Résonance stochastique

Patrick Flandrin

M2 Systèmes complexes, 2012-2013

Préambule

Trois points de vue sur le "bruit"

- Bruit = fluctuations aléatoires
- Bruit = "ce qui n'est pas signal" (exemple du problème "cocktail party")
- Bruit = nuisance (dont on cherche à s'affranchir) dans le cas de systèmes linéaires

Préambule

Trois points de vue sur le "bruit"

- Bruit = fluctuations aléatoires
- Bruit = "ce qui n'est pas signal" (exemple du problème "cocktail party")
- Bruit = nuisance (dont on cherche à s'affranchir) dans le cas de systèmes linéaires

et un quatrième

Dans le cas de systèmes non linéaires, bruit et signal peuvent coopérer \Rightarrow rôle bénéfique d'un ajout de bruit !

Paléoclimatologie

Point de départ (Benzi et al., '81)

- Observation : alternance d'ères chaudes et froides avec une période d'environ 10⁵ ans
- Modélisation : insuffisance des effets individuels
 - d'un forçage externe (soleil)
 - de fluctuations internes (circulations atmosphérique et océanique)
- **Proposition** : prise en compte simultanée des deux effets
- Second and the second

 \rightarrow Résonance Stochastique

Image

<ロ> <同> <同> < 回> < 回>

æ

Double puits

$$U(x) = -\frac{1}{2}x^2 + \frac{1}{4}x^4$$

Équation d'évolution (avec forçage)

$$\tau \, \dot{x} = -\frac{dU(x)}{dx} + F(t)$$

Patrick Flandrin Résonance stochastique

Double puits

Trois cas de figure

- F(t) = 0: 2 positions d'équilibre stable ($x = \pm 1$)
- F(t) = A cos(2πt/T_s), avec A < 1/4 (barrière de potentiel) : la particule reste piégée dans l'un des deux puits
- $F(t) = A \cos(2\pi t/T_s) + b(t)$, avec A < 1/4 et b(t) aléatoire
 - : la particule peut sauter d'un puits à l'autre, selon 3 régimes :
 - bruit faible : intermittence
 - bruit fort : sauts erratiques
 - bruit intermédiaire : transitions cohérentes

Double puits

æ

3

・日・ ・ ヨ・・

Double puits

Résonance stochastique (McNamara & Wiesenfeld, '89)

• Système :
$$y(t) = signe[x(t)]$$

Mesure de performance : rapport signal/bruit (SNR)

$$\mathbb{E}\{b(t)b(s)\} = 2D\,\delta(t-s) \Rightarrow \mathsf{SNR} \propto \frac{1}{D^2}\,\exp\left\{-\frac{\tau}{4D}\right\}$$

Patrick Flandrin Résonance stochastique

Circuit électronique

Trigger de Schmitt (Fauve & Heslot, '83)

- Système à seuil et hystérésis
- Première preuve expérimentale d'un effet de résonance stochastique

Trigger de Schmitt

æ

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Systèmes séparables

Quels ingrédients pour la résonance stochastique ?

- Système dynamique
- ② Caractéristiques non linéaires

Cas particulier (Chapeau-Blondeau & Godivier, '96)

- Non-linéarité statique suivie d'un système dynamique linéaire
- Possibilité d'une analyse exacte

Systèmes séparables

Entrée

$$x(t) = s(t) + b(t)$$
, avec

- s(t) périodique de période T_s
- b(t) bruit blanc de densité de probabilité $p_b(u)$

Sortie

$$y(t) = g(x(t))$$

- cyclostationnaire
- de fonction d'autocorrélation échantillonnée $R_y(k\Delta t)$, avec $\Delta t \ll T_s = N\Delta t$
- de densité spectrale de puissance discrète $P_y(\ell\Delta\nu)$, avec $\Delta\nu = 1/(2MN\Delta t)$

Systèmes séparables

Densité spectrale

$$P_{y}(\ell\Delta\nu) = \overline{\operatorname{var}\{y\}} + 2MN \sum_{n=-\infty}^{\infty} \left|\overline{Y}\right|^{2} \delta(\ell - 2Mn),$$

avec

•
$$\overline{\operatorname{var}\{y\}} = \frac{1}{N} \sum_{n=0}^{N-1} \operatorname{var}\{y(n\Delta t)\}$$

•
$$\operatorname{var}\{y(t)\} = \mathbb{E}\{y^2(t)\} - (\mathbb{E}\{y(t)\})^2$$

•
$$\mathbb{E}\{y^m(t)\} = \int_{-\infty}^{\infty} g^m(u) p_b(u-s(t)) du; m = 1, 2$$

 Forme explicite lorsque b(t) est gaussien, centré et d'écart-type σ

- **→** → **→**

Systèmes séparables

Rapport signal/bruit

$$\mathsf{SNR}\left(\frac{n}{T_s}\right) = \frac{\left|\overline{Y}\right|^2}{\operatorname{var}\{y\}}\Delta t\Delta B$$

pour un intervalle de (faible) largeur ΔB autour d'une raie spectrale d'ordre *n*

Biologie

J.K. Douglas et al., 1993

Détection de prédateurs chez l'écrevisse par récepteurs sensibles aux vibrations périodiques

Principe

- Cellules ciliées de la queue : réponses entre 8 et 25 Hz
- Expériences de stimulations périodiques entre 5 et 100 Hz, trop faibles pour déclencher à elles eules une réponse
- Rajout de bruit hydrodynamique environnemental comme source extérieure

Biologie

Figure 3. Signal-to-noise ratio (SNR) in crayfish mechanoreceptors (**u**) for a sinusoidal stimulus at a frequency of 55.2 Hz compared to simulations of a frizhugh - Nagumo model (\circ) and a threshold-SR theory (--).¹⁰⁷ The abscissa represents the intensity of the noise: hydrodynamic noise in the case of the mechanoreceptors, electrical noise in the case of the neuron models. The crayfish data do not exhibit the typical decrease for weak noise because of residual internal noise of the neuron. Figure provided by Frank Moss.

< 1 →

Bio-ingénierie 1.

N.G. Stocks et al., 2001

Amélioration d'implants cochléaires

▲ 同 ▶ → ● 三

э

Bio-ingénierie 1.

Principe

- Résonance stochastique "suprathreshold"
- Mesure de performance par information mutuelle

$$I = H(x) + H(y) - H(x, y)$$

avec

$$H(x) = -\int_{-\infty}^{+\infty} p(x) \log_2 p(x) \, dx$$

- ∢ ≣ ▶

Fig 5. Average mutual information vs noise intensity for arrays of neurones of various sizes, for a signal strength (a) 8 and (b) 30 decibels above threshold. The signal strengths were chosen to coincide with those typically employed in cochlear implants. The arrow indicates the approximate average value of internal noise in the experimental data.

< □ > < 同 > < 回 >

э

Bio-ingénierie 2.

A.A. Priplata et al., 2002

Aide au contrôle postural

Principe

- Fonction sensorimotrice
- Perte de performance dans ivers cas (diabète, attaque, âge)
- Expériences de stimulations aléatoires sous la plante des pieds, en-dessous du seuil de sensibilité

Bio-ingénierie 2.

<ロ> <同> <同> < 回> < 回>

э

Bio-ingénierie

2. Dimensionless chan of the radiational and random-scale may parameter for the control and mise trials for 15 migra district surroughless, 15 migrat with write, and 12 cited migrates. The group mean and mathematic enters for the control and trials, respectively, are shown, $(\Delta r)_{ci} = critical masses square displacement; AP = assemptation; D_d = long-arm diffusion$ criter, H_d = long-arm scaling approaches ML = modistand.

・ロン ・四 と ・ ヨ と ・ ヨ と ・

æ

Un exemple d'algorithme aidé par le bruit

EMD (Empirical Mode Decomposition)

- Décomposition de signaux pilotée par les données
- Extraction itérative de modes AM-FM par
 - Identification du mode le plus rapide via les extrema locaux
 - soustraction et itération sur le résidu

Limitation

"Mode mixing" : pas de bijection entre modes et composantes

Amélioration (Wu & Huang, '09)

- Rajouter du bruit aux données
- ② Calculer les décompositions correspondantes
- Moyenner \Rightarrow **EEMD** ("*Ensemble EMD*")

э

《口》《聞》《臣》《臣》

Ensemble EMD

э

Une variante de l'EEMD

Limitations de l'EEMD

- Oifférentes réalisations de bruit peuvent conduire à des nombres différents de modes ⇒ comment moyenner ?
- **2** Moyenne àtous les modes \Rightarrow pas de reconstruction exacte

Amélioration (Torres et al., '11)

Ajouter du bruit "mode par mode" \Rightarrow CEEMDAN ("Complete EEMD with Adaptive Noise")

- Moyennes cohérentes
- Moins de modes par rapport à l'EEMD
- Reconstruction exacte

Exemple (impulsion de Dirac)

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

э

Algorithme CEEMDAN 1.

Pré-traitement

- **(**) Générer J réalisations de bruit blanc gaussien $w^j[n] \in \mathcal{N}(0,1)$
- Oéfinir E_k(·) comme l'opérateur qui, pour un signal donné, fournit son k-ième mode
- Pré-calculer et stocker les J × K modes E_k(w^j[n]) pour j = 1,..., J et k = 1,..., K
- Fixer un niveau de bruit ε

Algorithme CEEMDAN 2.

$$\mathbf{1} \ \mathbf{x}^{j}[\mathbf{n}] = \mathbf{x}[\mathbf{n}] + \varepsilon \ \mathbf{w}^{j}[\mathbf{n}]$$

2
$$r_1[n] = x[n]$$

3
$$\widetilde{IMF}_1[n] = \frac{1}{J} \sum_{j=1}^J E_1(x^i[n])$$

4 for
$$r = 2 : K$$
 do

5
$$r_k[n] = r_{k-1}[n] - \widetilde{IMF}_k[n]$$

$$\mathbf{6} \quad \left[\quad \widetilde{IMF}_k[n] = \frac{1}{J} \sum_{j=1}^J E_1(r_{k-1}[n] + \varepsilon E_{k-1}(w^j[n])) \right]$$

Deux questions ouvertes

Comment choisir

- **1** le niveau de bruit ε ?
- le nombre de réalisations J ?

イロン イロン イヨン イヨン

æ