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ABSTRACT
We propose in this paper a novel framework for the study
of dynamic mobility networks. We address the characteriza-
tion of dynamics by proposing an in-depth description and
analysis of two real-world data sets. We show in particu-
lar that links creation and deletion processes are indepen-
dent of other graph properties and that such networks ex-
hibit a large number of possible configurations, from sparse
to dense. From those observations, we propose simple yet
very accurate models that allow to generate random mobility
graphs with similar temporal behavior as the one observed
in experimental data.

1. INTRODUCTION
During the last decade, the study of large scale complex

networks has attracted a substantial amount of attention.
Whereas most of such complex networks are inherently dy-
namic, this aspect has less been studied. Most approaches
consider growing models, such as the preferential attachment
model [1, 4] or analyze the aggregation of all interactions.
Both approaches may miss the real dynamic behavior while
there is a strong need for dynamic network models in order
to sustain protocol performance evaluations and fundamen-
tal analyzes.
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In this talk, we address the description and the simulation
of sensor mobility networks. The proposed methods come
from various research domains (signal processing, graph the-
ory and data mining). This emphasizes the necessity of in-
terdisciplinary research since dynamic networks are becom-
ing a central point of interest, not only for engineers and
computer scientists but also for people in many other fields.

We apply those methods on mobility networks. Mobile
devices with wireless capabilities are a typical example of
evolving networks where users are spread in the environment
and communications can only take place if they are near
each others. We study an empirical mobility network, called
Imote [2], based on 41 Bluetooth sensors whose interactions
have been recorded during 3 days. This who-is-near-whom
network evolves every time users move.

We introduce some simple methods to describe the net-
work dynamics and propose models of dynamic networks.
The complete methodology of analysis was reported in a
full version of this communication [6].

1. We study graph properties as function of time to pro-
vide an empirical statistical characterization of the dy-
namics.

2. We also compute global indicators from the dynamics
of the network (connected components, triangles, and
communities).

3. We propose models to perform random dynamic net-
works simulations.

The descriptive analysis show that link (or edge) creation
and deletion processes is mostly independent of other graph
properties and that such networks exhibit a large number
of possible configurations, from sparse to dense. From those
observations, we propose simple yet accurate models that
allow to generate random mobility graphs with similar tem-
poral behavior as the one observed in experimental data.

Even though such networks have obvious specificities, the
in-depth study of their dynamic is an original work, and can
have a broader impact on the complex system community.
It is noteworthy that our approach does not make any as-
sumption on the specificities unlike agent-based models or
geographical approaches.



2. STATISTICALANALYSIS OF SNAPSHOTS
OF GRAPHS

We first propose and study a set properties usable as a
practical basis for the analysis of dynamic mobility net-
works that can be easily extended to large complex networks.
The studied graph properties are the distributions of contact
and inter-contact durations, the correlation between various
graph properties as function of time and the links correla-
tion, so as to give an empirical statistical characterization
of the dynamics.

2.1 Contact and inter-contact durations
The contact and inter-contact duration distributions are

dynamic characteristics that are interesting for mobility net-
works. The contact duration is the time during which two
vertices remain directly and continuously adjacent. The
inter-contact duration is the duration between two periods
of contact for two vertices.
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Figure 1: Contact (left) and Inter-contact (right)
duration distributions (CCDF).

Fig. 1 shows that the contact and inter-contact durations
have a power-law behavior [3]. Inter-contact duration dis-
tribution has a very strong variability due to long periods
of lack of contact for some nodes, whereas the distribution
of contact durations is less heavy-tailed. The heavy-tailed
nature of these distributions seems to be an ubiquitous prop-
erty of dynamic mobility networks.

2.2 Correlation of graph properties
We compute the correlation coefficient between several

graph properties seen as functions time t: E(t) is the num-
ber of active links, V (t) is the number of connected vertices,
Nc(t) is the number of connected components, D(t) is the
average degree, T (t) is the number of triangles, E⊕(t) is the
number of links added at time t and E�(t) is the number of
links removed at that time.

E(t) V (t) Nc(t) D(t) T (t) E⊕(t) E�(t)
E(t) 1 0.85 -0.56 0.95 0.90 0.19 0.15

V (t) 0.85 1 -0.20 0.70 0.66 0.15 0.11

Nc(t) -0.56 -0.20 1 -0.70 -0.41 -0.16 -0.15

D(t) 0.95 0.69 -0.69 1 0.86 0.19 0.15

T (t) 0.90 0.66 -0.41 0.86 1 0.15 0.11

E⊕(t) 0.19 0.15 -0.16 0.20 0.15 1 0.03

E�(t) 0.15 0.11 -0.15 0.16 0.10 0.03 1

Table 1: Correlation coefficients between various
graph properties studied as functions of time.

Most of the correlation coefficients are rather high. This
is mostly due to the fact that there are constraints on the

properties of graphs. For instance the number of links E(t)
has a strong influence on the number of connected vertices
V (t). Furthermore, the time series are not stationary and
there are clear periods of one day and variations between
days and nights. Only link creation and deletion processes
(E⊕(t) and E�(t)) remain mostly uncorrelated with all other
properties. Their evolution can be considered mostly inde-
pendent from the one of other graph properties.

2.3 Links correlations
Let us now turn to individual links. The correlation co-

efficient of the state evolution of links characterizes the de-
pendency between links. The state evolution Se(t) of each
link e is equal to 1 if link e is in the mobility graph at time
t and 0 otherwise. The correlation matrix Co(e, e′) for links
is computed as:

Co(e, e′) = CORR(Se, Se′)

= < Se(t)Se′(t) >t − < Se(t) >t< Se′(t) >t .

For each link, we also compute its average correlation co-
efficient with respect to the other links as the average of
absolute values. This helps to keep track of the strength of
the correlation rather than its direction.
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Figure 2: Correlation between links (left) and aver-
age correlation for each node (right)

Fig. 2 shows the histogram of the values. Most pairs of
links have a very low correlation coefficient. Rare couples of
links exhibit a strong correlation.

2.4 Joint distribution
The empirical joint distribution of the number of con-

nected nodes and the number of links gives a finer descrip-
tion of the dependencies between those two properties.
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Figure 3: Joint distribution of the number of con-
nected nodes and the number of links.

As expected, the correlation between vertices and links
shown on Fig. 3 is positive: the more vertices are connected,
the more links are present. However it is worth noting that



the variation of the number of links is not constant over
the number of vertices. For a given number of vertices, the
network can have a large number of possible configurations,
some of which are very sparse and others more dense, as
shown by the gray scale in the plots.

3. GLOBAL VIEW OF THE DYNAMICS
We also propose to study global indicators from the dy-

namics of the network (stability of connected components,
triangles creations, existence of communities).

3.1 Triangles
The existence and persistence of connected components

is generally associated with a rather large number of trian-
gles in the graph. Therefore, an important characteristic of
the dynamic is the evolution of the number of triangles in
time. To evaluate the proportion of links that create tri-
angles when they appear, we compute the number of link
creations that leads to an increase of the number of trian-
gles in the graph or that does not change it.

P+/tri+ P+/tri= f+/tri+ f+/tri=

Imote 44 % 56 % 6 % 94 %
Random 10 % 90 % 5 % 95 %

Table 2: Proportion P+/tri+ (resp. P+/tri=)) of links
creations that add new triangles (resp. not), and the
average proportion f+/tri+(resp.f+/tri=)) of inactive
links that, if created, would add a triangle, (resp.
not).

These proportions are given in Table 2. Around 40% of
links creations increase the number of triangles in the graph
whereas this proportion equals 10% in a random (Erdös-
Rényi) graph with the same numbers of vertices and links.
The proportion of inactive links that would create a triangle
is very low for Imote data set and the simple random graph.
This emphasizes the fact that this is not because more links
can create triangles that the proportion P+/tri+ is higher in
experimental data: it is on the contrary an intrinsic property
of the dynamics. As the proportions of links that could
create a triangle are similar in both graphs (f+/tri+), this
phenomenon is characteristic of real graphs: links creations
tend to create triangles in fairly large proportion.

3.2 Dynamic communities
To describe the graph structure evolution, we isolate“com-

munities”, which are commonly considered as large groups
of individuals who interact intensively with each other over
a long period of time. A community can be seen as a dense
connected sub-graph that appears in a large number of time
steps (not necessarily consecutive).

We compute the set of connected sub-graphs having more
than σ links and that are included in at least τ graphs:
C = {S = (V, E), |{t |S ⊆ Gt}| ≥ τ and |E| ≥ σ and

S is connected}. Then, the denser sub-graphs are selected
using a density threshold that selects the most important
and established ones. Finally, the trajectories of individuals
among social groups are inferred: an arc (u,v) represents
individuals moving at least once in the data from group u

to group v. Fig. 4 shows the identified communities and
their dynamic. For example, individual 8 initially belongs
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Figure 4: Individual trajectories in groups ordered
by time. ix (boxes) are individuals while gx (circles)
denotes social groups.

to group 13, he/she further moves into group 6, and finally
enters group 7.

4. MODELING OF THE DYNAMICS
From the previous set of analysis, we propose generic ran-

dom dynamic models that allows to generate random dy-
namic graphs which have a behavior similar to the one ob-
served in experimental data set. Their design is justified by
the previous observations. First, as the contact and inter-
contact are power-law distributed (as seen in Section 2.1),
those non-trivial empirical distributions should be taken into
account when constructing a model of the data. Second,
computation of empirical times of correlations show that
link creation/removal process is less correlated in time that
other graphs properties seen in Sect. 2.2. It is also rea-
sonable to consider that links evolutions are uncorrelated in
time. These characteristics justify the use of a simple Marko-
vian (memory-less) link creation/removal process. Finally,
we observed that for a given number of nodes, the network
can have a large number of possible configurations, some
of which are very sparse and others more dense. Thus our
model should be able to reproduce this property.

The simulation is based on a transition model with Marko-
vian property. For each time step and for each link inde-
pendently, each link changes its state (active or inactive)
using a transition probability depending on the time since
the link is in its current state. In addition, the probabil-
ity of transition is weighted by a probability of acceptance
of the new state depending of the experimental distribution
for a property of interest such as E(t), V (t), NC(t) and
D(t). This is implemented by Rejection Sampling [5], based
on a Metropolis-Hasting algorithm and take into account
the target distribution of the graph property. To take into
account in the simulations that the average proportion of
link creations that yield triangles is larger than for random
graphs, a weight is applied on the transition probability to
reproduce the correct dynamical transition process concern-
ing triangles.

In order to justify that the use of properties (like E(t),
V (t), NC(t)) within the model in addition to the sole con-
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Figure 5: : Probability distribution function (PDF) for original data and the classical models. On the left
we plot the PDF for the number of connected vertices for original data (–), for several models: imposing
the sole contact and inter-contact duration distribution (-o- on the plot), or adding the statistics of NC (-*-)
or V (-+-). Middle and right: joint distribution of the number of connected vertices and links in connected
components: a model imposing the contact and inter-contact duration distribution and the statistics of NC

(middle plot) fails at reproducing the correct behaviour; a model respecting also the statistics of the triangle
dynamics (right plot) reproduces much more the empirical behaviour of the data.

tact and inter contact duration distribution we compare such
distribution with the original Data set. A first remark is that
the sole contact and inter-contact duration distributions dra-
matically fail to reproduce the properties. More precisely,
the number of connected vertices is strongly over-estimated,
the number of connected components is under-estimated,
and so is the number of triangles. The non-stationarity in
the IMOTE data introduces a much higher variance, yet it
does not explain all the differences.

Fig. 5 illustrates the way the models work. It is based on
the distribution of NC(t) and produces qualitatively similar
characteristics than the real data set. The probability dis-
tribution functions of NC(t) (on the leftmost figure) for the
original data (black), and the different models proposed are
shown. We can observe that by imposing the distribution of
the number of connected vertices improves the accuracy of
the simulations.

However, when analyzing more refined characteristics such
as the joint distribution of number of links and vertices
in connected components, the original data set (shown on
Fig 3) and the simulations of the models (shown on Fig. 5)
are much different even when we impose number of con-
nected vertices distribution. The connected components in
models (sole inter contact and/or with the introduction of
graph property PDF) are much less dense. We believe this
is of major importance for communication protocol design
and realistic models have to reproduce this property and this
yield to the introduction of the number of triangle property
(the results is depicted on the rightmost figure of Fig 5).
This time, the density of connected components is compa-
rable to the original data set. Note that introducing the
dynamic of triangles also yield to the creation of “social”
groups like the ones depicted in Fig. 4. When using the
classical models, the graph is too sparse and the community
phenomena is not reproduced in the model.

Our investigations have shown that the model, thanks to
the introduction of dynamical characteristics such as the
evolution of the number of triangles, manages to generate
more realistic simulations. This opens the track to improved
models that match the important characteristics of dynam-
ics of mobility networks. This is illustrated by the two last

figures that show the dynamic communities in the output of
the simulation and the joint probabilities of the number of
connected vertices and links in the graph.

This study opens the track to improved models that match
the important characteristics of dynamics of mobility net-
works.

5. CONCLUSION
By introducing several models, we are able to highlight the

diversity of properties that are needed to characterize such
networks. Furthermore, our models provide insight into ex-
isting notions of dynamic networks and demonstrate that
the structure and the dynamics are complex and are not a
direct consequence of the contact and inter-contact dura-
tions. Proposing such models is crucial since it enables a
validation of the ongoing research conducted in the various
areas that deal with dynamic networks. It has also many
applications in performance evaluation for instance.
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