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Nonparametric Statistical Snake Based on the
Minimum Stochastic Complexity

Pascal Martin, Philippe Réfrégier, Frédéric Galland, and Frédéric Guérault

Abstract—We propose a nonparametric statistical snake tech-
nique that is based on the minimization of the stochastic complexity
(minimum description length principle). The probability distribu-
tions of the gray levels in the different regions of the image are
described with step functions with parameters that are estimated.
The segmentation is thus obtained by minimizing a criterion that
does not include any parameter to be tuned by the user. We illus-
trate the robustness of this technique on various types of images
with level set and polygonal contour models. The efficiency of this
approach is also analyzed in comparison with parametric statis-
tical techniques.

Index Terms—Image segmentation, level set, minimum descrip-
tion length principle, snakes, stochastic complexity.

I. INTRODUCTION

AN IMPORTANT goal of computational vision and image
processing is to automatically recover the shape of objects

from various types of images. Over the years, many approaches
have been developed to reach this goal. In this paper, we focus
on the segmentation of objects using active contours (snakes).

The first snakes [1] were driven by the minimization of a func-
tion in order to move them towards desired features, usually
edges. These approaches are edge based in the sense that the
information used is strictly along the boundary. They are well
adapted to a certain class of problems, but they can fail in the
presence of strong noise, although several improvements and re-
formulations have been proposed to overcome these limitations
[2], [3] (and references therein). Another strategy consists in
considering not only the edges, but also the inner and the outer
regions defined by the active contour [4]–[8].

In the region-based approaches, the contour is deformed to
minimize a criterion that is the sum of two terms [9]–[12]: the
external energy, that is based on the gray levels of the image and
on a statistical model, and the internal energy, that allows one to
regularize the contour. It has been shown that the minimization
of the stochastic complexity [13] leads to a satisfying tradeoff
between these two energies for various types of contour models
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(spline [14], polygonal [15], level set [16]). The resulting snakes
present clear optimal properties in the context of statistical esti-
mation theory if the a priori gray-level probability distribution
(GLPD) model is well adapted to the data.

The GLPD models that belong to the exponential family [10]
allow one to deal with many applications (radar images, low
photon flux, …). Nevertheless, such parametric models may fail
to provide a fair description of the GLPD in some practical cases
and different approaches were developed to overcome these lim-
itations. In [17], the authors proposed to estimate the GLPD on
the whole image with a Gaussian mixture such that each element
of the mixture corresponds to a region. Although this approach
is interesting and provides good results on different types of im-
ages, we will see that it is preferable to estimate the GLPD in
each region. In [18], a supervised method is proposed for texture
segmentation tasks. This approach requires training which is an
important difference with the technique proposed in this paper.
In [19] and [20], the authors proposed a nonparametric statistical
approach based on the estimation of the GLPD with Parzen win-
dows [21]. A level set implementation in which the variance
of the Gaussian kernel is automatically estimated has also been
developed [22]. However, in these approaches [19], [20], [22]
the criterion to optimize contains a tuning parameter in order to
balance the contribution of the internal and of the external en-
ergy.

We propose in this paper a segmentation technique that is
based on the minimization of a criterion without tuning param-
eter and that is not dedicated to a particular probability distri-
bution family. For that purpose, the GLPD of the object and of
the background are described with step functions with param-
eters and number of steps estimated from the image in hand.
This is an important difference to the previous cited nonpara-
metric statistical snake techniques and to our knowledge, this
is the first demonstration of snake segmentation based on a cri-
terion without tuning parameter and that is not dedicated to a
particular GLPD. It will be studied when the results are equiv-
alent to the ones obtained when a parametric statistical model
adapted to the fluctuations present in the image is used. Furthe-
more, we shall also demonstrate the stronger robustness of the
technique proposed in this paper.

The general model of the stochastic complexity is presented
in Section II. Experimental results are provided in Section III on
synthetic and real images.

II. MINIMUM STOCHASTIC COMPLEXITY APPROACH

In this section, the stochastic complexity that corresponds
to the criterion that will be minimized in order to segment the
image with snake models is defined.
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A. General Model

Let denote the
image to segment with pixels and with gray levels
quantized on levels. One thus has with (for
example, ). One assumes that the image is composed
of regions with (not necessarily simply
connected). The number of pixels of will be noted . The
gray levels of are assumed to be spatially uncorrelated and
independently distributed with GLPD .

With statistical region-based snakes, the criterion that has to
be optimized in order to find the final contour can be ob-
tained by determining the stochastic complexity of the image
[14]–[16]. With this approach, one has to determine the sum of
the number of bits needed for the description of the data and for
the description of the model of the data [13]. Since the model
of the data includes the contour model and the GLPD , the
stochastic complexity can be written as the sum of three terms

(1)

where is the number of bits needed to code the gray levels of
the image with both the contour and the GLPDs
fixed, is the number of bits needed to code the GLPDs and

is the number of bits needed to code the contour . In the
following, these quantities will be measured in nats (i.e., natural
logarithm will be considered). We detail in the following the
particular expression of these different terms.

B. Gray Level Coding

The number of nats needed to describe the gray levels of
with given GLPDs is simply equal to

(2)

since in , the number of nats needed to code the value
with an entropic code [23] is .

The choice of the GLPD estimation technique we have done is
based on two constraints. The first one is to get similar segmen-
tation performances to the ones obtained with techniques based
on parametric statistical models adapted to the gray-level fluc-
tuations. The second constraint is to develop a technique which
can lead to low computational time. For that purpose, we pro-
pose to estimate the GLPD in each region with an irregular
step function with steps (Fig. 1)

(3)

where if and otherwise,
with , , and if
and where the are identical for each distribution . One thus
has if . This is a general model
that can describe any distribution of random variable quantized
on levels. In particular, we shall show on real images that
this approach allows one to perform SAR image segmentation

Fig. 1. Illustration of the estimation of the GLPD. Solid line: histogram. Dotted
line: step function.

for which the fluctuations are multiplicative. Indeed, once the
noise is present in each region of the image, the way the random
gray levels have been generated is no more important and only
the difference between the histograms of the different regions is
relevant.

In each region and for given values of the , the max-
imum likelihood estimation of the is

(4)

where and where is the number of pixels
in such as . One thus gets

(5)

At this level of the analysis, only the parameters , and as a
consequence the number of steps , of the steps functions are
undetermined. They will be estimated by minimizing the global
stochastic complexity which needs that we detail the expression
of and .

C. Gray-Level Probability Distribution Coding

In order to determine , one has to evaluate the number
of nats necessary to code the different distributions . From
(3) and (4), it is clear that we need to code the for

(since ). We propose to demon-
strate in the following that the simple approximation provided
by the application of the minimum description length principle
[13], [24] is sufficient. With this approximation, coding
needs nats. Furthermore, one also needs to code
values (since ). We consider that coding the
value requires approximately nats since
needs to be coded with at least one bit. Since the values are
equal in each region, one gets

(6)

D. Shape Descriptor Coding

From a practical point of view, the term leads to a regu-
larization of the contour [14]–[16]. Let us recall its expression
for the particular contour models we consider in this paper.
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For level set snakes, the contour is considered to be the zero
level set of a function where is the euclidian
distance to the contour [25]–[30],
[12], [31]. This contour model allows to segment the image in
two regions (i.e., ) not necessarily simply connected. For
such contour models, the number of nats required to code the
contour can be approximated by [16]

(7)

where is the length in pixel units of the contour.
For an unique and simply connected object to segment in

the image, it can be advantageous to consider polygonal con-
tour models [10], [15]. It has been shown [15] that the mini-
mization of the stochastic complexity can lead to efficient tech-
nique without tuning parameter in the optimized criterion when
the gray-level fluctuations follow a parametric probability den-
sity function (pdf) that belongs to the exponential family and
that is adapted to the fluctuations present in the image. This ap-
proach has been generalized to a multiregion snake in [32] and
the number of nats needed to code such a multiregion polygonal
contour can be approximated by

(8)
where (respectively, ) is the mean value of horizontal (re-
spectively, vertical) distances between adjacent nodes, is the
number of Eulerian graphs of the multiregion polygonal snake,
and its number of segments.

Of course, this approach could be generalized to other contour
models such as spline descriptors for example [14] or multire-
gion level-set techniques [33], [34]. However, for sake of sim-
plicity, this paper focuses on level-set and polygonal snakes for
the segmentation in two regions. The more general case of mul-
tiregion polygonal snakes with a known but arbitrary number of
regions will be also considered as an illustration.

E. Optimization Strategy

The segmentation of the image is obtained by minimizing the
stochastic complexity . This criterion depends on the contour

(i.e., the parameter of interest) and on the parameters
that are introduced for the description of the distribution prob-
abilities . These parameters ( , and of the step
function) can be obtained by minimizing . For that purpose,
is estimated by minimizing with fixed . Then, the param-
eters and are determined by minimizing for the given
value of , and the process is iterated if necessary.

1) Level Set Contour Estimation: In this subsection, the im-
plementation of the minimization along is described. This

technique is standard in level-set implementation, thus we refer
to published works for further details [26], [31], [16]. The equa-
tion evolution is given [26] by the partial differential equation

. Considering the discrete
expression, one obtains

(9)

where is a small parameter, is the Euclidian distance func-
tion to the contour obtained at step , and is the modulus
of . The force term that drives the deformation of
the distance function at pixel of coordinates is given by

. According to (1), it is the sum of 3
terms , and

.
In order to simplify the analysis, it is possible to neglect

the term . Indeed, this approximation is equivalent

to consider instead of
in (6) which is also an acceptable approximation of . It
was established in [16], that
where is the curvature defined by .
Using the results in [16], one can show that the expression for

is as shown in (10), at the bottom of the page,
where and . The
expression of is obtained by considering small
deformation of the contour and is thus valid only close to

. This approximation is consistent with a narrowband imple-
mentation [35], which is also interesting in order to reduce the
computational time.

2) Polygonal Contour Estimation: The optimal shape is
obtained by simultaneously determining the value of the
number of nodes of the polygonal snake and their locations.
Following [32], [15], this double optimization problem is
addressed through a two-step procedure.

In the first step, after convergence obtained by minimizing
with a given value , this number of nodes is increased so

that the distance between two consecutive nodes cannot exceed
a given value. This process is initialized with a low value and
stopped when the distance between adjacent nodes is typically
equal to two or four pixels.

The second step is a complexity-reduction technique and con-
sists in removing the node leading to the greatest decrease of
and the process is iterated until the minimum of has been ob-
tained.

3) GLPD Estimation: The parameters and are estimated
by minimizing for a given estimation of the contour . Since
the estimation starts with the general distribution model for
which and , the estimation of the can be ob-
tained by merging the couple of steps and

(10)
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that leads to the greatest decrease of among all the possible
fusions. The fusion of the two selected steps provides a new
step and the probability of observing a value in
this interval becomes . The process is
iterated and the step function that minimizes is selected.

4) Global Optimization Strategy: After each step fusion, a
new convergence of the contour can be implemented from the
contour obtained before this fusion in order to get a better es-
timation of the stochastic complexity of the image. Since this
full-iterative strategy can be time consuming, one will com-
pare the obtained results with a simplest approach, denominated
three-stage strategy in the following. With this approach (illus-
trated in Fig. 2), an initial convergence is performed consid-
ering step functions with such that each step is of equal
length. Then, no convergence of the contour is performed be-
tween fusion of steps of the probability distribution (starting
from ). However, when the and have been estimated,
a final convergence of the contour is performed from the con-
tour obtained before the step fusions.

III. EXPERIMENTAL RESULTS

This section provides an evaluation of our method. Synthetic
images are first considered since they allow one to get a pre-
cise determination of the number of misclassified pixels (NMP).
Real images are also considered to shed light in the performance
in a practical case. These results demonstrate that the simple
proposed approaches for estimating the GLPD and for the opti-
mization strategy provide good results and lead to a simple and
fast segmentation technique.

A. Influence of the Optimization Strategy

In order to compare the two optimization strategies intro-
duced in Section II-E, the average number of misclassified
pixels (ANMP) after segmentation is computed. The synthetic
images considered are noisy versions of the image Fig. 2(a)
perturbed with Gaussian, Gamma and Poisson noises for dif-
ferent values of the contrast between the two regions in the
image. This contrast can be measured with the Kullback-Leibler
divergence [23] or the Bhattacharyya [23] distance between the
distributions of the background and target gray levels. However,
it has been shown [36] that, for small targets, the Bhattacharyya
distance is a better measure of contrast. In particular, different
noisy configurations with the same value of lead to similar
values of the ANMP for different types of noises for polyg-
onal snakes [36] and for level-set snakes with parametric pdf
models [16]. In the continuous case, the Bhattacharyya distance
between pdf and reads

(11)

while in the discrete case it is .
The NMP after a segmentation is determined from the final con-
tour by counting the number of pixels that belong to the true

Fig. 2. Illustration of the three-stage strategy. (a) Synthetic image without noise
(115� 83 pixels). (b) Noisy version quantized with Q = 256 levels and with
initial contour. One can see the histograms and the step functions of parameter
q = 20 associated to the object and the background of the image (b). (c) Ini-
tial convergence performed considering step functions of parameter q = 20.
One can see the histograms associated to the image (c) and the step functions
with number of steps estimated (q = 4) after the initial convergence. (d) Final
convergence performed from the contour obtained at the end of the initial con-
vergence and with the estimated GLPDs. (e) Final contour obtained considering
q = Q = 256.

target shape but lie outside the contour , and those that belong
to the true background but lie inside the contour . In the fol-
lowing, the values of the NMP will be normalized by the number
of pixels in the true shape of the target.

For the level-set snake implementation, one can see in Fig. 3
that the two optimization strategies lead to equivalent segmenta-
tion results. This result has been confirmed with different exper-
iments and with polygonal snake implementations. The three-
stage strategy is much faster (a few tens of seconds instead of
many minutes). For example, the image Fig. 2(b) has been seg-
mented in 12 min with the full-iterative strategy and only in 41
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Fig. 3. ANMP as a function of the Bhattacharyya distance B for segmentation
results obtained with the level-set snake and the two strategies on the image
Fig. 2(a) pertubed with Gaussian, Gamma and Poisson noises. Each ANMP has
been estimated on 20 noise realizations.

Fig. 4. ANMP as a function of � obtained with the level-set snake implemented
with the three-stage strategy on the image Fig. 2(a) perturbed with Poisson noise
(B = 0:55). Each ANMP has been estimated on 20 noise realizations. Similar
results are obtained with other noise distributions such as Gaussian or Gamma.

s with the three-stage strategy. So, this faster strategy will only
be considered in the following.

B. Evaluation of the Contour Regularity

We show in this subsection that the minimization of the sto-
chastic complexity leads to contour with the appropriate regu-
larity. For that purpose, a successive analyzis of the level-set and
of the polygonal snakes adapted to images with two regions is
performed.

According to Section II-D, the stochastic complexity for
level-set snakes leads to with . Fig. 4
establishes this value is indeed optimal if
different segmentations are performed with different values of

.
A segmentation result obtained with a polygonal contour

model and the three-stage strategy on an image quantized
with is shown in Fig. 5. The noisy image in
Fig. 5(b) was generated with a polygon with 16 nodes and
an object and a background gray-level distributions generated
with step functions with . The histograms and the
estimated distributions are shown in Fig. 5(d) and in Fig. 5(e).
The segmentation result is shown in Fig. 5(c) and corresponds
to an estimated polygonal snake with 16 nodes (i.e., equal to
the true value).

C. Influence of the GLPDs Modelization

In order to analyze the relevance of estimating the GLPDs
with step functions whose parameters and are estimated
by minimizing the stochastic complexity, segmentation results
obtained with the level-set snake on a noisy image quantized

Fig. 5. (a) Image (128� 128 pixels) without noise and with initial contour.
(b) Noisy version of image (a). (c) Polygonal contour estimated with the three-
stage strategy. (d), (e) Histograms (solid line) and estimated GLPDs (dotted
line) of the object and background.

with are shown in Fig. 2. The noisy image
has been generated with an object and a background gray-level
distributions that correspond to step functions with .

From Fig. 2(c) and Fig. 2(e), it is clear that estimating the
GLPDs either with (initial convergence of the three-
stage strategy) or with its histograms leads to significant fluctu-
ations of the estimated contours. (i.e., when is fixed to 256 and
is not estimated). When the three-stage strategy is implemented
the estimated value of is equal to 4 (i.e., is equal to the true
value) and the corresponding segmentation result is greatly im-
proved—see Fig. 2(d).

We now propose to show that estimating the parameters
and of the GLPD on the whole image instead of implementing
the three-stage approach developed above may not allow one to
get satisfactory segmentation results. In particular, This result
illustrates the improvement of the proposed approach in com-
parison to the one developed in [17], that consists of performing
the estimation of the gray-level pdf of the object and background
regions on the whole image before the segmentation. For that
purpose, the parameters and of the GLPD are estimated on
the whole image by minimizing the following stochastic com-
plexity [24]

(12)

where is the number of pixels in the image such that
. This approach is analogous to the one developed in

Section II-C but with a unique region for the GLPD estimation.
The GLPD of the whole image shown in Fig. 2(b) is pre-

sented in Fig. 6 and its estimation with a step function is rep-
resented in dotted line. The minimization of (12) lead to
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Fig. 6. Solid line: histogram. Dotted line: estimated GLPD obtained on the
whole image of Fig. 2.

Fig. 7. ANMP as a function of the Bhattacharyya distance B for segmenta-
tion results obtained with the parametric statistical approach and the proposed
technique with the three-stage strategy on the image of Fig. 2(a) with Gaussian,
Gamma and Poisson GLPDs. Each ANMP has been estimated on 20 noise re-
alizations and the segmentation is performed with the level-set snake. (a) Non-
parametric statistical approach. (b) Parametric statistical approach.

and does not allow one to separate the object and the back-
ground whereas good results are obtained [Fig. 2(d)] with the
three-stage strategy.

D. Comparison With Parametric Statistical Approach

When the gray levels of the different regions of the image
are distributed with pdf that belong to the exponential family,
efficient snake based techniques that relie on the minimization
of the stochastic complexity [15], [16] can be developed. Our
aim in this subsection is to compare the segmentation results
obtained with these parametric statistical approaches [15], [16]
to the ones obtained with the proposed nonparametric statistical
approach of this paper when a level-set implementation is used.

First, let us consider the case of gray levels in the images
that are distributed according to the exponential family. For that
purpose, one considers different noisy versions of the image of
Fig. 2(a) with Gaussian, Gamma, or Poisson distributions. The
evolution of the ANMP as a function of the Bhattacharyya dis-
tance is shown in Fig. 7. Twenty realizations of the scene
were generated for each noise model and for different values
of . The obtained images have been segmented either with the
parametric statistical approach or with the three-stage strategy.
Fig. 7 illustrates that the performances of the proposed approach
are similar for the three types of pdf. Moreover, the parametric
statistical approach and the nonparametric statistical approach
of this paper lead to similar values of the ANMP when .
If the proposed approach provides worse results than
the parametric statistical approach that also leads to degraded
performance.

Clearly, our nonparametric method does not rely on a given
model. This is a major advantage over parametric methods that
can produce very bad results if the parametric model does not
correspond to the noise in the data. Fig. 8 illustrates this effect

Fig. 8. (a) Synthetic images (115� 83 pixels) perturbed with Gaussian (first
line) and Gamma (second line) noises with B = 0:29. Segmentation results
obtained with (b) Gaussian and (c) Gamma models for the GLPDs and (d) the
proposed approach with the three-stage strategy. The level-set snake has been
used and the initial contour is the one of Fig. 2(b).

Fig. 9. (a) SAR image (120� 108 pixels) of an agricultural area obtained
by the ERS-1 satellite (distributed by the ESA and provided by the CNES).
(b) Initial contour. (c) Final contour obtained with the three-stage strategy
(computation time: 15 s). (d) Scene illuminated by a laser (41� 34 pixels).
(e) Initial contour. (f) Final contour obtained with the three-stage strategy
(computation time: 0.4 s). The level-set snake has been used. For a better
visualization, the contrast of the images has been increased.

and compares both approach on a synthetic image with different
noise distributions.

In conclusion, the nonparametric approach proposed in this
paper with the three-stage strategy leads to satisfactory result
in comparison to the ones obtained with a parametric model
adapted to the gray-level fluctuations, but with a stronger ro-
bustness.

E. Real Images

We propose to show in this subsection segmentation examples
obtained with the proposed nonparametric statistical technique
and the three-stage strategy on different types of real images.
The segmentations have been performed with a PC Intel Xeon
2.8 GHZ (Linux 2.4, gcc 2.96) with 900 Mo of RAM and the
computational times are provided in the captions of the figures.

We first show results obtained with the level-set implementa-
tion. In Fig. 9(c), the final contour obtained on a real SAR image
corrupted with speckle noise is represented. The segmentation
result on a laser illuminated image perturbed with speckle noise
[37] is shown in Fig. 9(f). In Fig. 10, one can see the segmen-
tation result on a video textured image. We show in Fig. 10(a)
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Fig. 10. Segmentation of an image (86� 60 pixels) acquired with a CCD
camera. (a) Segmentation result obtained with the proposed nonparametric
technique with the three-stage strategy. Results of the segmentation on a pre-
processed version of (a) obtained with: (b) a Gaussian model for the GLPDs,
(c) a Gamma model for the GLPDs, and (d) the proposed nonparametric
statistical technique with the three-stage strategy (computation time: 4 s). The
same kind of initialization as in Fig. 9(b) has been used for the level-set snake.

Fig. 11. Example of level snake segmentation. (a) RGB image with 227� 174
pixels and initial contour. (b) Segmentation result obtained on the gray-level
image with a Gaussian model for the GLPDs. Segmentation obtained on the hue
component in the HSV representation with: (c) a Gaussian model, (d) the pro-
posed nonparametric statistical technique (computation time: 21.4 s). (e) His-
togram (solid line) and estimated GLPDs (dotted line) of the object in the hue
component.

the result obtained when the technique is applied on the image.
One can see in that case that the technique is inefficient since
the presence of shadows in the image leads to nonhomogenous
regions. However, if one considers the new image defined by

, where and
are the Roberts filters [38] defined with a 3 3 pixel neighbor-
hoods and is the convolution operator, one obtains an image
with two regions more homogenous. Indeed, the gradient op-
erator allows one to suppress linear continuous variation of the
gray levels. The segmentation result on this preprocessed image
with the proposed technique is shown in Fig. 10(d) and one can
see in Fig. 10(b) and (c) that parametric statistical approaches
do not lead to satisfactory segmentations. Analogous result on
a RGB image acquired with a CCD camera is shown in Fig. 11
where the considered preprocessing now simply consists in ex-
tracting the hue component in the HSV representation [39]. An-
other segmentation example obtained on the hue component of
a RGB image is shown in Fig. 12.

We show in Fig. 13 segmentation results obtained with a
polygonal snake adapted to two regions. Results on the hue
component in the HSV representation are shown in Fig. 13(b)
and (f). In Fig. 13(d), the segmentation has been obtained on a
gray-level image which has been preprocessed in order to obtain
a new image , defined by ,
in which the different regions are more homogenous.

We show in Fig. 14 segmentation results obtained with a
polygonal snake adapted to three regions on RGB images. Seg-
mentation results have respectively been obtained on the hue
component in the HSV representation in Fig. 14(b) and on the

Fig. 12. (a) RGB image acquired with a CCD camera (320� 240 pixels) and
initial contour. (b) Segmentation results obtained on the hue component in HSV
representation with the proposed nonparametric statistical technique with the
three-stage strategy and the level-set snake implementation (computation time:
75 s).

Fig. 13. Examples of segmentation obtained with the polygonal snake. (a) RGB
image with 214� 278 pixels and initial contour. (b) Final contour displayed on
the hue component of the HSV representation (computation time : 8.8 s). (c)
Gray-level image with 159� 138 pixels and initial contour. (d) Final contour
obtained on a preprocessed version of (c) (computation time : 2.2 s). For a better
visualization, the contrast of the images has been increased. (e) RGB image with
492� 283 pixels and initial contour. (f) Segmentation results obtained on the
hue component H in HSV representation (computation time: 10 s).

saturation component in the HSV representation in Fig. 14(d).
The image in Fig. 14(c) is extracted from the Berkeley Dataset
of natural images [40].

These results show that the proposed approach allows one to
deal with very different types of images.

IV. CONCLUSION

We have proposed a nonparametric statistical snake based
on the minimization of the stochastic complexity and where
the gray-level distributions of the object and of the background
are approximated by step functions whose parameters are esti-
mated during the segmentation process. This approach leads to
minimize a criterion without free parameter to be tuned by the
user and can be implemented with different contour descriptors
such as level-set snake or polygonal contour model. We have
illustrated the results on SAR, video (color), and textured im-
ages. Moreover, up to low contrast values, we have shown that
when the gray-level pdf of the image belong to the exponen-
tial family, the proposed approach provide segmentation results
equivalent to those obtained with a parametric statistical ap-
proach. Of course, the main advantage of the proposed nonpara-
metric statistical technique is its robustness since it adapts to
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Fig. 14. (a), (c) RGB images (192� 156 and 321� 398 pixels) and initial
contours. Segmentation results obtained with the proposed nonparametric
statistical polygonal technique adapted to three regions with the three-stage
strategy: (b) on the hue component in HSV representation (computation
time: 5.1 s) and (d) on the saturation component in HSV representation
(computation time : 11.4 s).

the fluctuation distributions of the gray levels without requiring
a priori information.

There exists different perspectives to this work. It would be
interesting to generalize this technique to other multiregion
approaches based for example on level-set techniques. Taking
into account possible spatial correlations is also a challenging
problem.
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