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Graph Wavelets

• Fourier is a global analysis. Fourier modes (eigenvectors of
the laplacian) are used in classical spectral clustering, but
do not enable a jointly local and scale dependent analysis.

• For that classical signal processing (or harmonic analysis)
teach us that we need wavelets.

• Wavelets : local functions that act as well as a filter around
a chosen scale.
A wavelet:

– Translated:

– Scaled
• Classical wavelets

by analogy−−−−−−→ Graph wavelets

p. 2



Graph Wavelets Some illustrations Multiscale community mining Developments; Stability of communities Conclusion

The classical wavelets
Each wavelet ψs,a is derived by translating and scaling a mother

wavelet ψ:
ψs,a(x) =

1
s
ψ

(
x − a

s

)

Equivalently, in the Fourier domain:

ψ̂s,a(ω) =

∫ ∞

−∞

1
s
ψ

(
x − a

s

)
exp−iωx dx

= exp−iωa
∫ ∞

−∞

1
s
ψ

(
X
s

)
exp−iωX dX

= exp−iωa
∫ ∞

−∞
ψ
(
X ′
)

exp−iωX ′
dX ′

= δ̂a(ω) ψ̂(sω) where δa = δ(x − a)

One possible definition: ψs,a(x) =
∫∞
−∞ δ̂a(ω)ψ̂(sω) expiωx dω
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The classical wavelets

ψs,a(x) =
∫∞
−∞ δ̂a(ω)ψ̂(sω) expiωx dω

• In this definition, ψ̂(sω) acts as a filter bank defined by
scaling by a factor s a filter kernel function defined in
the Fourier space: ψ̂(ω)

• The filter kernel function ψ̂(ω) is necessarily a
bandpass filter with:

• ψ̂(0) = 0 : the mean of ψ is by definition null
• lim

ω→+∞
ψ̂(ω) = 0 : the norm of ψ is by definition finite

(Note: the actual condition is the admissibility property)

p. 4
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Classical wavelets
by analogy−−−−−−→ Graph wavelets

[Hammond et al. ACHA ’11]

Classical (continuous) world Graph world

Real domain x node a

Fourier domain ω eigenvalues λi

Filter kernel ψ̂(ω) g(λi)⇔ Ĝ

Filter bank ψ̂(sω) g(sλi)⇔ Ĝs

Fourier modes exp−iωx eigenvectors χi

Fourier transf. of f f̂ (ω) =
∫∞
−∞ f (x) exp−iωx dx f̂ = χ> f

The wavelet at scale s centered around node a is given by:

ψs,a(x) =

∫ ∞

−∞
δ̂a(ω)ψ̂(sω) expiωx dω −−→ ψs,a = χ Ĝsδ̂a = χ Ĝsχ> δa
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Examples of graph wavelets
A WAVELET:

TRANSLATING: SCALING:

p. 6
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Examples of wavelets: they encode the local topology

ψs=1,a

ψs=35,a

ψs=25,a

ψs=50,a

p. 7
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Illustration on the smoothness of graph signals

fTL1f = 0.14 fTL2f = 1.31 fTL3f = 1.81

Smoothness of Graph Signals Revisited
25
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Incorporation of the Underlying Graph Connectivity 5

For notions of global smoothness, the discrete p-Dirichlet
form of f is defined as

Sp(f) :=
1

p

X

i2V

kOifkp
2 =

1

p

X

i2V

2
4X

j2Ni

Wi,j [f(j) � f(i)]
2

3
5

p
2

.

(5)

When p = 1, S1(f) is the total variation of the signal with
respect to the graph. When p = 2, we have

S2(f) =
1

2

X

i2V

X

j2Ni

Wi,j [f(j) � f(i)]
2

=
X

(i,j)2E
Wi,j [f(j) � f(i)]

2
= fTLf . (6)

S2(f) is known as the graph Laplacian quadratic form [17],
and the semi-norm kfkL is defined as

kfkL := kL 1
2 fk2 =

p
fTLf =

p
S2(f).

Note from (6) that the quadratic form S2(f) is equal to zero
if and only if f is constant across all vertices (which is why
kfkL is only a semi-norm), and, more generally, S2(f) is small
when the signal f has similar values at neighboring vertices
connected by an edge with a large weight; i.e., when it is
smooth.

Returning to the graph Laplacian eigenvalues and eigen-
vectors, the Courant-Fischer Theorem [35, Theorem 4.2.11]
tells us they can also be defined iteratively via the Rayleigh
quotient as

�0 = min
f2RN

kfk2=1

{fTLf} , (7)

and �` = min
f2RN

kfk2=1
f?span{u0,...,u`�1}

{fTLf} , ` = 1, 2, . . . , N � 1, (8)

where the eigenvector u` is the minimizer of the `th prob-
lem. From (6) and (7), we see again why u0 is constant
for connected graphs. Equation (8) explains why the graph
Laplacian eigenvectors associated with lower eigenvalues are
smoother, and provides another interpretation for why the
graph Laplacian spectrum carries a notion of frequency.

Example 1 in the box below demonstrates the importance of
incorporating the underlying graph structure when processing
signals on graphs.

F. Other Graph Matrices

The basis {u`}`=0,1,...,N�1 of graph Laplacian eigenvectors
is just one possible basis to use in the forward and inverse
graph Fourier transforms (3) and (4). A second popular option
is to normalize each weight Wi,j by a factor 1p

didj

. Doing so

leads to the normalized graph Laplacian, which is defined as
L̃ := D� 1

2 LD� 1
2 , or, equivalently,

(L̃f)(i) =
1p
di

X

j2Ni

Wi,j

"
f(i)p

di

� f(j)p
dj

#
.

G1

λ

f̂ λ( )

G2

λ

f̂ λ( )

G3

λ

f̂ λ( )

Example 1 (Importance of the underlying graph):
In the figure above, we plot the same signal f on
three different unweighted graphs with the same set
of vertices, but different edges. The top row shows the
signal in the vertex domains, and the bottom row shows
the signal in the respective graph spectral domains.

The smoothness and graph spectral content of the
signal both depend on the underlying graph structure.
In particular, the signal f is smoothest with respect
to the intrinsic structure of G1, and least smooth with
respect to the intrinsic structure of G3. This can be seen
(i) visually; (ii) through the Laplacian quadratic form,
as fTL1f = 0.14, fTL2f = 1.31, and fTL3f = 1.81;
and (iii) through the graph spectral representations,
where the signal has all of its energy in the low
frequencies in the graph spectral plot of f̂ on G1, and
more energy in the higher frequencies in the graph
spectral plot of f̂ on G3.

The eigenvalues {�̃`}`=0,1,...,N�1 of the normalized graph
Laplacian of a connected graph G satisfy

0 = �̃0 < �̃1  . . .  �̃max  2,

with �̃max = 2 if and only if G is bipartite; i.e., the set of
vertices V can be partitioned into two subsets V1 and V2 such
that every edge e 2 E connects one vertex in V1 and one vertex
in V2. We denote the normalized graph Laplacian eigenvectors
by {ũ`}`=0,1,...,N�1. As seen in Figure 3(b), the spectrum of
L̃ also carries a notion of frequency, with the eigenvectors
associated with higher eigenvalues generally having more zero
crossings. However, unlike u0, the normalized graph Laplacian
eigenvector ũ0 associated with the zero eigenvalue is not a
constant vector.

The normalized and non-normalized graph Laplacians are
both examples of generalized graph Laplacians [36, Section
1.6], also called discrete Schrödinger operators. A generalized
graph Laplacian of a graph G is any symmetric matrix whose
i, jth entry is negative if there is an edge connecting vertices
i and j, equal to zero if i 6= j and i is not connected to j, and
may be anything if i = j.

A third popular matrix that is often used in dimensionality-
reduction techniques for signals on graphs is the random walk
matrix P := D�1W. Each entry Pi,j describes the probability
of going from vertex i to vertex j in one step of a Markov
random walk on the graph G. For connected, aperiodic graphs,
each row of Pt converges to the stationary distribution of

Recall, a signal is smooth with respect to the intrinsic structure of its
underlying graph

Similarly, the graph spectral content also depends on the underlying graph

David Shuman Signal Processing on Graphs February 11, 2013 21 / 35
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Kron reduction and spasificationKron reduction produces denser and denser graphs

After each reduction we use Spielman’s sparsification algorithm 
to obtain an equivallent but sparser graph

Approx preserves Laplacian 
quadratic form Explicit control based on effective 

resistance of edges

Sparsification
106

Intro Signal Transforms Problem Spectral Graph Theory Generalized Operators WGFT Conclusion

Further Reading
Tutorial Overviews

D. I Shuman, S. K. Narang, P. Frossard, A. Ortega, P. Vandergheynst, “Signal processing on graphs:

Extending high-dimensional data analysis to networks and other irregular domains,” Signal Process. Mag.,
to appear May 2013.

R. Rubinstein, A. M. Bruckstein, and M. Elad, “Dictionaries for sparse representation modeling,” Proc.

IEEE, vol. 98, no. 6, pp. 1045–1057, Jun. 2010.

Spectral Graph Theory and Graph Laplacian Eigenvectors

F. K. Chung, Spectral Graph Theory, vol. 92 of the CBMS Reg. Conf. Ser. Math., AMS Bokstore, 1997.
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to one over the number of vertices in the complete subgraph.
This class of graphs highlights two of the main weaknesses

of the Kron reduction: (i) it does not always preserve regular
structural properties of the graph; and (ii) it does not always
preserve the sparsity of the graph. We discuss an alternative
graph reduction method that does preserve the tree structure in
Section VI-D, and a sparsity enhancing modification in Section
IV-D.

5) k-Regular Bipartite Graphs: In [18], Narang and Ortega
consider connected and unweighted k-RBGs.8 They downsam-
ple by keeping one subset of the bipartition, and they construct
a new graph on the downsampled vertices V1 by linking
vertices in the reduced graph with an edge whose weight is
equal to the number of their common neighbors in the original
graph. If the vertices of the original graph are rearranged so
that all the vertices in V1 have smaller indices than all the
vertices in Vc

1 , the adjacency and Laplacian matrices of the
original graph can be represented as:

W =


0 W1

WT
1 0

�
and L =

"
kIN

2
�W1

�WT
1 kIN

2

#
. (11)

Then for all i, j 2 V1 (with i 6= j), the i, jth entry of the
adjacency matrix of the reduced graph is given by

W kRBG�reduced
ij (V1) = (W1W

T

1 )ij . (12)

They also show that

LkRBG�reduced(V1) = k2IN
2
� W1W

T

1. (13)

Now we examine the Kron reduction of k-RBGs. The Kron-
reduced Laplacian is given by:

LKron�reduced(V1) = LV1,V1
� LV1,V2

L�1
V2,V2

LV2,V1

= kIN
2
� (�W1)(kIN

2
)�1(�WT

1)

= kIN
2
� 1

k
W1W

T

1,

which is a constant factor 1
k times the reduced Laplacian (13)

of [18]. So, up to a constant factor, the Kron reduction is a
generalization of the graph reduction method presented in [18]
for the special case of regular bipartite graphs.

D. Graph Sparsification

As a consequence of property (K5), repeated Kron reduction
often leads to denser and denser graphs. We have already seen
this loss of sparsity in Section IV-C4, and this phenomenon
is even more evident in larger, less regular graphs. In addi-
tion to computational drawbacks, the loss of sparsity can be
important, because if the reduced graphs become too dense,
it may not effectively capture local connectivity information
that is important for processing signals on the graph. There-
fore, in many situations, it is advantageous to perform graph
sparsification immediately after the Kron reduction as part of
the overall graph reduction phase.

8Although [18] considers unweighted k-RBGs, the following statements
also apply to weighted k-RBGs if we extend the definition of the reduced
adjacency matrix (12) to weighted graphs.

Algorithm 1 Spectral Sparsification [30]
Inputs: G = {V, E ,W}, Q
Output: W0

1: Initialize W0 = 0
2: for q = 1, 2, . . . , Q do
3: Choose a random edge e = (i, j) of E according to the

probability distribution

pe =
dRG (i, j)WijP

e=(m,n)2E
dRG (m, n)Wmn

4: W 0
ij = W 0

ij +
Wij

Qpe

5: end for

(a) (b) (c)

(d) (e) (f)

Fig. 5. Incorporation of a spectral sparsification step into the graph reduction.
(a)-(c) Repeated largest eigenvector downsampling and Kron reduction of a
sensor network graph. (d)-(f) The same process with the spectral sparsification
of [30] used immediately after each Kron reduction.

There are numerous ways to perform graph sparsification.
In this paper, we use a straightforward spectral sparsification
algorithm of Spielman and Strivastava [30], which is described
in Algorithm 1. This sparsification method pairs nicely with
the Kron reduction, because [30] shows that for large graphs
and an appropriate choice of the number of samples Q, the
graph Laplacian spectrum and resistance distances between
vertices are approximately preserved with high probability.
In Figure 5, we show an example of repeated downsampling
followed by Kron reduction and spectral sparsification.

E. Alternative Graph Reduction Methods

First, we mention some alternative graph reduction methods:
1) In [8], Narang and Ortega define a reduced graph via

the weighted adjacency matrix by taking W(j+1) =�
[W(j)]2

�
V1,V1

. Here, [W(j)]2 represents the 2-hop ad-
jacency matrix of the original graph. The reduced Lapla-
cian can then be defined as L(j+1) = D(j+1)�W(j+1),
where D(j+1) is computed from W(j+1). However,
there are a number of undesirable properties of this
reduction method. First, and perhaps foremost, the re-
duction method does not always preserve connectivity.
Second, self-loops are introduced at every vertex in the
reduced graph. Third, vertices in the selected subset
that are connected by an edge in the original graph
may not share an edge in the reduced graph. Fourth,

p. 9
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Graph and Signal graph coarsening

Example
104
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Graph and Signal graph coarsening
105
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Graph wavelets for brain fMRI dataExample
16

vendredi, 17 juin 2011
p. 12
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Purpose of the last part of the lecture
Develop a scale dependent community mining tool using

concepts from graph signal processing.
Why ? For joint processing of graph signals and networks.

General Ideas
• Take advantage of local topological information encoded in

Graph Wavelets.
Wavelet = ego-centered vision from a node

• Group together nodes whose local environments are
similar at the description scale

• This will naturally offer a multiscale vision of communities

p. 13
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Let us recall: objective of community detection

Three examples of community detections:

• (A) A complex sensor network (non-uniform swiss roll
topology)

• (B) A contact network in a primary school [Stehle ’11]
• (C) A hierarchical graph benchmark [Sales-Pardo ’07]

A

B C

p. 14
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or multiscale community detection ?

p. 15
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Example of filters for community detection

For each graph under study, we automatically find the good
filter parameters for g by imposing:
• The coarsest scale needs to be focused on the eigenvector
χ1 (Fiedler vector).

• All scales need at least to keep some information from χ1.
• The finest scale needs to use the information from all

eigenvectors (i.e., Fourier modes).
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 λ
)
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Example of wavelet filters
• More precisely, we will use the following kernel:

g(x ;α, β, x1, x2) =





x−α1 xα for x < x1

p(x) for x1 ≤ x ≤ x2

xβ2 x−β for x > x2.

• The parameters will be:

smin =
1
λ2
, x2 =

1
λ2
, smax =

1
λ2

2
, x1 = 1, β = 1/log10

(
λ3

λ2

)

• This leads to: (α = 2)
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Multiscale community structure in a graph

Classical community detection algorithm based (for instance)
on modularity optimisation only finds one solution:

A

B C

Where the modularity function reads:
Q = 1

2N
∑

ij

[
Aij − di dj

2N

]
δ(ci , cj)

p. 18
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A new method for multiscale community detection
[N. Tremblay, P. Borgnat, 2013]

The problem of community mining is considered as a problem
of clustering. We then need to decide upon:

1. feature vectors for each node
2. a distance to measure two given vectors’ closeness
3. a clustering algorithm to separate nodes in clusters

The method uses:
1. wavelets as feature vectors
2. the correlation distance
3. the complete linkage clustering algorithm

p. 19
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1) Wavelets as features
Each node a has feature vector ψs,a.
Globally, one will need Ψs, all wavelets at a given scale s, i.e.

Ψs =
(
ψs,1|ψs,2| . . . |ψs,N

)
= χGsχ

>.

NODE

A:

NODE

B:

AT SMALL SCALE: AT LARGE SCALE:

p. 20
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2) Correlation distances

Ds(a,b) = 1−
ψ>s,aψs,b

||ψs,a||2 ||ψs,b||2
.

NODE

A:

NODE

B:
CORR.
COEF.:

RESULT:

-0.50

Far appart in the
dendrogram

0.97

Close to each other
in the dendrogram

p. 21
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3) Complete linkage clustering and dendrogram

• It is a bottom to top hierarchical algorithm: it starts with as
many clusters as nodes and works its way up to fewer
clusters (by linking subclusters together) until it reaches
one global cluster.

• To compute the distance between two subclusters under
examination : all possible pairs of nodes, taking one from
each cluster, are considered. The maximum possible
node-to-node distance is declared to be the
cluster-to-cluster closeness.

• Outputs a dendrogram (from Greek dendron "tree" and
gramma "drawing").

p. 22
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Example of a dendrogram at a given scale s
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The big question: where should we cut the dendrogram?
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A toy graph for introducing the method
smallest scale (16 com.): small scale (8 com.):

medium scale (4 com.): large scale (2 com.):

p. 24
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Dendrogram cut with prior knowledge
Let us cheat by using prior knowledge on the number of
communities we are looking for.
If we cut each dendrogram in two clusters
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Using wavelets as features
Conclusion: the dendrograms at different scales contain the
community structure at various scales.
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Dendrogram cut with prior knowledge
Let us cheat by using prior knowledge on the number of
communities we are looking for.
If we cut each dendrogram in four clusters
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Using wavelets as features
Conclusion: the dendrograms at different scales contain the
community structure at various scales.
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Dendrogram cut with prior knowledge
Let us cheat by using prior knowledge on the number of
communities we are looking for.
If we cut each dendrogram in eight clusters
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Using wavelets as features
Conclusion: the dendrograms at different scales contain the
community structure at various scales.
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Dendrogram cut with prior knowledge
Let us cheat by using prior knowledge on the number of
communities we are looking for.
If we cut each dendrogram in sixteen clusters
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Using wavelets as features
Conclusion: the dendrograms at different scales contain the
community structure at various scales.
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Dendrogram cut with prior knowledge
Let us cheat by using prior knowledge on the number of
communities we are looking for.
The four levels of communities.
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Using wavelets as features

Conclusion: the dendrograms at different scales contain the
community structure at various scales.
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Recall: The Adjusted Rand Index
Let:

• C and C′ be two partitions we want to compare.
• a be the # of pairs of nodes that are in the same

community in C and in the same community in C′
• b be the # of pairs of nodes that are in different

communities in C and in different communities in C′
• c be the # of pairs of nodes that are in the same

community in C and in different communities in C′
• d be the # of pairs of nodes that are in different

communities in C and in the same community in C′

a + b is the number of “agreements“ between C and C′.
c + d is the number of “disagreements“ between C and C′.

p. 26
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The Adjusted Rand Index

The Rand index, R, is:

R =
a + b

a + b + c + d
=

a + b(n
2

)

The Adjusted Rand index AR is the corrected-for-chance
version of the Rand index:

AR =
R − ExpectedIndex

MaxIndex − ExpectedIndex

p. 27
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Dendrogram cut with classical modularity

Recall that the classical modularity matrix reads:
B(A) = 1

2m(A + dd>

2m )

where d is the strength vector and 2m =
∑

d(i)

Classical modularity is

Q = Tr(S>BS)
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Dendrogram cut with filtered modularity

We define the filtered adjacency matrices at scale s:

• recall that A = D
1
2χ(I − Λ)χ>D

1
2

• Ag
s = A + D

1
2χĜsχ

>D−
1
2 A

We define the filtered modularity matrices at scale s:

Bg
s = B(Ag

s )

p. 29
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Maximize filtered modularity

Filtered Modu Opt. Classical Modu Opt.
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Notes about the filtered modularity

Ag
s = A + D

1
2χĜsχ

>D−
1
2 A

Consider d the vector of strengths of A and 2m the sum of the
strengths. The classical modularity reads:

B =
A

2m
− dd>

(2m)2

Consider d ′ the vector of strengths of Ag
s and 2m′ the sum of

the strengths. We can show that:

dd>

(2m)2 =
d ′d ′>

(2m′)2

Moreover, if gs(1) = 0 (which is the case), the filtered
modularity reads:

Bg
s =

A + D
1
2χĜsχ

>D−
1
2 A

2m
− dd>

(2m)2p. 31
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Notes about the filtered modularity

Bg
s =

A + D
1
2χĜsχ

>D−
1
2 A

2m
− dd>

(2m)2

Recall that modularity compares the actual normalised weight
Aij
2m to the expected weight if the graph was a random Chung-Lu
graph: di dj

(2m)2 .
The filtered modularity does not change the expected weight
but rather changes the actual normalised weigth: it adds or
retrieve value to Aij

2m . At small scale, it will increase the weights
important for small scale structures and decrease the weights
important for superstructures.

p. 32
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Notes about the filtered modularity
It can be written:

Bg
s =

1
2m

N∑

i=2

(1 + gs(i))(1− λi)D
1
2χiχ

>
i D

1
2

To compare to Schaub-Delvenne’s filtered modularity:

Bt =
1

2m

N∑

i=2

(1− λi)
tD

1
2χiχ

>
i D

1
2

And Arenas’ version: (here for regular networks)

Bα =
1

2m

N∑

i=2

(1− λi

α
)D

1
2χiχ

>
i D

1
2

p. 33
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Maximize filtered modularity on Sales-Pardo network
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Maximize filtered modularity on Sales-Pardo network
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Maximize filtered modularity on Sales-Pardo network
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Intermediate bilan

• As expected, the method works week with filtered
modularity

• Fundamental reason: it is related to Arenas or
Schaub-Delvenne modified modularity to take into account
a scale

• However: the dendrogram has already in itself the good
solutions, with no need of the step of (filtered) modularity
optimization.

• For that: look at the gaps !

p. 37
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Dendrogram cut at maximal gap

To avoid the cumbersome multiscale modularity optimization,
we can simply cut the dendrogram at its maximal gap.
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Dendrogram cut at maximal gap

To avoid the cumbersome multiscale modularity optimization,
we can simply cut the dendrogram at its maximal gap.
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Dendrogram cut at maximal gap
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Dendrogram cut at maximal gap
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Dendrogram cut at maximal gap: non robust to outliers
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Dendrogram cut at maximal average gap
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Dendrogram cut at maximal average gap
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Dendrogram cut at maximal average gap

For the previous graph:
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Comparison maximal gap vs. filtered modularity

Maximal Gap Filtered Modu Opt. Classical Modu Opt.
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Comparison maximal gap vs. filtered modularity

Maximal Gap Filtered Modu Opt. Classical Modu Opt.
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Comparison maximal gap vs. filtered modularity

Maximal Gap Filtered Modu Opt. Classical Modu Opt.
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Multiscale community detection on a simple network
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Multiscale community detection on more elaborate
networks

p. 47
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The Sales-Pardo benchmark
• Three community structures nested in one another
• Parameters:

• sizes of the communities (N = 640)
• ρ tunes how well separated the different scales are
• k̄ is the average degree; the sparser is the graph, the

harder it is to recover the communities.

p. 48
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Results on the Sales-Pardo benchmark
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Results on the Sales-Pardo benchmark
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The case of larger networks

• Limit of the method: computation of the N ×N matrix of the
wavelets Ψs.

• Improvement: use of random features.
• Let r ∈ RN be a random vector on the nodes of the graph,

composed of N independent normal random variables of
zero mean and finite variance σ2.

• Define the feature fs,a ∈ R at scale s associated to node a
as

fs,a = ψ>s,ar =
N∑

k=1

ψs,a(k)r(k).

p. 51
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The case of larger networks
• Let us define the correlation between features

Cor(fs,a, fs,b)=
E((fs,a − E(fs,a))(fs,b − E(fs,b)))√

Var(fs,a)Var(fs,b)
.

• It is easy to show that:

Cor(fs,a, fs,b) =
ψ>s,aψs,b

||ψs,a||2 ||ψs,b||2
.

• Therefore, the sample correlation estimator Ĉab,η satisfies:

lim
η→+∞

Ĉab,η =
ψ>s,aψs,b

||ψs,a||2 ||ψs,b||2
= 1− Ds(a,b).

• This leads to a faster algorithm.

p. 52
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Results on the Sales-Pardo benchmark

• As a function of η, the number of random vectors used
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Stability of the communities
• Not all partitions are relevant: only those stable enough

convey information about the network
• Lambiotte’s approach to stability:

Create B resampled graphs by randomly adding ±p%
(typically p = 10) to the weight of each link and computing
the corresponding B sets of partitions {Pb

s }b∈[1,B],s∈S .
Then, stability:

γr (s) =
2

B(B − 1)

∑

(b,c)∈[1,B]2,b 6=c

ari(Pb
s ,P

c
s ), (1)

• New approach: we have a stochastic algorithm.
Consider J sets of η random signals and compute the
associated sets of partitions {P j

s}j∈[1,J],s∈S . Let stability be:

γa(s) =
2

J(J − 1)

∑

(i,j)∈[1,J]2,i 6=j

ari(P i
s,P

j
s). (2)

p. 54
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Results with stabilities on the Sales-Pardo benchmark
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In addition: statistical test of relevance of the
communities

• It is possible to design a data-driven test on γa (not
explained here).

• Result: threshold for 1− γa above which the partition in
communities is irrelevant.

Sales-Pardo graph Chung-Lu graph
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Comparison on larger Sales-Pardo graphs

N = 6400 nodes
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More elaborate graphs
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Sensor network on the swiss roll manifold
• Three scale ranges of relevant community structure
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The dynamic social network of a primary school

Collaboration with A. Barrat (CPT Marseille)
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Multi-scale Communities in Primary School

Collaboration with A. Barrat (CPT Marseille)
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Multi-scale Communities in Primary School
Collaboration with A. Barrat (CPT Marseille)
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Conclusion

• Wavelet ψs,a gives an ”egocentered view“ of the network
seen from node a at scale s

• Correlation between these different views gives us a
distance between nodes at scale s

• This enables multi-scale clustering of nodes in
communities

• I hope that you were attracted to
the emerging field of graph signal processing for networks.

http://perso.ens-lyon.fr/pierre.borgnat

Acknowledgements: thanks to Nicolas Tremblay for borrowing
many of his figures or slides.
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