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Graph Wavelets

e Fourier is a global analysis. Fourier modes (eigenvectors of
the laplacian) are used in classical spectral clustering, but
do not enable a jointly local and scale dependent analysis.

e For that classical signal processing (or harmonic analysis)
teach us that we need wavelets.

e Wavelets : local functions that act as well as a filter around
a chosen scale.

A wavelet:
J | ]
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The classical wavelets
Each wavelet y5 4 is derived by translating and scaling a mother

wavelet 1:
oalx) = w(x a)

Equivalently, in the Fourier domain:

s.a(w) = / 1/}( a> exp X dx

= exp""a/ 51/; (§> exp X dX

= exp @ /Oo ¥ (X') exp~ X dX’

—00

= Sa(w) P(sw)  where §,=4d(x —a)

One possible definition: s a(x) = [ da(w)d(sw) exp™™* dw

p.-3
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The classical wavelets

Vs,a( L SW) exp“X dw J

o In this definition, v)(sw) acts as a filter bank defined by
scaling by a factor s a filter kernel function defined in

the Fourier space: 1) (w)
e The filter kernel function ¢)(w) is necessarily a

bandpass filter with:
o (0) = the mean of ¢ is by definition null
o IIT z/)( ) = : the norm of ¢ is by definition finite
w—r+00

(Note: the actual condition is the admissibility property)

p. 4
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. by analo
Classical wavelets %, Graph wavelets

[Hammond et al. ACHA ’11]

Classical (continuous) world |  Graph world
Real domain X node a
Fourier domain w eigenvalues )\,
Filter kernel D(w) g\) < G
Filter bank D(sw) 9(s\) < Gs
Fourier modes expwx eigenvectors y;
Fourier transf. of f | f(w) = [ f(x) exp~™ dx F=xTf

The wavelet at scale s centered around node a is given by:

Vs a(X / 5a Sw eXp’“’X dw — [sa =X Gso, = X Gs x '
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Examples of graph wavelets
A WAVELET:

TRANSLATING: SCALING:
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A
%
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lllustration on the smoothness of graph signals

P, P, T3 ‘
DZE 05 115225335 4455 Dzé 05 1 15'T2 255J5'4 45L D;’olw 152253:1’544Jé

A’( A’»f A‘ﬂ

f7L.£ =0.14 f'Lof =1.31 f'Lsf =1.81

p.8
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Graph and Signal graph coarsening

Coarse
Approximations

Prediction
Errors

2642 1334 669 337
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Graph and Signal graph coarsening

p. 11

Conclusion
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Graph wavelets for brain fMRI data

p. 12
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Purpose of the last part of the lecture

Develop a scale dependent community mining tool using
concepts from graph signal processing.
Why ? For joint processing of graph signals and networks.

General Ideas

e Take advantage of local topological information encoded in
Graph Wavelets.
Wavelet = ego-centered vision from a node

e Group together nodes whose local environments are
similar at the description scale

e This will naturally offer a multiscale vision of communities
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Let us recall: objective of community detection

Conclusion
o

Three examples of community detections:

e (A) A complex sensor network (non-uniform swiss roll
topology)

¢ (B) A contact network in a primary school [Stehle "11]

e (C) A hierarchical graph benchmark [Sales-Pardo '07]
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or multiscale community detection ?
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Example of filters for community detection

For each graph under study, we automatically find the good
filter parameters for g by imposing:

Conclusion
o

e The coarsest scale needs to be focused on the eigenvector

x1 (Fiedler vector).

e All scales need at least to keep some information from .

e The finest scale needs to use the information from all
eigenvectors (i.e., Fourier modes).

8 8
=6 =6
w4 (\/)/4
P <5
0 0
0 10 20 0 10 20
A A
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Example of wavelet filters
e More precisely, we will use the following kernel:

X; % xe for x < X
9(x;a, B, x1,x2) = 4 p(x)  for x; <x<x
Xy x~P for x> xa.

e The parameters will be:

1 1 1
Smin:TZa X2:)\*27 Smax:)\*gy xy =1, p=1/logy
e This leads to: (=
10

8 ---o=1
. H —o=2
| —s=25 s, o - - 0=50

\ —s=47

p. 17 5

Conclusion
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Multiscale community structure in a graph

Classical community detection algorithm based (for instance)
on modularity optimisation only finds one solution:

Where the modularity function reads:
didj
Q= 3l Xy |45~ 2| e, )
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A new method for multiscale community detection
[N. Tremblay, P. Borgnat, 2013]

The problem of community mining is considered as a problem
of clustering. We then need to decide upon:

1. feature vectors for each node
2. adistance to measure two given vectors’ closeness
3. a clustering algorithm to separate nodes in clusters

The method uses:
1. wavelets as feature vectors
2. the correlation distance
3. the complete linkage clustering algorithm
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1) Wavelets as features
Each node a has feature vector s a.
Globally, one will need ¥, all wavelets at a given scale s, i.e.

s = (¢s,1 ’¢s,2’ e lws,N) = XGSXT-

AT SMALL SCALE: AT LARGE SCALE:

A
NODE /
!
NODE 4‘3%
B: @

p. 20
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2) Correlation distances
"psTa"/)s b
Ds(a,b) =1 — A .
(@) =1 = el
A
/
NODE @
A:
A
NODE /
B:
CORR. -0.50 0.97
COEF.:
RESULT: Far appart in the Qlose to each other
dendrogram in the dendrogram

Conclusion
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3) Complete linkage clustering and dendrogram

e ltis a bottom to top hierarchical algorithm: it starts with as
many clusters as nodes and works its way up to fewer
clusters (by linking subclusters together) until it reaches
one global cluster.

¢ To compute the distance between two subclusters under
examination : all possible pairs of nodes, taking one from
each cluster, are considered. The maximum possible
node-to-node distance is declared to be the
cluster-to-cluster closeness.

e Outputs a dendrogram (from Greek dendron "tree" and
gramma "drawing").
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Example of a dendrogram at a given scale s

2,

—
)]

correlation distance

o
o

NS S A Rt B e N

The big question: where should we cut the dendrogram?
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A toy graph for mtroducmg the method

smallest scale (16 com.):  small scale (8 com.):

AR

medium scale (4 com.) large scale (2 com.)

ments; Stabih{y of communities

Conclusion
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Dendrogram cut with prior knowledge
Let us cheat by using prior knowledge on the number of
communities we are looking for.
If we cut each dendrogram in two clusters

1 44949

o o
[} oo

AR coefficient
o
N

< 4444

o
)

<

I
g 4494949999949

0 10 20 30 40 50
scale number

o

Using wavelets as features

Conclusion: the dendrograms at different scales contain the
community structure at various scales.

p. 25

Conclusion
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Dendrogram cut with prior knowledge
Let us cheat by using prior knowledge on the number of
communities we are looking for.
If we cut each dendrogram in four clusters

i+  coooooooooooosos

AR coefficient
o o o
> o ©

o
)

uuuuuuu

uuuuuuuuu

o
o

0 10 20 30 40 50
scale number

Using wavelets as features

Conclusion: the dendrograms at different scales contain the
community structure at various scales.

p. 25

Conclusion
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Dendrogram cut with prior knowledge
Let us cheat by using prior knowledge on the number of
communities we are looking for.
If we cut each dendrogram in eight clusters

1 b

o
©

*************

AR coefficient
o o
> o

o
)

o
™
+

+
++++++

0 10 20 30 40 50
scale number

Using wavelets as features

Conclusion: the dendrograms at different scales contain the
community structure at various scales.

p. 25

Conclusion
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Dendrogram cut with prior knowledge
Let us cheat by using prior knowledge on the number of

communities we are looking for.
If we cut each dendrogram in sixteen clusters

1;  ©00000000000000000
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AR coefficient
o
N

o
)
o

o

o

10 20 30 40 50
scale number

o

Using wavelets as features

Conclusion: the dendrograms at different scales contain the
community structure at various scales.

p. 25

Conclusion
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Dendrogram cut with prior knowledge
Let us cheat by using prior knowledge on the number of
communities we are looking for.
The four levels of communities.

1 q
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0 10 20 30 40 50
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Using wavelets as features

Conclusion: the dendrograms at different scales contain the
community structure at various scales.

p. 25

Conclusion
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Recall: The Adjusted Rand Index
Let:

C and C’ be two partitions we want to compare.

a be the # of pairs of nodes that are in the same
community in C and in the same community in C’

b be the # of pairs of nodes that are in different
communities in C and in different communities in C’
¢ be the # of pairs of nodes that are in the same
community in C and in different communities in C’
d be the # of pairs of nodes that are in different
communities in C and in the same community in C’

a -+ b is the number of “agreements” between C and C’.
¢ + d is the number of “disagreements” between C and C'.

p. 26
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The Adjusted Rand Index

The Rand index, R, is:

B at+b _a+b
“a+b+c+d ()

The Adjusted Rand index AR is the corrected-for-chance
version of the Rand index:

B R — Expectedindex
~ MaxIndex — Expectedindex

AR

p. 27

Conclusion
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Developments; Stability of communities

00000

Dendrogram cut with classical modularity

Recall that the classical modularity matrix reads:

B(A) = ;- (A+ %)

where d is the strength vector

and 2m = > d(i)

Conclusion
o

Classical modularity is

Q= Tr(S'BS)

+++++++++++

1} 40000000000000
o
0.8 LS ST & S
€ o oo o
%0
B ] B gRAAeRAReRe o000 g0
o o % oo oo Som
@ ° 0000 00 © o0
Q
© 0.4
E uuuuuuuuuuuuuuu wdq 44 4 qq
0 2 ° G99 g << 4 4aq
it o«
5 9499
<
0
0 10 20 30 40 50

scale number

Solution not good at large scale.
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Dendrogram cut with filtered modularity

We define the filtered adjacency matrices at scale s:
o recall that A = Dzx(/ — A)y' Dz
o A=A+ D2yGsx DA

We define the filtered modularity matrices at scale s:
B{ = B(A?)
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Maximize filtered modularity

Filtered Modu Opt. Classical Modu Opt.

LIS [ 0000000000000 beiiiiiiibs
oooo a hans
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6 o B 00 <AL "q_) ° o 0000 00 © 00
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o 0
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Conclusion
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Notes about the filtered modularity

Al = A+ DixGs D 2A
Consider d the vector of strengths of A and 2m the sum of the
strengths. The classical modularity reads:

A dd’

“2m (2m)?
Consider d’ the vector of strengths of A7 and 2m’ the sum of
the strengths. We can show that:
ddT d/d/T
(2m)2 ~ (2m')?
Moreover, if gs(1) = 0 (which is the case), the filtered
modularity reads:

A+ DixGex"D2A  ddT

9 _
Bs = 2m (2m)2
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Notes about the filtered modularity

go_ A+ D2xGex"D2A  dd”
S 2m (2m)2

Recall that modularity compares the actual normalised weight
% to the;gxpected weight if the graph was a random Chung-Lu
graph: -1

2m)2-
The filtered modularity does not change the expected weight
but rather changes the actual normalised weigth: it adds or

. Aj L :
retrieve value to 5% . At small scale, it will increase the weights
important for small scale structures and decrease the weights

important for superstructures.
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Notes about the filtered modularity
It can be written:

N

Z +gs()(1 — A\)D2 X/ D2
i=2

To compare to Schaub-Delvenne’s filtered modularity:

Bt = 72 DZX/XTD2

Conclusion
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Maximize filtered modularity on Sales-Pardo network

2 10 40 160 2 10 40 160
# of clusters # of clusters

p. 34
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Maximize filtered modularity on Sales-Pardo network

qp o fine

v
O coarse

interm.
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Maximize filtered modularity on Sales-Pardo network

100
A &
g N
o [
o .
5 g
b Q
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Intermediate bilan

As expected, the method works week with filtered
modularity

Fundamental reason: it is related to Arenas or
Schaub-Delvenne modified modularity to take into account
a scale

However: the dendrogram has already in itself the good
solutions, with no need of the step of (filtered) modularity
optimization.

For that: look at the gaps !
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Dendrogram cut at maximal gap

To avoid the cumbersome multiscale modularity optimization,
we can simply cut the dendrogram at its maximal gap.

At small scale: At large scale:

pN
3]

correlation distance
-
correlation distance

It
3]
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Dendrogram cut at maximal gap

To avoid the cumbersome multiscale modularity optimization,
we can simply cut the dendrogram at its maximal gap.

At small scale: At large scale:

pN
3]

correlation distance
-
correlation distance

It
3]
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Dendrogram cut at maximal gap
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Using wavelets

Conclusion
o
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Dendrogram cut at maximal gap

nodes

10 20 30 40
scale number

Using wavelets

Conclusion
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Dendrogram cut at maximal gap: non robust to outliers

correlation distance

D |eccccccabccccccccccc e ek e
g

& 1

R

©

<

o

kS

o 0.5

=

S

o

0 |

nodes



Graph Wavelets Some illustrations Multiscale community mining Developments; Stability of communities Conclusion
o

000000 00000 0000000000000 00000000 0000000000
0O0000000e00000 00000

Dendrogram cut at maximal average gap
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nodes correlation distance
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M= r
Nmax(corr. dist.) PLE
acy

At small scale

correlation distance

0 02 1
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correlation distance
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Dendrogram cut at maximal average gap
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Dendrogram cut at maximal average gap

For the previous graph:
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(5]
1 g 1
@
©
c
S
! 50.5
i S
1 o
0 i
0 0.5 1 0

correlation distance nodes
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Comparison maximal gap vs. filtered modularity

Maximal Gap
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Some illustrations

AR coefficient
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Comparison maximal gap vs. filtered modularity

Filtered Modu Opt.

0.8

Y ST S—

Developments; Stability of communities

04 e <
’ 444444444 °©
0.2 « N
LIRRRR—
o
0|
0 10 40 50

20 30
scale number

0.8 <
= S o oo
Bog] o o < 7 g
T |° . 0000 00 000
8 0.4
2 [J— s w4

02f st g "o o

ISR
o
0 10 20 30 40 50

scale number

Conclusion
o



Graph Wavelets Some illustrations Multiscale community mining Developments; Stability of communities Conclusion
000000 00000 000000000000000000000 0000000000 o
00000000000800 00000

Comparison maximal gap vs. filtered modularity

Maximal Gap Filtered Modu Opt.  Classical Modu Opt.
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Multiscale community detection on a simple network

nodes

10

20
scale number

Another toy graph Using wavelets
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Multiscale community detection on more elaborate
networks
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The Sales-Pardo benchmark

e Three community structures nested in one another
e Parameters:
e sizes of the communities (N = 640)
e ptunes how well separated the different scales are
e kis the average degree; the sparser is the graph, the
harder it is to recover the communities.
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Results on the Sales-Pardo benchmark
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Results on the Sales-Pardo benchmark
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The case of larger networks

Limit of the method: computation of the N x N matrix of the
wavelets Wg.

Improvement: use of random features.

Let r € RN be a random vector on the nodes of the graph,
composed of N independent normal random variables of
zero mean and finite variance o2.

Define the feature fs 5 € R at scale s associated to node a
as

N
fs,a = @[’;ar = Z@Z)S,a(k)r(k)-

k=1
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The case of larger networks
Let us define the correlation between features

E((fs,a — E(fs,a))(fs.0 — E(fs))))
v/ Var(fs 2)Var(fs p) '

Cor(fs,aa fs,b) =

It is easy to show that:

’l/’;—a’(#sb
Cor(fs a, fsp) = = )
(e fo) = [ Tbsols

Therefore, the sample correlation estimator Cabm satisfies:

i Gany = Poaee
oo T [ps al |45 ol

1 — Dg(a, b).

This leads to a faster algorithm.
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Results on the Sales-Pardo benchmark

¢ As a function of n, the number of random vectors used

1 842
S4

3 --LS Recall OE/; Sg

'g 0.5 —+MS Recall =36

v —-SS Recall 934
g3

0 532

20 40 60 80 100 V 20 40 60 80 100
n n

Conclusion
o
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Stability of the communities

¢ Not all partitions are relevant: only those stable enough
convey information about the network

e Lambiotte’s approach to stability:
Create B resampled graphs by randomly adding +p%
(typically p = 10) to the weight of each link and computing
the corresponding B sets of partitions {Pé’}be[w],ses-
Then, stability:

W)= oY ari(PLPY), (1)
B(B-1) (b,c)e[1,B]2,bc

¢ New approach: we have a stochastic algorithm.
Consider J sets of  random signals and compute the
associated sets of partitions {Pjs}je[L Jl,ses- Let stability be:

_ 2 . pi pl
73(3)—J(J_1) . > | .arl(Ps,Ps). (2)
(L)l 2%



Graph Wavelets Some illustrations Multiscale community mining Developments; Stability of communities Conclusion
o]

000000 00000 0000000000000 00000000 0000000800
0000000000000 0 00000

Results with stabilities on the Sales-Pardo benchmark
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communities

e |t is possible to design a data-driven test on ~, (not
explained here).

e Result: threshold for 1 — 5 above which the partition in
communities is irrelevant.

Sales-Pardo graph Chung-Lu graph
wo 1
3 2 1 A
os | Fos
AL A 0
10 158 25.1 3938 1.9 2.2 25
scale s scale s
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Comparison on larger Sales-Pardo graphs

N = 6400 nodes

Schaub-Delvenne Wavelets
193 1 PIOCO000004IKGE Cxreren > 1
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_E = LS < ° = LS
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o mw > 8S o SFHEREHIN SOOI,y o GG fa
E o g‘ o
0 0.1 1 3 10 15.8 25.1
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c 1 1
Qo
g
= ©
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= -
E 1|
0 0.1 1 6.3 10 15.8 25.1
Markov time scale s
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More elaborate graphs
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Sensor network on the swiss roll manifold

e Three scale ranges of relevant community structure

10000 ' 100000 1e+06 1e+07
scale s

Conclusion
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The dynamic social network of a primary school

Collaboration with A. Barrat (CPT Marseille)
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Multi-scale Communities in Primary School

Collaboration with A. Barrat (CPT Marseille)

e 3 5 i 103 20 28 37 51 74 103
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Conclusion
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Multi-scale Communities in Primary School

Collaboration with A. Barrat (CPT Marseille)
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Conclusion

o Wavelet s 4 gives an "egocentered view" of the network
seen from node a at scale s

e Correlation between these different views gives us a
distance between nodes at scale s

¢ This enables multi-scale clustering of nodes in
communities

¢ | hope that you were attracted to
the emerging field of graph signal processing for networks.

http://perso.ens-lyon.fr/pierre.borgnat

Acknowledgements: thanks to Nicolas Tremblay for borrowing
many of his figures or slides.
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