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Overview of the lecture
• General objective: revisit classical data analysis

techniques (most used in signal and image processing) in
the context of discrete structures such as networks and
signals defined on graphs.

• The things we will discuss:
• Introduce you to the emerging field of graph signal & image

processing
• Basic of spectral analysis of graphs, and on the graph

Laplacian
• Harmonic analysis on graphs: wavelets
• Examples: denoising on graphs; communities;...

• Organization:
1. Introduction with several examples
2. Spectral analysis of the Laplacian (on board)
3. Graph Fourier transform, operators, wavelets
4. Examples and applications

p. 2
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Introduction: on signals and graphs

Why data analysis and processing is useful for networks?

• Many examples of data having both labels or values
(“signals”) and relational properties (graphs)

• Non-trivial estimation issues (e.g., non repeated measures;
variables with large distributions (or power-laws); ...)

→ advanced statistical approaches
• large networks

→ multiscale approaches
• dynamical networks

→ nonstationary methods

p. 3



Introduction Graph SP First examples Cuts, clustering Other Examples Graph Wavelets More illustrations End

Examples of networks from our digital world

LinkedIn Network Citation Graph Vehicle Network

USA Power grid Web Graph Protein Network

p. 4
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Examples of graph signals

Minnesota Roads USA Temperature fcMRI Brain Network

Image Grid Color Point Cloud Image Database

p. 5
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Typical problems
[P. Vandergheynst, EPFL, 2013]

EPFL – Signal Processing Laboratory (LTS2)
http://lts2.epfl.ch

Some Typical Processing Problems
3

Semi-Supervised Learning

Analysis / Information Extraction

Denoising

Compression / Visualization

Earth data source: Frederik Simons

p. 6



Introduction Graph SP First examples Cuts, clustering Other Examples Graph Wavelets More illustrations End

Fourier transform of signals
“Signal processing 101”
The Fourier transform is of paramount importance:
Given a times series xn, n = 1,2, ...,N, let its Discrete Fourier
Transform (DFT) be

∀k ∈ Z x̂k =
N−1∑

n=0

xne−i2πkn/N

Why ?
• Inversion: xn = 1

N
∑N−1

k=0 x̂ke−i2πkn/N

• Best domain to define Filtering (operator is diagonal)
• Definition of the Spectral analysis (FT of the

autocorrelation)
• Alternate representation domains of signals are useful:

Fourier domain, DCT, time-frequency representations,
wavelets, chirplets,...p. 7
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Spectral analysis of networks

Spectral theory for network
This is the study of graphs through the spectral analysis
(eigenvalues, eigenvectors) of matrices related to the graph:
the adjacency matrix, the Laplacian matrices,....

Notations
G = (V ,E ,w) a weighted graph

N = |V | number of nodes
A adjacency matrix Aij = wij
d vector of strengths di =

∑
j∈V wij

D matrix of strengths D = diag(d)
f signal (vector) defined on V

p. 8
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Relating the Laplacian of graphs to Signal Processing

Laplacian matrix
L or L laplacian matrix L = D − A

(λi) L’s eigenvalues 0 = λ0 < λ1 ≤ λ2 ≤ ... ≤ λN − 1

(χi) L’s eigenvectors Lχi = λi χi

A simple example: the straight line

←→ L =




...

... −1 0 0 0 0

... 2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2 ...
0 0 0 0 −1 ...

...




For this regular line graph, L is the 1-D classical laplacian operator
(i.e. double derivative operator):

its eigenvectors are the Fourier vectors, and its eigenvalues the
associated (squared) frequencies

p. 9
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A fundamental analogy
[Shuman et al., IEEE SP Mag, 2013]

Objective: Definition of a Fourier Transform adapted to
graph signals

f : signal defined on V ←→ f̂ : Fourier transform of f

Fundamental analogy
On any graph, the eigenvectors χi of the Laplacian matrix L will
be considered as the Fourier vectors, and its eigenvalues λi the
associated (squared) frequencies.

• Works exactly for all regular graphs (+ Beltrami-Laplace)
• Leads to natural generalizations of signal processing

p. 10
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The graph Fourier transform

• f̂ is obtained from f ’s decomposition on the eigenvectors χi :

f̂ =




< χ0, f >
< χ1, f >
< χ2, f >

...
< χN − 1, f >




Define χ = (χ0|χ1|...|χN − 1) : f̂ = χ> f

• Reciprocally, the inverse Fourier transform reads: f = χ f̂
• The Parseval theorem is valid:
∀(g,h) < g,h >=< ĝ, ĥ >

p. 11
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Fourier modes: examples in 1D and in graphs

LOW FREQUENCY: HIGH FREQUENCY:

p. 12
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More Fourier modes

χ1

χ14

χ3

χ73

p. 13
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Alternative fundamental spectral correspondance
• With the Normalized Laplacian matrix

L = I − D−1/2AD−1/2

- Related to Ng. et al. normalized spectral clustering
- Good for degree heterogeneities
- Related to random walks
- For community detection

• With the random-walk Laplacian matrix (non symmetrized)

Lrw = D−1L = I − D−1W

- Better related to random walks
- Used by Shi-Malik spectral clustering (and graph cuts)

• Using the Adjacency matrix
- Wigner semi-circular law
- Discrete Signal Processing in Graphs (good for
undirected graphs) [Sandryhaila, Moura, IEEE TSP, 2013]

p. 14
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Filtering

Definition of graph filtering
We define a filter function g in the Fourier space.

It is discrete and defined on the eigenvalues λi → g(λi).

f̂ g =




f̂ (0) g(λ0)

f̂ (1) g(λ1)

f̂ (2) g(λ2)
...

f̂ (N−1) g(λN − 1)


 = Ĝ f̂ with Ĝ =




g(λ0) 0 0 ... 0
0 g(λ1) 0 ... 0
0 0 g(λ2) ... 0
... ... ... ... ...
0 0 0 ... g(λN − 1)




In the node-space, the filtered signal f g can be written:
f g = χ Ĝχ> f

p. 15
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Recovery of signals on graphs
[P. Vandergheynst, EPFL, 2013]

• Denoising of a signal with Tikhonov regularization

arg min
f

τ

2
||f − y ||22 + f>Lf

EPFL – Signal Processing Laboratory (LTS2)
http://lts2.epfl.ch

Simple Motivating Examples
! Tikhonov regularization for denoising:

5

argminf

�
||f � y||22 + �fT Lf
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Writing Tikhonov denoising as a Graph filter

• It is easy to solve this regularization problem in the spectral
domain

arg min
f

τ

2
||f − y ||22 + f>Lf ⇒ Lf∗ +

τ

2
(f∗ − y) = 0

• Move to the spectral domain of the Laplacian

L̂f∗(i) +
τ

2
(f̂∗(i)− ŷ(i)) = 0, ∀i ∈ {0,1, ...N − 1}

• Solution:
f̂∗(i) =

τ

τ + 2λi
ŷ(i)

• This is a 1st-order “low pass” filtering (if the λi ’s are
considered as frequencies; here, as ω2)

p. 17
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Recovery of signals on graphs

• Limit of Tikhonov regularization:
it does not work well for sparse signals

arg min
f

τ

2
||f − y ||22 + f>Lf

EPFL – Signal Processing Laboratory (LTS2)
http://lts2.epfl.ch

Simple Motivating Examples
! Tikhonov regularization for denoising:

5

argminf

�
||f � y||22 + �fT Lf
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Recovery of signals on graphs

• Denoising of a signal with Wavelet regularization

arg min
a
||W>a− y ||22 + γ||a||1

EPFL – Signal Processing Laboratory (LTS2)
http://lts2.epfl.ch

Simple Motivating Examples
! Tikhonov regularization for denoising:

! Wavelet denoising:

5

argminf

�
||f � y||22 + �fT Lf
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EPFL – Signal Processing Laboratory (LTS2)
http://lts2.epfl.ch

Simple Motivating Examples
! Tikhonov regularization for denoising:

! Wavelet denoising:

5

argminf

�
||f � y||22 + �fT Lf
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• Wavelets will be described later on in the lectures... Stay
tuned.
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Illustration on the smoothness of graph signals

fTL1f = 0.14 fTL2f = 1.31 fTL3f = 1.81

Smoothness of Graph Signals Revisited
25

Intro Signal Transforms Problem Spectral Graph Theory Generalized Operators WGFT Conclusion

Incorporation of the Underlying Graph Connectivity 5

For notions of global smoothness, the discrete p-Dirichlet
form of f is defined as

Sp(f) :=
1

p

X

i2V

kOifkp2 =
1

p

X

i2V

2
4X

j2Ni

Wi,j [f(j)� f(i)]
2

3
5

p
2

.

(5)

When p = 1, S1(f) is the total variation of the signal with
respect to the graph. When p = 2, we have

S2(f) =
1

2

X

i2V

X

j2Ni

Wi,j [f(j)� f(i)]
2

=
X

(i,j)2E
Wi,j [f(j)� f(i)]

2
= fTLf . (6)

S2(f) is known as the graph Laplacian quadratic form [17],
and the semi-norm kfkL is defined as

kfkL := kL 1
2 fk2 =

p
fTLf =

p
S2(f).

Note from (6) that the quadratic form S2(f) is equal to zero
if and only if f is constant across all vertices (which is why
kfkL is only a semi-norm), and, more generally, S2(f) is small
when the signal f has similar values at neighboring vertices
connected by an edge with a large weight; i.e., when it is
smooth.

Returning to the graph Laplacian eigenvalues and eigen-
vectors, the Courant-Fischer Theorem [35, Theorem 4.2.11]
tells us they can also be defined iteratively via the Rayleigh
quotient as

�0 = min
f2RN

kfk2=1

{fTLf} , (7)

and �` = min
f2RN

kfk2=1
f?span{u0,...,u`�1}

{fTLf} , ` = 1, 2, . . . , N � 1, (8)

where the eigenvector u` is the minimizer of the `th prob-
lem. From (6) and (7), we see again why u0 is constant
for connected graphs. Equation (8) explains why the graph
Laplacian eigenvectors associated with lower eigenvalues are
smoother, and provides another interpretation for why the
graph Laplacian spectrum carries a notion of frequency.

Example 1 in the box below demonstrates the importance of
incorporating the underlying graph structure when processing
signals on graphs.

F. Other Graph Matrices

The basis {u`}`=0,1,...,N�1 of graph Laplacian eigenvectors
is just one possible basis to use in the forward and inverse
graph Fourier transforms (3) and (4). A second popular option
is to normalize each weight Wi,j by a factor 1p

didj

. Doing so

leads to the normalized graph Laplacian, which is defined as
L̃ := D� 1

2 LD� 1
2 , or, equivalently,

(L̃f)(i) =
1p
di

X

j2Ni

Wi,j

"
f(i)p

di

� f(j)p
dj

#
.

G1

λ

f̂ λ( )

G2

λ

f̂ λ( )

G3

λ

f̂ λ( )

Example 1 (Importance of the underlying graph):
In the figure above, we plot the same signal f on
three different unweighted graphs with the same set
of vertices, but different edges. The top row shows the
signal in the vertex domains, and the bottom row shows
the signal in the respective graph spectral domains.

The smoothness and graph spectral content of the
signal both depend on the underlying graph structure.
In particular, the signal f is smoothest with respect
to the intrinsic structure of G1, and least smooth with
respect to the intrinsic structure of G3. This can be seen
(i) visually; (ii) through the Laplacian quadratic form,
as fTL1f = 0.14, fTL2f = 1.31, and fTL3f = 1.81;
and (iii) through the graph spectral representations,
where the signal has all of its energy in the low
frequencies in the graph spectral plot of f̂ on G1, and
more energy in the higher frequencies in the graph
spectral plot of f̂ on G3.

The eigenvalues {�̃`}`=0,1,...,N�1 of the normalized graph
Laplacian of a connected graph G satisfy

0 = �̃0 < �̃1  . . .  �̃max  2,

with �̃max = 2 if and only if G is bipartite; i.e., the set of
vertices V can be partitioned into two subsets V1 and V2 such
that every edge e 2 E connects one vertex in V1 and one vertex
in V2. We denote the normalized graph Laplacian eigenvectors
by {ũ`}`=0,1,...,N�1. As seen in Figure 3(b), the spectrum of
L̃ also carries a notion of frequency, with the eigenvectors
associated with higher eigenvalues generally having more zero
crossings. However, unlike u0, the normalized graph Laplacian
eigenvector ũ0 associated with the zero eigenvalue is not a
constant vector.

The normalized and non-normalized graph Laplacians are
both examples of generalized graph Laplacians [36, Section
1.6], also called discrete Schrödinger operators. A generalized
graph Laplacian of a graph G is any symmetric matrix whose
i, jth entry is negative if there is an edge connecting vertices
i and j, equal to zero if i 6= j and i is not connected to j, and
may be anything if i = j.

A third popular matrix that is often used in dimensionality-
reduction techniques for signals on graphs is the random walk
matrix P := D�1W. Each entry Pi,j describes the probability
of going from vertex i to vertex j in one step of a Markov
random walk on the graph G. For connected, aperiodic graphs,
each row of Pt converges to the stationary distribution of

Recall, a signal is smooth with respect to the intrinsic structure of its
underlying graph

Similarly, the graph spectral content also depends on the underlying graph

David Shuman Signal Processing on Graphs February 11, 2013 21 / 35

p. 20
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Generalized translations
[Shuman, Ricaud, Vandergheynst, 2014]

• Classical translation:

(Tτg) (t) = g(t − τ) =

∫

R
ĝ(ξ)e−i2πτξe−i2πtξdξ

• Graph translations by fundamental analogy:

(Tnf ) (a) =
N−1∑

i=0

f̂ (i)χ∗i (n)χi(a)

• Example on the Minnesota road networks

(a) (b) (c)

Figure 7: The translated signals (a) T200f , (b) T1000f , and (c) T2000f , where f , the signal shown in Figure 1(c), is a normalized

heat kernel satisfying f̂(�`) = Ce�5�` . The component of the translated signal at the center vertex is highlighted in magenta.

4.3. Properties of the Generalized Translation Operator

Some expected properties of the generalized translation operator follow immediately from the generalized
convolution properties of Proposition 1.

Corollary 1: For any f, g 2 RN and i, j 2 {1, 2, . . . , N},
1. Ti(f ⇤ g) = (Tif) ⇤ g = f ⇤ (Tig).

2. TiTjf = TjTif .

3.
PN

n=1(Tif)(n) =
p

Nf̂(0) =
PN

n=1 f(n).

However, the niceties end there, and we should also point out some properties that are true for the
classical translation operator, but not for the generalized translation operator for signals on graphs. First,
unlike the classical case, the set of translation operators {Ti}i2{1,2,...,N} do not form a mathematical group;
i.e., TiTj 6= Ti+j . In the very special case of shift-invariant graphs [24, p. 158], which are graphs for which
the DFT basis vectors (9) are graph Laplacian eigenvectors (the unweighted ring graph shown in Figure 5(c)
is one such graph), we have

TiTj = Th�
(i�1)+(j�1)

�
mod N

i
+1

, 8i, j 2 {1, 2, . . . , N}. (26)

However, (26) is not true in general for arbitrary graphs. Moreover, while the idea of successive translations
TiTj carries a clear meaning in the classical case, it is not a particularly meaningful concept in the graph
setting due to our definition of generalized translation as a kernelized operator.

Second, unlike the classical translation operator, the generalized translation operator is not an isometric
operator; i.e., kTifk2 6= kfk2 for all indices i and signals f . Rather, we have

Lemma 1: For any f 2 RN ,

|f̂(0)|  kTifk2 
p

N⌫ikfk2 
p

Nµkfk2. (27)

Proof.

kTifk22 =

NX

n=1

 
p

N

N�1X

`=0

f̂(�`)�
⇤
` (i)�`(n)

!2

= N

N�1X

`=0

N�1X

`0=0

f̂(�`)f̂(�`0)�
⇤
` (i)�

⇤
`0(i)

NX

n=1

�`(n)�`0(n)

= N

N�1X

`=0

|f̂(�`)|2 |�⇤
` (i)|2 (28)

 N⌫2
i kfk22. (29)

10

p. 21
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Example: graph with multiscale communities
finest scale (16 com.):

coarser scale (4 com.):

fine scale (8 com.):

coarsest scale (2 com.):

p. 22
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Spectral analysis: the χi and λi of this multiscale graph

Mode #
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Graph cuts
• Graph cuts in 2 (or bisection): find the partition in two

groups of nodes that minimize the cut size (i.e., the number
of links cut)

• Exhaustive search can be computationally challenging

• About the problem of cuts:
An important result is the min-cut max-flow theorem.

Min-cut pb and Max-flow pb are two primal-dual problems
The max value of a flow = the min capacity over all cuts
One possible solution from linear program

p. 24
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Spectral approach for min-cut

• Spectral interpretation: compute the cut as function of the
adjacency matrix A

• We have R =
1
2

∑

i,j in6=groups

Aij .

This is equal to the cut size between the two groups
• Let us note si = ±1 the assignment of node i to group

labelled +1 or −1

• R =
1
2

∑

i,j

Aij(1− sisj) =
1
4

∑

i,j

Lijsisj =
1
4

s>Ls

• Hence, the problem reads as:

mins s>Ls

p. 25
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Spectral approach for min-cut

• Using the spectral decomposition of the Laplacian:

Lij =
N−1∑

k=1

λk (χk )i(χk )j

• The optimal assignment vector (that minimizes R) would
be si = (χ1)i . . . if there were no constraints on the si ’s...
Note: χ1 is known as the the Fiedler vector.

• However, si = +1 or −1...
• Approximated solution: si = sign((χ1)i).

• The estimated groups are still close to χ1.

p. 26
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Spectral approach for min-RatioCut
• In practice, the cut has to be normalized correctly to find

groups of relevant sizes
• One usual metric:

the Ratio-Cut between sets I and J of nodes

R(I, J) =
∑

i∈I,j∈J

Aij

and

RatioC(A, Ā) =
1
2

R(A, Ā)

|A| .

• With this normalization, the problem is:

min
A⊂V

RatioC(A, Ā)

p. 27
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Spectral approach for min-RatioCut
• The same problem written in a relaxed form introducing:

f(i) = +

√
|Ā|
|A| if i ∈ A and f(i) = −

√
|A|
|Ā| if i ∈ Ā

Then, ||f|| =
√
|V | and f>1 = 0.

• Finally, one has

f>L f = |V | · RatioC(A, Ā).

• Hence, problem with relaxed constraints:

minf f>L f
such that f>1 = 0, ||f||2 =

√
|V|

• This method falls down under the category of Spectral
clustering of data represented by networks

cf. [von Luxburg, Statistics and Computating, 2007]
p. 28
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Spectral approach to graph cut

• Example of spectral bisection on an irregular mesh

 

 

 

 

 

 

 

 

� It is not guaranteed to minimize �, but it often does very well. 

 

� The spectral partitioning based on the Laplacian (Fiedler, 1973, 

Pothen, Simon and Liou, 1990) is a poor approach for detecting 
natural community structure in real-world networks. 

- 8 - 

p. 29
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More generally: spectral clustering
• Spectral clustering: unsupervised classification when

data are encoded as a graph with similarity matrix W
• In a nutshell: classify according to the eigenvalues of the

Laplacian L = D−W,
with eigenvectors χk , eigenvalues λk and Daa =

∑
b 6=a Wab

• For each data point use the values of the first K χk ’s as
feature vectors

fK ,a = LKχ
−1δa

where χ = (χ1|χ2| . . . |χN). Eigenvalues
0 0.5 1 1.5 2

F
ilt

e
r 

v
a
lu

e

0

0.2

0.4

0.6

0.8

1

Spectral clustering = ideal low-pass

• Then use a classification algorithm such as K -means or
hierarchical clustering to obtain several groups

• Note: some open issues
Choice of K ? Assessment of the assignments in groups?

• Ex. for choice of K by eigengaps |λk+1 − λk |p. 30
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Spectral clustering

• Example of spectral bisection on data irregularly spread in
a space

19

Ipython Notebook example !• It’s good, very good in fact for clustering

• However, not really good for natural modules / communities
(→ see lectures on Complex networks)

p. 31
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Graph embedding, Laplacian maps
• Spectral clustering := embedding + K -means

∀a ∈ V : a→ (χ1(a), χ2(a), ..., χk (a)) ∈ Rk

• Objective of embedding: embed vertices in low
dimensional space, so as to discover geometry

xi ∈ Rd → yi ∈ Rk with k < d

Graph Embedding/Laplacian Eigenmaps
21

Goal: embed vertices in low dimensional space, discovering geometry
(x1, . . . xN ) 7! (y1, . . . yN )

xi 2 Rd yi 2 Rk k < d

Good embedding: nearby points mapped nearby, so smooth map 

yi = �(xi)

p. 32
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Graph embedding, Laplacian maps
• A good embedding preserves locality in the embedding

space, so that nearby points are mapped nearby.
It preserves smoothness.

• For that, minimize the variations of the embedding:
∑

i,j

Aij(yi − yj)
2

• Laplacian eigenmaps:

argmin y>L y
such that y>A y = 1

and y>L 1 = 0

Alternative formulation:

Ly = λAy

(generalized eigenproblem)
p. 33
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Graph embedding, Laplacian maps

• Some examplesLaplacian Eigenmaps
23

[Belkin, Niyogi, 2003]

p. 34
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A recommander system
[Vandergheynst et al., EPFL, 2014]

• Assume data in the form M[movie, user] = movie rating
Application: A Recommender System

33

Lc

Lr

X[movie, user] = movie rating• One observes only a subset of M. How to complete it?
• Hypotheses:

- Users structured as communities,
and users in community rate similarly

- Movies are clustered in genres,
and similar movies are rated similarly by usersp. 35
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A recommander system
[Vandergheynst et al., EPFL, 2014]

• Let us write AΩ(M) the observed part of the matrix M
• Matrix completion problem:

min
X

rank(X ) s.t . AΩ(X ) = AΩ(M).

• Problem relaxed with the nuclear norm:
||X ||∗ = Tr((XX>)1/2) =

∑
k σk

(where the σk are the singular values of X = UΣV>)
• Tolerance to noise: change AΩ(X ) = AΩ(M) into a penalty

term ||AΩ ◦ (A−M)||
• Completion by smoothness on the two graphs (users and

movies), as quantified by a term

γXLX> = γ
∑

j,j ′
Aij ||xj − xj ′ ||2.

p. 36
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A recommander system
[Vandergheynst et al., EPFL, 2014]

• Hence an optimization problem to solve

min
X
γn||X ||∗ + ||AΩ ◦ (A−M)||+ γr XLr X> + γcXLcX>

• Solution by advanced optimization tools for convex
non-smooth functions.

• Here, the ADMM approach (Alternating Direction Method
of Multipliers) works well (see 2nd part of the lectures)
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Figure 5: Experiments on a part of the Movielens-10M dataset

about products and people taste is available, our model would outperform the standard matrix completion
approaches. Specifically, our model is robust to graph construction and to non-uniformly sampling of ob-
servations. Furthermore, it significantly outperforms the standard matrix completion when the number of
observations is small.
The proposed matrix recovery algorithm can be improved in several ways. The effect of the non-uniformity
of sampling matrix entries, as discussed in Sections 3 and 5.2, can be partially alleviated using a special
weighting of the nuclear norm [23]. The non-uniform sampling of user data points and movie data points
from the corresponding manifolds, which influences the quality of graph Laplacians, can also be corrected
using special graph normalizations [9]. Furthermore, the optimization algorithm can be improved, firstly
in terms of speed by using enhanced iterative schemes like [20]. Secondly in terms of scalability, either by
using distributed schemes like [17] or by carrying out techniques from the recent work [12], which deals with
nuclear norm for matrices with sizes bigger than the Netflix dataset.
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Toward Wavelets on Graphs
• Fourier is a global analysis. Fourier modes (eigenvectors of

the laplacian) are used in classical spectral clustering, but
do not enable a jointly local and scale dependent analysis.

• For that classical signal processing (or harmonic analysis)
teach us that we need wavelets.

• Wavelets : local functions that act as well as a filter around
a chosen scale.
A wavelet:

– Translated:

– Scaled
• Classical wavelets

by analogy−−−−−−→ Graph wavelets
p. 38
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The classical wavelets
Each wavelet ψs,a is derived by translating and scaling a mother

wavelet ψ:
ψs,a(x) =

1
s
ψ

(
x − a

s

)

Equivalently, in the Fourier domain:

ψ̂s,a(ω) =

∫ ∞

−∞

1
s
ψ

(
x − a

s

)
exp−iωx dx

= exp−iωa
∫ ∞

−∞

1
s
ψ

(
X
s

)
exp−iωX dX

= exp−iωa
∫ ∞

−∞
ψ
(
X ′
)

exp−iωX ′ dX ′

= δ̂a(ω) ψ̂(sω) where δa = δ(x − a)

One possible definition: ψs,a(x) =
∫∞
−∞ δ̂a(ω)ψ̂(sω) expiωx dω

p. 39
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The classical wavelets

ψs,a(x) =
∫∞
−∞ δ̂a(ω)ψ̂(sω) expiωx dω

• In this definition, ψ̂(sω) acts as a filter bank defined by
scaling by a factor s a filter kernel function defined in
the Fourier space: ψ̂(ω)

• The filter kernel function ψ̂(ω) is necessarily a
bandpass filter with:

• ψ̂(0) = 0 : the mean of ψ is by definition null
• lim

ω→+∞
ψ̂(ω) = 0 : the norm of ψ is by definition finite

(Note: the actual condition is the admissibility property)

p. 40
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Classical wavelets
by analogy−−−−−−→ Graph wavelets

[Hammond et al. ACHA ’11]

Classical (continuous) world Graph world

Real domain x node a

Fourier domain ω eigenvalues λi

Filter kernel ψ̂(ω) g(λi)⇔ Ĝ

Filter bank ψ̂(sω) g(sλi)⇔ Ĝs

Fourier modes exp−iωx eigenvectors χi

Fourier transf. of f f̂ (ω) =
∫∞
−∞ f (x) exp−iωx dx f̂ = χ> f

The wavelet at scale s centered around node a is given by:

ψs,a(x) =

∫ ∞

−∞
δ̂a(ω)ψ̂(sω) expiωx dω −−→ ψs,a = χ Ĝsδ̂a = χ Ĝs χ> δa

p. 41
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Examples of graph wavelets
A WAVELET:

TRANSLATING: SCALING:

p. 42
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Examples of wavelets: they encode the local topology

ψs=1,a

ψs=35,a

ψs=25,a

ψs=50,a

p. 43
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Graph wavelets for data compressionMotiving Example: Compression

7

Piecewise-Smooth Signal with 
Discontinuities

Diffusion Wavelet Coefficients, 
Sorted by Magnitude

Reconstruction from 10% 
of Coefficients

Reconstruction from 20% 
of Coefficients

Reconstruction from 50% 
of Coefficients

p. 44
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Graph wavelets for brain fMRI dataExample
16

vendredi, 17 juin 2011
p. 45
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Graph and Signal graph coarsening

Example
104
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Graph and Signal graph coarsening
105

p. 47
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The End

• This was an invitation to “The emerging field of signal
processing on graphs: Extending high-dimensional data
analysis to networks and other irregular domains”
See [Shuman, Narang, Frossard, Ortega, Vandergheynst,
IEEE SP Mag, 2013]

http://perso.ens-lyon.fr/pierre.borgnat

Acknowledgements: thanks to Renaud Lambiotte, Pierre
Vandergheynst, David Shuman and Nicolas Tremblay for
borrowing some (many!) of their figures or slides.
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