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Overview of the lecture

e General objective: revisit classical data analysis
techniques (most used in signal and image processing) in
the context of discrete structures such as networks and
signals defined on graphs.

e The things we will discuss:

¢ Introduce you to the emerging field of graph signal & image
processing
o Basic of spectral analysis of graphs, and on the graph
Laplacian
e Harmonic analysis on graphs: wavelets
o Examples: denoising on graphs; communities;...
¢ Organization:
1. This introduction with several examples
2. Spectral analysis of the Laplacian; properties
3. Spectral graph Fourier transform, operators and wavelets
4. Laplacian pyramid, graph downsampling; applications
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Introduction: on signals and graphs

e My own bias: | work in the SISYPHE (Signal, Systems
and Physics) group in statistical signal processing, located
in the Physics Laboratory of ENS de Lyon

¢ | have worked also on Internet traffic analysis, and on
studies of complex systems

e Strong bias: nonstationary and/or multiscale approaches

e Hence, | will talk about
data analysis and processing for network

e Examples of topics that we study:

Technological networks (Internet, mobile phones, sensor
networks,...)

Social networks; Transportation networks (Vélo'v)
Biosignals: Human brain networks; genomic data; ECG
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Introduction: on signals and graphs

Why data analysis and processing is useful for networks?

e Many examples of data having both labels or values
(“signals”) and relational properties (graphs)
¢ Non-trivial estimation issues (e.g., non repeated measures;
variables with large distributions (or power-laws); ...)
— advanced statistical approaches
e large networks
— multiscale approaches

e dynamical networks
— nonstationary methods
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Examples of networks from our digital world

LinkedIn Network

Vehicle Network
2 '

nnnnnnn

USA Power grid Web Graph Protein Network

p.5

End
o]



Introduction Typical examples Graph Signal Processing Cuts, clustering and communities Other examples End
[eleletel ) 0000000 00000000000 0000000000000000000 0000000 o

Examples of graph signals
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Minnesota Roads

Image Grid Color Point Cloud Image Database
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Typical problems

[P. Vandergheynst, EPFL, 2013]

Compression /Visualization

)

Denoising

Semi-Supervised Learnin, .
e ervised Learning .y ;l lll‘]ll %
1 =S o ‘ H att L

. -« c . 11 »
III 11 l‘ 11

.

’ . c .-_ l ‘ l ‘ Analysis | Information Extraction
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Recovery of signals on graphs
[P. Vandergheynst, EPFL, 2013]

e Denoising of a signal with Tikhonov regularization

argmin |f — Y3 +~fTLf

Original

Denoised

p.8
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Writing Tikhonov denoising as a Graph filter
[P. Vandergheynst, EPFL, 2013]

It is easy to solve this regularization problem in the spectral
domain

argmin Z|f = y|§ + TLf = Lf. + Z(f. — y) = 0

Move to the spectral domain of the Laplacian

Lf.(i) + %(ﬂ(i) —§()) =0, Vie{0,1,. .N—1}

e Solution: A .
e This is a 1st-order “low pass” filtering

p.-9
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Recovery of signals on graphs
[P. Vandergheynst, EPFL, 2013]

e Limit of Tikhonov regularization

argmin |f — Y3 +~fTLf

Original Denoised

End
o
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Recovery of signals on graphs
[P. Vandergheynst, EPFL, 2013]

e Denoising of a signal with Wavelet regularization

argmin || W'a-—yl|5+~lall

Original Denoised

e Wavelets will be described later on in the lectures... Stay
tuned.
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Generalized translations
[Shuman, Ricaud, Vandergheynst, 2014]

e Classical translation:
(TTg) (t) = g(t — 7') = Zg(é’)e*iZﬂ’T&e*iZTrt&dg
R

e Graph translations by fundamental analogy:

N—1
(Taf) (a) = > H(i)x;(n)xi(a)
i=0

e Example on the Minnesota road networks

Other examples

End
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Empirical mode decomposition on graphs

e Objective: decompose a graph signal in various
“elementary” modes in a data-driven and non stationary

approach

[N. Tremblay, P. Flandrin, P. Borgnat, 2014]

End
o
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Fourier transform of signals

“Signal processing 101”

The Fourier transform is of paramount importance:
Given a times series x,, n=1,2,..., N, let its Discrete Fourier

Transform (DFT) be

N—-1
VkeZ fi=Y xpe 2N
n=0

Why ?

o Inversion: x, = 4 S0 fe2mkn/N

e Best domain to define Filtering (operator is diagonal)

¢ Definition of the Spectral analysis (FT of the
autocorrelation)

¢ Alternate representation domains of signals are useful:
Fourier domain, DCT, time-frequency representations,
wavelets, chirplets,...
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Spectral analysis of networks

Spectral theory for network

This is the study of graphs through the spectral analysis
(eigenvalues, eigenvectors) of matrices related to the graph:

the adjacency matrix, the Laplacian matrices,.

Notations
G=(V,E,w) a weighted graph
N=|V| number of nodes
A adjacency matrix
d vector of strengths
D matrix of strengths
f signal (vector) defined on V

A,'j = W,'j
di =3 jev Wi
D = diag(d)

End
o
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Relating the Laplacian of graphs to Signal Processing

Laplacian matrix

L or Z | laplacian matrix L=D-A
() Lseigenvalues | 0 =X < Ay <A <o < Ay
(x;) | Ls eigenvectors Lxi = Aixi

A simple example: the straight line

-

—_
-

0
0
0

—_

-
_

0

coocoln!
cocolnlo
colm!loco
L
Inloooco

For this regular line graph, L is the 1-D classical laplacian operator
(i.e. double derivative operator):
its eigenvectors are the Fourier vectors, and its eigenvalues the
associated (squared) frequencies
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A fundamental analogy
[Shuman et al., IEEE SP Mag, 2013]

Objective: Definition of a Fourier Transform adapted to
graph signals

f: signal definedonV. = +— f : Fourier transform of f

Fundamental analogy

On any graph, the eigenvectors y; of the Laplacian matrix L will
be considered as the Fourier vectors, and its eigenvalues ), the
associated (squared) frequencies.

e Works exactly for all regular graphs (+ Beltrami-Laplace)
e Conduct to natural generalizations of signal processing
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The graph Fourier transform

o fis obtained from f's decomposition on the eigenvectors y; :

<X07f>
N <X17f>
f= <X2,f>

<xn_1,f>

Define x = (Xolx1---[xn 1) : m
¢ Reciprocally, the inverse Fourier transform reads:

e The Parseval theorem is vAaIid:
v(9,h) <gh>=<g,h>
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Fourier modes: examples in 1D and in graphs
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Other examples

End
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More Fourier modes
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Alternative fundamental spectral correspondance
o With the Normalized Laplacian matrix

&L =1-D12AD"1/2

- Related to Ng. et al. normalized spectral clustering
- Good for degree heterogeneities
- Related to random walks
- For community detection
¢ With the random-walk Laplacian matrix (non symmetrized)

Lyw=D"'L=1-D'W

- Better related to random walks
- Used by Shi-Malik spectral clustering (and graph cuts)
¢ Using the Adjacency matrix
- Wigner semi-circular law
- Discrete Signal Processing in Graphs (good for
undirected graphs) [Sandryhaila, Moura, IEEE TSP, 2013]
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Filtering

Definition of graph filtering

We define a filter function g in the Fourier space.
It is discrete and defined on the eigenvalues A, — g(\)).

7(0) g(X0) gr) O 0 .. 0
% (1) g(M) PP 0 g») 0 .. 0
H(N=1)gOw 1) 0 0 0 ..gbw-1)
In the node-space, the filtered signal 9 can be written:
f9=xGx'f J
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Cuts clustcrmq wd commummos

For a graph with multiscale structure

finest scale (16 com.):

L
©” :6,%;

coarser scale (4 com.):

g
%

fine scale (8 com.):

Othcr cmmp\os

End
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Spectral analysis: the x; and \; of a multiscale toy graph

nodes
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Mode #
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Cuts, clustering and communities
The good, the bad and the ugly

Networks are often inhomogeneous, with important links,
hubs, clusters, or communities (modules)

These are observed in various types of data on networks:
social, technological, biological,...

Importance of cuts: the min-cut max-flow theorem.
These are two primal-dual linear programs.
The max value of a flow = the min capacity over all cuts.

For clusters and communities, see the extensive surveys:
[S. Fortunato, Physic Reports, 2010]

[von Luxburg, Statistics and Computating, 2007]
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Some examples of networks with clusters or
communities
e Social face-to-face interaction networks

(Lab. physique, ENSL, 2013) (école primaire, Sociopatterns)
e Brain networks [Bullmore, Achard, 2006]
Parcellation Cfﬂ?iffi\‘igy cerebgrlact?nsn%fctions

GRAPHSIP project challenges

p. 26 Challenge 1: Robustness and hierarchical Challenge 2: Brain networks clustering Challenge 3: Longitudinal study of brain networks
analysis of brain connectivity

End
o
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Some examples of networks with clusters or
communities

e Mobile phones (The Belgium case, [Blondel et al., 2008])

e Scientometric (co)-citation (or publication) networks
[Jensen et al., 2011]

R
2 e X
-l 2 = 21
ol st .. B
£® 2@ ¥
hd o
- -

End
o
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Purpose of community detection?
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Purpose of community detection?

Other examples
0000000

End
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Purpose of community detection?

1) Gives us a sketch of the network:
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Purpose of community detection?

1) Gives us a sketch of the network:

2) Gives us intuition about its components:

e''=—1 @ Qf?

End
o
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Methods to find clusters or communities

| will not pretend to make a full survey... Some important
steps are:

Cut algorithms (classical problem in computer science)
Spectral clustering (seen as relaxed cut problem)

Modularity optimization (there arrive the physicists)

[Newman, Girvan , 2004]

e Greedy modulatity optimization a la Louvain (computer
science strikes back) [Blondel et al., 2008]

e Ideas from information compression (and random walks)

[Rosvall, Bergstrom, 2008]
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From graph cuts to spectral clustering

Graph cuts in 2 (or bisection): find the partition in two
groups of nodes that minimize the cut size (i.e., the number
of links cut)

Exhaustive search can be computationally challenging
Also, the cut has to be normalized correctly to find groups
of relevant sizes

One usual metric:
the Ratio-Cut between sets / and J of nodes

R(LJ) = Y Aj
iel jed
and R(A.A)
. -1 ,
RatioC(A, A) = 2 A
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Spectral clustering for min-cut

Spectral interpretation: compute the cut as function of the
adjacency matrix A

1
We have R = 7 > A

o i in#grougs
This is equal to the cut size between the two groups

Let us note s; = 1 the assignment of node i to group
labelled +1 or —1

1
R=5 ’Z Ai(1 - sisj) = Z Ljsisj = TLs
Hence, the problem reads as:

mins s'Ls
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Spectral clustering for min-cut

e Let us assume the spectral decomposition of the Laplacian
(to be seen later on):

2

—1

Li="> M(xw)ilx);
1

ES
I

The optimal assignment vector (that minimizes R) would
be s; = (x1); - . . if there were no constraints on the s;’s...
Note: x4 is known as the the Fiedler vector.

However, s; = +1 or —1...

Approximated solution: s; = sign((x1)i)-

The estimated groups are still close to x1.
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Spectral clustering for min-RatioCut

Normalization by the size of the sets: minsy RatioC(A, A)
The same problem written in a relaxed form introducing:
: A Al
f(i)=+4/— ifie A and f(i ificA
(7) A (1) = A

Then, ||f|| = +/|V]and fT1 = 0.
Finally, one has
f'Lf=|V| RatioC(A,A).

Hence, problem with relaxed constraints:

ming f7Lf

such that {1 = 0, |[f|[» = \/|V]
This allows also for Spectral clustering of data represented
by networks
cf. [von Luxburg, Statistics and Computating, 2007]

p. 34
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Spectral clustering

e Example of spectral bisection on an irregular mesh
@ ®)
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Spectral clustering

e Example of spectral bisection on data irregularly spread in

a space
..sw‘r""':" e . , J;é;g,b‘:" 088 :@"lxsaor@ .
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I’

"% P .-o'o-\.':
e |It's good, very good in fact for clustering
e However, not really good for natural modules / communities
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Quality of a partition: the Modularity

e Problems with spectral clustering:
1) No assessment of the quality of the partitions
2) No reference to comparison to some null hypothesis (or
“mean field”) situation

e Improvement: the modularity [Newman, 2003]

1 did;

if
where 2m =), d.
e Qis between —1 and +1 (in fact, lower than 1 — 1/n. if n¢
groups)
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Quality of a partition: the Modularity

e Interpretation: d’d/ is, for a null model as a Bernoulli

random graph (W|th prob. 2m/N/(N — 1) of existence of
each edge), the fraction of edges expected between nodes
iand j.

(Note: in fact, it's best seen as a Chung-Lu model (2002))
Re-written in term of groups, it gives

o-3 [k ()]

where [¢ is the number of edges in group ¢ and d; is the
sum of degrees of nodes in group c.

Consequence: the larger Q is, the most pronounced the
communities are

Algebraic form: modularity matrix B = #+ — (d‘,f)z and

Q = Tr(c' Bc) for a partition matrix ¢ (size ne x N) of the
nodes.
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Community detection with modularity

e By optimization of Q

e For instance: by simulated annealing, by spectral
approaches,...

e Works well, better than spectral clustering.

e Better algorithm: the greedy (ascending) Louvain approach
(ok for millions of nodes !) [Blondel et al., 2008]

End
o
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Multiscale community structure in a graph

Classical community detection algorithms do not have this
“scale-vision® of a graph. Modularity optimisation finds:

Where the modularity function reads:
1d;
2N ZU [ 2/\/} i(ci, g)

End
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Multiscale community structure in a graph
Q=0.80 : Q=0.83 :

All representations are correct but
modularity optimisation favours one. }

e Added to that: limit in resolution for modularity [Fortunato,
Barthelemy, 2007]

p. 41
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Integrate a scale into modularity

e [Arenas et al., 2008] Remplace Aby A+ rlin Q. Self-loops.

e [Reichardt and Bornholdt, 2006]

1 did)
Q= ﬁz [Aij —’YZIm/} i(ci, ¢)

i
e Equivalent for regular graph if y =1 + é

 “Corrected Arenas modularity”. use Aj + r(gé,-j-;
equivalent to Reichardt and Bornholdt  [Lambiotte, 2010]
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Some works on multiscale communities

Lambiotte, "Multiscale modularity in complex networks” [ WiOpt,
2010]

Schaub, Delvenne et al., "Markov dynamics as a zooming lens
for multiscale community detection: non clique-like communities
and the field-of-view limit” [PloS One, 2012]

Arenas et al., "Analysis of the structure of complex networks at
different resolution levels” [New Journal of Physics, 2008]

Reichardt and Bornholdt, "Statistical Mechanics of Community
Detection” [Physical Review E, 2006]

Mucha et al., "Community Structure in Time-Dependent,
Multiscale, and Multiplex Networks” [Science, 2010]

Tremblay, Borgnat, “Graph Wavelets for Multiscale Community
Mining” [IEEE TSP, 2014]

More on that later in the next part of the lecture
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Spectral clustering

¢ More general spectral clustering: Use all (or some) of the
eigenvectors x; of L

e Then, use a classical K-means on the first K non-null
eigenvectors of L (each node a has the (xx)a avec
features)

e If large heterogeneity of degrees: the normalized Laplacian
gives better results

Normalized Laplacian matrix

% | Laplacian matrix L =1-D"12AD1/?
(N) | L’seigenvalues | 0=X < Ay < A <o < Ayv_q
(xi) | -£’s eigenvectors ZLXxi = ANiXi

e Choice of K by eigengaps |\¢11 — Ak
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Graph embedding, Laplacian maps
e Spectral clustering := embedding + K-means
Vae V:a— (x1(a),x2(a), ... xk(a)) € R¥

o Objective of embedding: embed vertices in low
dimensional space, so as to discover geometry

xie R — y; e RF withk < d

* L,
L AP 4
o %o
* %0

End
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Graph embedding, Laplacian maps

e A good embedding preserves locality in the embedding
space, so that nearby points are mapped nearby.
It preserves smoothness.

e For that, minimize the variations of the embedding:

> Ay — )
ij

e Laplacian eigenmaps:

argmin y'Ly
suchthaty'Ay =1
and y'L1=0

Alternative formulation:
Ly = \Ay

(generalized eigenproblem)

p. 46
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Graph embedding, Laplacian maps

e Some examples

&~ meet N . =T
AR s e i
sk e
e s P
5 s\j
et itk R
N
N=10 I--V Ne1S tew

End
o]
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A recommander system
[Vandergheynst et al., EPFL, 2014]
e Assume data in the form M[movie user] = movie rating

Noiseiess anihoa datisat

»
*
L. i
:
rof.
o "

e One observes only a subset of M. How to complete it?
e Hypotheses:
- Users structured as communities,
and users in community rate similarly
- Movies are clustered in genres,
p. 48 and similar movies are rated similarly by users

C

End
o
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A recommander system
[Vandergheynst et al., EPFL, 2014]
e Let us write Aq(M) the observed part of the matrix M
e Matrix completion problem:

m}n rank(X) s.t. Aq(X) = Aq(M).

e Problem relaxed with the nuclear norm:
X[« = TH((XXT)/2) = 3, o
(where the oy are the singular values of X = UL V)
 Tolerance to noise: change Aq(X) = Aq(M) into a penalty
term ||Aq o (A— M)||
e Completion by smoothness on the two graphs (users and
movies), as quantified by a term

YXLXT = Aijllx; — xp|2.
i



A recommander system
[Vandergheynst et al., EPFL, 2014]

e Hence an optimization problem to solve

Other examples
O00000e

e Solution by advanced optimization tools for convex
non-smooth functions.
e Here, the ADMM approach (Alternating Direction Method
of Multipliers) works well (see other parts of the lectures)

Part of Movielens 10M dataset

1 2 3 4
percentage of observations
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A small pause

¢ This was an invitation to “The emerging field of signal
processing on graphs: Extending high-dimensional data
analysis to networks and other irregular domains”
See [Shuman, Narang, Frossard, Ortega, Vandergheynst,
IEEE SP Mag, 2013]

e Next on our program:
- Spectral analysis of the Laplacian; some properties
- Spectral graph Fourier transform, operators and wavelets
(hence a notion of scales)
- Laplacian pyramid, graph downsampling - Applications

http://perso.ens-lyon.fr/pierre.borgnat
Acknowledgements: thanks to Renaud Lambiotte, Pierre

Vandergheynst and Nicolas Tremblay for borrowing some of
their figures or slides.
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