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Overview of the lecture

e General objective: revisit classical data analysis
techniques (most used in signal and image processing) in
the context of discrete structures such as networks and
signals defined on graphs.

e The things we will discuss:

¢ Introduce you to the emerging field of graph signal & image
processing

o Basic of spectral analysis of graphs, and on the graph
Laplacian

e Harmonic analysis on graphs: wavelets

o Examples: denoising on graphs; communities;...

e Organization:

1. Introduction with several examples

2. Spectral analysis of the Laplacian (on board)

3. Graph Fourier transform, operators, wavelets

4. Examples and applications

p. 2
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Introduction: on signals and graphs

Why data analysis and processing is useful for networks?

e Many examples of data having both labels or values
(“signals”) and relational properties (graphs)

¢ Non-trivial estimation issues (e.g., non repeated measures;
variables with large distributions (or power-laws); ...)
— advanced statistical approaches

e large networks

— multiscale approaches
e dynamical networks

— nonstationary methods
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Examples of networks from our digital world

LinkedIn Network

Vehicle Network
2 '

nnnnnnn

USA Power grid Web Graph Protein Network
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Examples of graph signals
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Minnesota Roads

Image Grid Color Point Cloud Image Database
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Typical problems

[P. Vandergheynst, EPFL, 2013]

Compression /Visualization

)

Denoising

Semi-Supervised Learnin, .
e ervised Learning .oy ;l lll‘]ll %
1 =S o ‘ H T

. -« c . 11 A
III 11 l‘ 11

.

’ . . .-_ l ‘ l ‘ Analysis | Information Extraction

p. 6

End
o]



Graph SP
000000000

Fourier transform of signals

“Signal processing 101”

The Fourier transform is of paramount importance:
Given a times series x,, n=1,2,..., N, let its Discrete Fourier

Transform (DFT) be

N—1
VkeZ fi=Y xpe 2N
n=0

Why ?

o Inversion: x, = 4 S0 fe~2mkn/N

e Best domain to define Filtering (operator is diagonal)

¢ Definition of the Spectral analysis (FT of the
autocorrelation)

¢ Alternate representation domains of signals are useful:
Fourier domain, DCT, time-frequency representations,
wavelets, chirplets,...
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Spectral analysis of networks

Spectral theory for network

This is the study of graphs through the spectral analysis
(eigenvalues, eigenvectors) of matrices related to the graph:
the adjacency matrix, the Laplacian matrices,....

Notations
G=(V,E,w) a weighted graph
N=|V| number of nodes

A adjacency matrix Aj = w;
d vector of strengths adi = Z/ev 7
D matrix of strengths D = diag(d)
f signal (vector) defined on V

p.8
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Relating the Laplacian of graphs to Signal Processing

Laplacian matrix

L or .Z | laplacian matrix L=D-A
() Ls eigenvalues | 0 =X < Ay <A <o < Ay
(x;) | Ls eigenvectors Lxi = Aixi

A simple example: the straight line

-

—_
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0
0
0

—_

-
_

0

cococoln!
cocolnlo
colm!loco
L
Inloooco

For this regular line graph, L is the 1-D classical laplacian operator
(i.e. double derivative operator):
its eigenvectors are the Fourier vectors, and its eigenvalues the

0o associated (squared) frequencies
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A fundamental analogy
[Shuman et al., IEEE SP Mag, 2013]

Objective: Definition of a Fourier Transform adapted to
graph signals

f: signal definedonV. = +— f : Fourier transform of f

Fundamental analogy

On any graph, the eigenvectors y; of the Laplacian matrix L will
be considered as the Fourier vectors, and its eigenvalues ), the
associated (squared) frequencies.

e Works exactly for all regular graphs (+ Beltrami-Laplace)
e Leads to natural generalizations of signal processing
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The graph Fourier transform

« fis obtained from f's decomposition on the eigenvectors y; :

<X07f>
N <X17f>
f= <X2,f>

<xn_1,f>

Define x = (Xolx1---[xn 1) : m
¢ Reciprocally, the inverse Fourier transform reads:

e The Parseval theorem is vAaIid:
v(9,h) <gh>=<g,h>
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Fourier modes: examples in 1D and in graphs
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More Fourier modes

More illustrations
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Alternative fundamental spectral correspondance
o With the Normalized Laplacian matrix

&L =1-D12AD"1/2

- Related to Ng. et al. normalized spectral clustering
- Good for degree heterogeneities
- Related to random walks
- For community detection
¢ With the random-walk Laplacian matrix (non symmetrized)

Lyw=D"'L=1-D"W

- Better related to random walks
- Used by Shi-Malik spectral clustering (and graph cuts)
¢ Using the Adjacency matrix
- Wigner semi-circular law
- Discrete Signal Processing in Graphs (good for
undirected graphs) [Sandryhaila, Moura, IEEE TSP, 2013]
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Filtering

Definition of graph filtering

We define a filter function g in the Fourier space.
It is discrete and defined on the eigenvalues A, — g(\)).

7(0) g(Xo) gr) O 0 .. 0
% (1) g(M) PP 0 g») 0 .. 0
H(N=1)gOw 1) 0 0 0 ..gbw-1)
In the node-space, the filtered signal 9 can be written:
f9=xGx'f J
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Recovery of signals on graphs
[P. Vandergheynst, EPFL, 2013]

¢ Denoising of a signal with Tikhonov regularization

arg mfin%Hf—yH% +fTLf

N RO SIS
- \%{K@/ ga;;/\g 5

{ KA
g | o SERE

Original

Denoised

End
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Writing Tikhonov denoising as a Graph filter

e |t is easy to solve this regularization problem in the spectral
domain

arg min %Hf— yI2+ fTLf = Lf, + %(f* —y)=0
e Move to the spectral domain of the Laplacian
LE() + 5(F() = (1)) =0, Vie{01,..N=1}

e Solution: .

i) = 5 90)

e This is a 1st-order “low pass” filtering (if the \;’s are
considered as frequencies; here, as w?)

p. 17
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Recovery of signals on graphs

000000000 00800000 00000000 000000

e Limit of Tikhonov regularization:
it does not work well for sparse signals

arg mfin%Hf—yH% +fTLf

Original

Denoised

End
o
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Recovery of signals on graphs

tering  Other Examples

More illustrations  End

e Denoising of a signal with Wavelet regularization

argmin||WTa -~ y| +llal;

Original Denoised

e Wavelets will be described later on in the lectures... Stay
tuned.
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lllustration on the smoothness of graph signals

02 02 y 02
oo S T o1l .
0051 15 2 25 3 35 4 45 5 0 05 115 2 25 3 35 4 45 5 0051152253354455

2, 2, A,

f7L.£ =0.14 f'Lof =1.31 f'Lsf =1.81
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Generalized translations
[Shuman, Ricaud, Vandergheynst, 2014]
e Classical translation:

(T.9) () = gt — ) = /R G(e)e 2 g iente e

e Graph translations by fundamental analogy:

N—1
(Taf) (a) = > T(i)x; (n)xi(a)
i=0

e Example on the Minnesota road networks

Other Examples ~ Graph Wavelets ~ More illustrations

End
o



Imroductlom Graph SP First examples  Cuts, clustering  Other Examples  Graph Wavelets  More illustrations

000000000 00000080 00000000 000000 00000000

Example: graph with multiscale communities

finest scale (16 com.): fine scale (8 com.)
i %
coarser scale (4 com.): coarsest scale (2 com.):

"
*i@:gﬁ

End
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Spectral analysis: the x; and \; of this multiscale graph
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Graph cuts

Graph cuts in 2 (or bisection): find the partition in two
groups of nodes that minimize the cut size (i.e., the number
of links cut)

Exhaustive search can be computationally challenging

About the problem of cuts:

An important result is the min-cut max-flow theorem.
Min-cut pb and Max-flow pb are two primal-dual problems
The max value of a flow = the min capacity over all cuts
One possible solution from linear program

O
) g
oM
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Spectral approach for min-cut

Spectral interpretation: compute the cut as function of the
adjacency matrix A

1
We have R = 7 > A

o i in#grougs
This is equal to the cut size between the two groups

Let us note s; = 1 the assignment of node i to group
labelled +1 or —1

1
R=5 ’Z Aj(1 - sisj) = Z Ljsisj = TLs
Hence, the problem reads as:

mins s'Ls
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Spectral approach for min-cut

Using the spectral decomposition of the Laplacian:

N-1

Li=> Mlxw)ilxw);

=1

=

The optimal assignment vector (that minimizes R) would
be s; = (x1); . .. if there were no constraints on the s;’s...
Note: x1 is known as the the Fiedler vector.

However, s; = +1 or —1...
Approximated solution: s; = sign((x1)i)-
The estimated groups are still close to .
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Spectral approach for min-RatioCut

e In practice, the cut has to be normalized correctly to find
groups of relevant sizes

e One usual metric:
the Ratio-Cut between sets / and J of nodes

R(LJ) = Y Aj
iel jed
and 1 R(A.A)
RatioC(A, A) = 2 A

¢ With this normalization, the problem is:

min RatioC(A, A)
AcV
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Spectral approach for min-RatioCut
The same problem written in a relaxed form introducing:

N 1Al Al
f(i) = |A||f/eAandf() ’A’n‘/eA

Then, ||f|| = +/|V]and fT1 = 0.
Finally, one has
f'Lf=|V| RatioC(A,A).
Hence, problem with relaxed constraints:
ming fTLf
such that {1 =0, |[f|[ = \/|V]

This method falls down under the category of Spectral
clustering of data represented by networks

cf. [von Luxburg, Statistics and Computating, 2007]
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Spectral approach to graph cut

o Example of spectral bisection on an irregular mesh
@ ®)
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More generally: spectral clustering

Spectral clustering: unsupervised classification when
data are encoded as a graph with similarity matrix W
In a nutshell: classify according to the eigenvalues of the
LaplacianL =D — W,
with eigenvectors x, eigenvalues Ay and Dy, = Zbyéa W
For each data point use the values of the first K x«’s as
feature vectors

f Ka= L KX_1 da Spectral clustering = deal low-pass

1

208
506
504
“o2

where x = (x1[x2|- - - [Xn)- T e 7T
Then use a classification algorithm such as K-means or
hierarchical clustering to obtain several groups

Note: some open issues

Choice of K? Assessment of the assignments in groups?
Ex. for choice of K by eigengaps |\¢11 — Ak|
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Spectral clustering
e Example of spectral bisection on data irregularly spread in

a space

b*a.l- e 32, Q". .

e |t's good, very good in fact for clustering

e However, not really good for natural modules / communities
(— see lectures on Complex networks)
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Graph embedding, Laplacian maps

e Spectral clustering := embedding + K-means

vae V:a— (xi1(a), x2(a), ..., xx(a)) € R

o Objective of embedding: embed vertices in low
dimensional space, so as to discover geometry

xie R — y; e RF withk < d

0’0
LAV S 4

o %o
YIRS

End
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Graph embedding, Laplacian maps

e A good embedding preserves locality in the embedding
space, so that nearby points are mapped nearby.
It preserves smoothness.

e For that, minimize the variations of the embedding:

> Ay — )
ij

e Laplacian eigenmaps:

argmin y'Ly
suchthaty'Ay =1
and y'L1=0

Alternative formulation:
Ly = \Ay

(generalized eigenproblem)

p. 33
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Graph embedding, Laplacian maps

e Some examples

i ¥
e /,*“
cwa | S‘j
A4

End
o]
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A recommander system
[Vandergheynst et al., EPFL, 2014]
e Assume data in the form M[movie user] = movie rating

Noiseiess anihoa datisat

»
*
L. i
:
rof.
o "

e One observes only a subset of M. How to complete it?
e Hypotheses:
- Users structured as communities,
and users in community rate similarly
- Movies are clustered in genres,
p. 35 and similar movies are rated similarly by users

C

End
o
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A recommander system
[Vandergheynst et al., EPFL, 2014]

e Let us write Aq(M) the observed part of the matrix M
e Matrix completion problem:

m}n rank(X) s.t. Aq(X) = Aq(M).

e Problem relaxed with the nuclear norm:
X[« = TH((XXT)'/2) = 3, o
(where the oy are the singular values of X = UL V)
 Tolerance to noise: change Aq(X) = Aq(M) into a penalty
term ||Aq o (A— M)||
e Completion by smoothness on the two graphs (users and
movies), as quantified by a term

YXLXT = Aijllx; — xp|2.
i

p. 36
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A recommander system
[Vandergheynst et al., EPFL, 2014]
e Hence an optimization problem to solve

e Solution by advanced optimization tools for convex
non-smooth functions.

e Here, the ADMM approach (Alternating Direction Method
of Multipliers) works well (see 2nd part of the lectures)

Part of Movielens 10M dataset

0 1 2 3 4
percentage of observations
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Toward Wavelets on Graphs

e Fourier is a global analysis. Fourier modes (eigenvectors of
the laplacian) are used in classical spectral clustering, but
do not enable a jointly local and scale dependent analysis.

e For that classical signal processing (or harmonic analysis)
teach us that we need wavelets.

e Wavelets : local functions that act as well as a filter around
a chosen scale.

A wavelet:

1‘ ‘ 1
] | A
-1

-1
— Translated:

05
0}_/—\/\/\—{
-05

/ — Scaled
. by analo
o Classical wavelets 22"2°%, Graph wavelets
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The classical wavelets
Each wavelet y5 4 is derived by translating and scaling a mother

wavelet 1 1 _
vsal0) = g0 (*57)

Equivalently, in the Fourier domain:

Qﬁsﬁ(w) — /OO 11/} (X a> exp—iwx dx

= exp’“’a/ 51/1 <§> exp“X dX

— exp @ /Oo ¥ (X') exp~ X dX’

—00

= Sa(w) P(sw)  where 0,=d(x —a)

One possible definition: ¢ a(x) = [ 4 D (sw) exp™* dw

End
o
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The classical wavelets

Usa(X) = [T W) (sw) exp™* dw J

« In this definition, )(sw) acts as a filter bank defined by
scaling by a factor sa filter kernel function defined in
the Fourier space: ¢ (w)

« The filter kernel function )(w) is necessarily a
bandpass filter with:

o H(0) = the mean of 1 is by definition null
o IIT w( ) = : the norm of ¢ is by definition finite
w—r+00

(Note: the actual condition is the admissibility property)
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. b [e] /o
Classical wavelets 2274%9, Graph wavelets

[Hammond et al. ACHA ’11]

Classical (continuous) world |  Graph world
Real domain X node a
Fourier domain w eigenvalues J;
Filter kernel P(w) g\) < G
Filter bank D(sw) 9(s\) < Gs
Fourier modes exp—wX eigenvectors y;
Fourier transf. of f | f(w) = [ f(x) exp~™ dx F=xTf

The wavelet at scale s centered around node a is given by:

s, a( / 5a SW) explwx dw — |Ysa=X é';s(sAa =X Gs XT

p. 4
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Examples of graph wavelets
A WAVELET:
K
4
TRANSLATING: SCALING:

1 0.5
A T —
-1 -05

A

¢

End
o
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More illustrations  End
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Graph wavelets for data compression
Piecewise-Smooth Signal with Diffusion Wavelet Coefficients,
Discontinuities Sorted by Magnitude

Reconstruction from 10% Reconstruction from 20% Reconstruction from 50%
of Coefficients of Coefficients of Coefficients

'] 2 . e S
. RS 2 ¢ s
Chd el

ol

End
o



Introduction ~ Graph SP First examples  Cuts, clustering  Other Examples ~ Graph Wavelets ~ More illustrations ~ End
00000 000000000 00000000 00000000 000000 0000000 (e]e] [e]

Graph wavelets for brain fMRI data
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Graph and Signal graph coarsening

Coarse
Approximations

Prediction
Errors

2642 1334 669 337
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Graph and Signal graph coarsening
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The End

e This was an invitation to “The emerging field of signal
processing on graphs: Extending high-dimensional data
analysis to networks and other irregular domains”

See [Shuman, Narang, Frossard, Ortega, Vandergheynst,
IEEE SP Mag, 2013]

http://perso.ens-lyon.fr/pierre.borgnat

Acknowledgements: thanks to Renaud Lambiotte, Pierre
Vandergheynst, David Shuman and Nicolas Tremblay for
borrowing some (many!) of their figures or slides.
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