, 2006]

Qγ =
1

2m

∑

ij

[
Aij − γ

didj

2m

]
δ(ci , cj)

• Equivalent for regular graph if γ = 1 +
r
d̄

.

• “Corrected Arenas modularity”: use Aij + r
di

d̄
δij ;

equivalent to Reichardt and Bornholdt [Lambiotte, 2010]

p. 42
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Some works on multiscale communities
• Lambiotte, ”Multiscale modularity in complex networks“ [WiOpt,

2010]

• Schaub, Delvenne et al., ”Markov dynamics as a zooming lens
for multiscale community detection: non clique-like communities
and the field-of-view limit” [PloS One, 2012]

• Arenas et al., ”Analysis of the structure of complex networks at
different resolution levels” [New Journal of Physics, 2008]

• Reichardt and Bornholdt, ”Statistical Mechanics of Community
Detection” [Physical Review E, 2006]

• Mucha et al., ”Community Structure in Time-Dependent,
Multiscale, and Multiplex Networks” [Science, 2010]

• Tremblay, Borgnat, “Graph Wavelets for Multiscale Community
Mining” [IEEE TSP, 2014]

More on that later in the next part of the lecture

p. 43
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Spectral clustering
• More general spectral clustering: Use all (or some) of the

eigenvectors χi of L
• Then, use a classical K -means on the first K non-null

eigenvectors of L (each node a has the (χk )a avec
features)

• If large heterogeneity of degrees: the normalized Laplacian
gives better results

Normalized Laplacian matrix

L Laplacian matrix L = I − D−1/2AD−1/2

(λi) L ’s eigenvalues 0 = λ0 < λ1 ≤ λ2 ≤ ... ≤ λN − 1

(χi) L ’s eigenvectors L χi = λi χi

• Choice of K by eigengaps |λk+1 − λk |
p. 44
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Graph embedding, Laplacian maps
• Spectral clustering := embedding + K -means

∀a ∈ V : a→ (χ1(a), χ2(a), ..., χk (a)) ∈ Rk

• Objective of embedding: embed vertices in low
dimensional space, so as to discover geometry

xi ∈ Rd → yi ∈ Rk with k < d

Graph Embedding/Laplacian Eigenmaps
21

Goal: embed vertices in low dimensional space, discovering geometry
(x1, . . . xN ) 7! (y1, . . . yN )

xi 2 Rd yi 2 Rk k < d

Good embedding: nearby points mapped nearby, so smooth map 

yi = �(xi)

p. 45
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Graph embedding, Laplacian maps
• A good embedding preserves locality in the embedding

space, so that nearby points are mapped nearby.
It preserves smoothness.

• For that, minimize the variations of the embedding:
∑

i,j

Aij(yi − yj)
2

• Laplacian eigenmaps:

argmin y>L y
such that y>A y = 1

and y>L 1 = 0

Alternative formulation:

Ly = λAy

(generalized eigenproblem)
p. 46
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Graph embedding, Laplacian maps

• Some examplesLaplacian Eigenmaps
23

[Belkin, Niyogi, 2003]

p. 47
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A recommander system
[Vandergheynst et al., EPFL, 2014]

• Assume data in the form M[movie, user] = movie rating
Application: A Recommender System

33

Lc

Lr

X[movie, user] = movie rating• One observes only a subset of M. How to complete it?
• Hypotheses:

- Users structured as communities,
and users in community rate similarly

- Movies are clustered in genres,
and similar movies are rated similarly by usersp. 48
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A recommander system
[Vandergheynst et al., EPFL, 2014]

• Let us write AΩ(M) the observed part of the matrix M
• Matrix completion problem:

min
X

rank(X ) s.t . AΩ(X ) = AΩ(M).

• Problem relaxed with the nuclear norm:
||X ||∗ = Tr((XX>)1/2) =

∑
k σk

(where the σk are the singular values of X = UΣV>)
• Tolerance to noise: change AΩ(X ) = AΩ(M) into a penalty

term ||AΩ ◦ (A−M)||
• Completion by smoothness on the two graphs (users and

movies), as quantified by a term

γXLX> = γ
∑

j,j ′
Aij ||xj − xj ′ ||2.

p. 49
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A recommander system
[Vandergheynst et al., EPFL, 2014]

• Hence an optimization problem to solve

min
X
γn||X ||∗ + ||AΩ ◦ (A−M)||+ γr XLr X> + γcXLcX>

• Solution by advanced optimization tools for convex
non-smooth functions.

• Here, the ADMM approach (Alternating Direction Method
of Multipliers) works well (see other parts of the lectures)
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Figure 5: Experiments on a part of the Movielens-10M dataset

about products and people taste is available, our model would outperform the standard matrix completion
approaches. Specifically, our model is robust to graph construction and to non-uniformly sampling of ob-
servations. Furthermore, it significantly outperforms the standard matrix completion when the number of
observations is small.
The proposed matrix recovery algorithm can be improved in several ways. The effect of the non-uniformity
of sampling matrix entries, as discussed in Sections 3 and 5.2, can be partially alleviated using a special
weighting of the nuclear norm [23]. The non-uniform sampling of user data points and movie data points
from the corresponding manifolds, which influences the quality of graph Laplacians, can also be corrected
using special graph normalizations [9]. Furthermore, the optimization algorithm can be improved, firstly
in terms of speed by using enhanced iterative schemes like [20]. Secondly in terms of scalability, either by
using distributed schemes like [17] or by carrying out techniques from the recent work [12], which deals with
nuclear norm for matrices with sizes bigger than the Netflix dataset.
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A small pause
• This was an invitation to “The emerging field of signal

processing on graphs: Extending high-dimensional data
analysis to networks and other irregular domains”
See [Shuman, Narang, Frossard, Ortega, Vandergheynst,
IEEE SP Mag, 2013]

• Next on our program:
- Spectral analysis of the Laplacian; some properties
- Spectral graph Fourier transform, operators and wavelets
(hence a notion of scales)
- Laplacian pyramid, graph downsampling - Applications

http://perso.ens-lyon.fr/pierre.borgnat

Acknowledgements: thanks to Renaud Lambiotte, Pierre
Vandergheynst and Nicolas Tremblay for borrowing some of
their figures or slides.
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