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SUMMARY

A network application profiling framework is proposed that is based on traffic causality graphs (TCGs),
representing temporal and spatial causality of flows to identify application programs. The proposed
framework consists of three modules: the feature vector space construction using discriminative patterns
extracted from TCGs by a graph-mining algorithm; a feature vector supervised learning procedure in the
constructed vector space; and an application identification program using a similarity measure in the feature
vector space. Accuracy of the proposed framework for application identification is evaluated, making use
of ground truth packet traces from seven peer-to-peer (P2P) application programs. It is demonstrated that
this framework achieves an overall 90:0% accuracy in application identification. Contributions are twofold:
(1) using a graph-mining algorithm, the proposed framework enables automatic extraction of discriminative
patterns serving as identification features; 2) high accuracy in application identification is achieved, notably
for P2P applications that are more difficult to identify because of their using random ports and potential
communication encryption. Copyright © 2014 John Wiley & Sons, Ltd
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1. INTRODUCTION

The Internet has become a fundamental infrastructure for modern society and industry in the last
two decades, and a large variety of applications and services have been developed and deployed for
it. In this context, traffic classification is one of the key technologies for IP network management
tasks, such as analysis of security incidents, anomaly detection and traffic engineering. The simplest
traffic classification method is based on the source and destination port numbers of the transport layer
(i.e. TCP and UDP) [1]. However, one of the problems with port-based methods is that port numbers are
not statically bound to an application. For example, some network applications can use non-standard
ports, especially under firewall port restrictions. Moreover, some network applications such as peer-
to-peer (P2P) applications may use a random port to pass firewall port restrictions and to obfuscate
detection. These cases significantly impair traffic classification based on port numbers.

Numerous advanced techniques not relying on the sole port numbers have been
proposed for profiling network application traffic. Signature-based traffic classifiers [2–8] identify
applications from network traffic by inspecting packet payloads (i.e. application data). However,
it is difficult to apply it to encrypted data, and packet inspection raises privacy concerns. To solve
these encryption and privacy problems, statistical approaches [9–11] have been proposed to classify
applications from network traffic. These approaches use statistical properties of applications, such as
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the probability distribution of packet inter-arrival time and of packet size, instead of packet payload
inspection. These properties are useful for detecting anomalies in network flows, and consequently
they have also been used in anomaly detection methods [12]. An intrinsic approach [13] not relying
on signatures or statistical properties checks IP addresses in flows and web content found in search
engine results corresponding to an IP address to profile end-hosts. However, as mentioned by authors,
it cannot profile end-hosts using P2P applications, and applying it to application profiling is difficult
because end-hosts, especially end-user hosts, involve multiple applications. Other approaches [14–19]
use information on spatial interactions between hosts or flows for traffic classification. However, these
approaches cannot profile application programs such as user agents of web browsers/proxies without
payload inspection, though they might succeed in profiling certain application classes, such as the
web browsing and P2P file-sharing classes. Traffic causality graphs (TCGs) that represent temporal
and spatial causality of flows have been proposed to profile network application programs without
looking at packet payload [20]. we demonstrated previously [20] that TCGs were applicable to net-
work application program profiling with case studies. However, automated profiling with TCGs has
not been accomplished because the features used were empirically discovered and selected and they
were too simple and not sufficient to permit systematic application identification.

In this article, a framework is proposed to achieve automated network application profiling by
extending the TCG-based profiling approach. After having reviewed related works (Section 2),
we leverage a graph-mining algorithm to extract discriminative patterns (also referred to as sub-
structures) from TCGs and to construct a feature vector space for profiling. We also make use
of a similarity measure between two TCG feature vectors in the feature vector space to identify
applications (Section 3). The accuracy of the proposed framework for application identification is
evaluated based on ground truth packet traces from seven P2P application programs. We demon-
strate that this framework achieves 90:0% accuracy in application identification with the similarity
measure in the feature vector space constructed from discriminative substructures extracted by the
proposed graph-mining algorithm (Section 4). The contributions of this article are twofold: (1) the
proposed framework enables automatic extraction of discriminative substructures as features using
a graph-mining algorithm; (2) the proposed framework achieves high accuracy in application pro-
gram identification for P2P applications that are more difficult to identify because they use random
ports and they may encrypt their communication. Section 5 provides details on issues raised by the
proposed procedure.

2. RELATED WORKS

Past work focuses on interactions between hosts or flows in traffic classification. Iliofotou et al.
[16,17,21] and Jin et al. [18] have proposed graph-based approaches to profile an application’s
activities. They model the social behavior of hosts by representing hosts and their interactions as
vertices and edges, respectively, in a graph. However, one problem common to these approaches is
that, because they represent flows by edges, not vertices, they do not focus on interactions between
different protocols, such as interactions between DNS and HTTP in web browsing. Thus they have
difficulty in profiling the activities of applications using multiple protocols. Karagiannis et al. [14,15]
analyzed transport layer interactions and showed that the characteristics of transport layer interactions
could be used to identify the application classes of end-hosts such as web, P2P application and attack
classes. However, the temporal interactions between flows were ignored, and more detailed profiling,
i.e. application program profiling, is not possible from such an approach.

Flow dependency has also been well studied. Popa et al. [22] proposed an approach to identify
network application dependencies by using process IDs on operating systems as well as packet traces.
However, this approach requires a process monitor to be installed at each end-host, so deployment
in some networks, such as a campus guest network, is difficult because each end-host is owned and
administered by each user. Kandula et al. focused on flow dependencies to construct communication
rules for an edge network [23]. Their focus was similar to ours in terms of flow interactions, and they
extracted significant communication patterns. However, temporal information, such as the order of
consecutive flows, was not considered in their approach because it partitions flows into time windows
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to search related flows. Temporal flow causality is crucial for profiling network applications; therefore
causality-based features should improve classification performance. In debugging of distributed sys-
tems, temporal causality of messages such as remote procedure calls (RPCs) was investigated to find
performance bottlenecks of systems [24,25]. However, since the problems addressed there differ from
whose targeted here, they cannot be directly applied to application profiling. Unlike such approaches,
the approach proposed here categorizes temporal flow interactions into four causality types for appli-
cation profiling, which plays a significant role when using interactions to design TCG-based features,
as shown in Asai et al. [20].

Vladislav et al. [26] investigated signatures of several popular applications, such as web browsers
(Google Chrome, Firefox etc.) and E-mail clients. The goals of the present contribution is thus similar
to theirs, focusing on application program profiling. They achieved flow signatures extraction and man-
aged to identify applications by using these flow-extracted signatures, while avoiding recourse to deep
packet inspection. However, they did not build up any general method to extract discriminative flow
signatures. The present contribution provides a more general method to profile network applications,
with automated systematic feature extraction.

TCGs have been proposed to represent temporal and spatial causality of flows for traffic profiling
[20]. In Asai et al. [20], we defined and discussed a TCG composition method. We also demon-
strated that TCGs were useful for network application program profiling with case studies. These case
studies relying on ground truth packet traces demonstrated the advantage of TCG-based profiling,
which makes use of simple TCG features for profiling both application programs as well as appli-
cation classes. Moreover, the dynamics of TCG features obtained from time-sliced traces rather than
the features calculated from a single snapshot of a trace represented the characteristics of network
applications. In addition, it is shown that TCG representation helps network operators to identify the
root causes of other flows, e.g. malicious ones. However, the results of network application profiling
also showed that automated TCG profiling based solely on simple features has not been accomplished
because such features are empirically discovered and selected and they prove insufficient for systematic
application identification.

3. NETWORK APPLICATION PROFILING WITH TCGS

The profiling procedure with TCGs generally consists of three steps, as illustrated in Figure 1. The first
step amounts to aggregating packets into flows based on the conventional five-tuple: hproto, srcIP,
srcPort, dstIP, dstPorti. This aggregation method does not use the packet payload; instead it
uses the transport layer header. Note that each direction of a flow is processed as a different flow, e.g.
one bidirectional TCP connection is represented as two flows. The first packet of each flow timestamp
is assigned to the five-tuple. The second step consists in constructing the TCG from the flows. In the
graph, all flows are represented as vertices labeled by five-tuple properties. Related flows are connected
by directed edges, labeled by the type of flow causality. The direction of an edge represents temporal
transition. Finally, TCG analysis leads to network application profiling. In this article, we construct a
feature vector space for the discriminative substructures extracted by a graph-mining algorithm. We
also perform supervised learning for the feature vectors of application programs from ground truth
datasets. We then identify application programs making use of a similarity measure between the feature
vector from an unknown application program and learned feature vectors.

Figure 1. TCG-based profiling procedure. The first step obtains flows by aggregating packets based
on the conventional five-tuple. The second step composes a traffic causality graph from the flows. The

third step is profiling with the analysis of the traffic causality graph
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3.1. TCG construction

Vertices and edges of a TCG represent flows labeled by five-tuple properties and causality type.
Four types of causality are used: (1) communication causality (CC); (2) propagation causality (PC);
(3) dynamic-port host causality (DHC); and (4) static-port host causality (SHC). The first two—
CC and PC—are causality between a flow going to a host (i.e. an IP address) and a flow coming
from the host, representing that a flow causes a corresponding flow. CC is a one-to-one relationship
from a request to its response (i.e. reverse direction of the request five-tuple). PC is a many-
to-many relationship in which one or more flows propagate information into one or more other
flows, such as proxy, relay and forwarding. The other two—DHC and SHC—are many-to-many
relationships between flows coming from an identical host. DHC is the causality between flows with
the same srcIP but a different srcPort; e.g. web browsers create multiple connections to an
identical server with different source port numbers. SHC is the causality between flows with the same
srcIP and srcPort, e.g. some port scanners use an identical srcPort for a sequence of the port
scan procedure, and a server uses a static source port for responses. Note that there are hundreds
of other possible types of flow causality such as causality between flows with the same dstIP and
different srcIPs, but we focus on these four causality types as characteristics well representing
application behaviors.

Let us now briefly explain how to construct a TCG from raw data. The details of the procedure are
available in Asai et al. [20]. TCG construction consists of two phases: (1) connecting related flows
with labeled directed edges; and (2) reducing edges by heuristics.

First, TCG is constructed from a set of flows with the timestamp of the flow head and five-tuple
parameters by connecting related flows according to simple rules. Let the functions proto.f /, srcip.f /,
srcport.f /, dstip.f /, and dstport.f / return proto, srcIP, srcPort, dstIP, and dstPort of the
flow f , respectively, and the function timestamp.f / return the start time of flow f , i.e. the timestamp
of the first packet of the flow. The algorithm to determine the type of causality between any two
flows is defined in Algorithm 1. Note that non-consecutive flows are also processed. Since temporally
distant flows can be considered as not related, this algorithm first checks a threshold � (lines 1–3),
set to a global and constant value. The threshold is used independently from the edge reduction rules
explained in the next paragraph, and is used to limit the number of generated edges, in order to reduce
computational complexity. The threshold is also not to connect flows with a long interval, which are
not temporally related. It then checks the CC (lines 4–5), PC (lines 6–7), DHC (lines 8–9) and SHC
(lines 10–11), in that order. If the input two flows have no causality, the algorithm returns Nil (lines
12–13). If the algorithm returns a non-Nil value, an edge from f1 to f2 labeled with the returned
causality is added to the TCG.

Algorithm 1. Get the type of causality between flows f1 and f2 with threshold �

procedure getCausalityType(f1, f2, � ):

1: if timestamp.f2/ � timestamp.f1/ > � then
2: return Nil
3: end if
4: if proto.f1/ D proto.f2/ and srcip.f1/ D dstip.f2/ and srcport.f1/ D

dstport.f2/ and dstip.f1/ D srcip.f2/ and dstport.f1/ D srcport.f2/ then
5: return CC
6: else if dstip.f1/ D srcip.f2/ then
7: return PC
8: else if srcip.f1/ D srcip.f2/ and srcport.f1/ ¤ srcport.f2/ then
9: return DHC

10: else if srcip.f1/ D srcip.f2/ and srcport.f1/ D srcport.f2/ then
11: return SHC
12: else
13: return Nil
14: end if
end procedure
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The number of edges is then reduced using heuristics aimed at retaining only significant edges. Three
heuristic edge reduction rules (ER-Rules) are defined to remove tenuous edges, irrelative edges and
insignificant edges, relying on the following terminology: CC-request and CC-response are the source
and destination vertices of a CC edge, respectively. In the same way, PC-source, PC-destination, DHC-
source, DHC-destination, SHC-source and SHC-destination are the source and destination vertices of
a PC edge, a DHC edge and an SHC edge, respectively.

� ER-Rule 1. Removing tenuous edges: To reduce PC, DHC and SHC edges, we simply remove
all PC, DHC and SHC edges except for the temporally closest one for each causality, i.e. the
maximum out-degree of a vertex for each causality is one. This rule is based on the observation
that the temporally closest flows are generated by the same applications and thus represent direct
causality.
� ER-Rule 2. Removing irrelative edges: We remove irrelative edges by looking at neighboring

edges. DHC/SHC edges from any CC-response to any CC-request should be removed because
there must be PC edges and the CC-responses are not the initiators of the CC-requests, i.e. PC-
sources are the initiators of the CC-requests, which are the same as the PC-destinations. For
example, in Figure 2(a), a DHC edge from a CC-responses b to a CC-request c is removed.
DHC/SHC edges from any CC-request to any CC-response and PC edges to any CC-response
should also be removed because CC-responses are initiated only by CC-requests. For example,
in Figure 2(b), a PC edge to a CC-response d is removed. We keep DHC/SHC edges from a
CC-response to another CC-response as a server activity.
� ER-Rule 3. Removing insignificant edges (PC edges from CC-responses): We remove PC edges

from any CC-response. For example, in Figure 2(c), a PC edge from a CC-response b. Note that
this is equivalent to ER-Rule 3(a) in Asai et al. [20]. We refer to it as ER-Rule 3 for simplicity in
this article because we do not use ER-Rule 3(b) and (c) in Asai et al. [20].

Figure 2. ER-Rule 2 and 3: removing irrelative edges and insignificant edges. (a) ER-Rule 2:
DHC/SHC edges from CC-response to CC-request. (b) ER-Rule 2: PC edges to CC-response. (c)
ER-Rule 3: PC edges from CC-responses. (For the visualization of edges, we use half arrowheads,

double-headed ones, filled ones and open ones for CC, PC, DHC and SHC, respectively)
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As an example of TCGs, a TCG composed from a packet trace for web page access to
http://www.google.com/ by Microsoft Internet Explorer is illustrated in Figure 3. We use
� D 1[s] for the threshold in Algorithm 1. As the result of ER-Rules, the number of edges are reduced
from 98 to 23.

3.2. Automated network application profiling framework

In this section, we propose a framework to achieve automated network application profiling with
TCGs. The proposed framework consists of three steps. The first step is to extract discriminative sub-
structures from TCGs and to construct a feature vector space. It relies on a graph-mining algorithm to
extract discriminative substructures from TCGs. The second step performs a (naive) supervised learn-
ing of the feature vectors in the constructed vector space, tagged with application names. The third step
consists in identifying the application corresponding to an input TCG, by using a similarity measure
between two TCG feature vectors.

3.2.1. Feature vector space construction using extracted discriminative substructures by graph mining
Since TCGs are generalized as ‘labeled directed graphs’, a graph-mining approach is straightforwardly
used to extract discriminative substructures from TCGs. In graph mining, the minimum description
length (MDL) approach, which tries to minimize the description length, an index explaining the
amount of information of a graph compressed by a substructure has been widely used. We lever-
age an MDL-based graph-mining algorithm ‘Subdue’ [27] to extract discriminative substructures
from TCGs.

Let us now summarize the Subdue algorithm description length procedure. Let V , E and L be the
sets of vertices, of edges and of labels (for both vertices and edges), respectively. The Subdue algorithm
defines the description length (DL) of a labeled directed graph G D .V;E/ as follows:

DL.G/ WD hv C he C hr

s.t.

8<
:
hv D log2 .kV k/C kV k log2 .kLk/
he D kEk log2 .1C kLk/C .K C 1/ log2 .m/
hr D .kV k C 1/ log2 .b C 1/C

PkV k
iD1 log2

�
kV k
ki

�

where kV k, kEk and kLk denote the number of vertices, edges and labels, respectively. Parameter m
is the maximum out-degree of the graph, and b andK are defined in equations (1) and (2), respectively,
where A D

�
aij
�

is the adjacency matrix of graph G and ki D
PkV k
jD1 aij is the strength of node i :

b WD max
i
ki (1)

K WD

kV kX
iD1

ki (2)

DHC

CC
SHC

Figure 3. Example of TCG constructed from a google web page access trace
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The simplest MDL algorithm searches a substructure that minimizes the description length of the
graph compressed by it, i.e. it minimizes DL.GjS/, whereGjS represents graphG compressed by sub-
structure S . The Subdue algorithm extends this basic MDL algorithm by defining the feature quantity
f .S;G/ of substructure S to graph G in equation (3):

f .S;G/ D
DL.G/

DL.S/C DL.GjS/
(3)

A great feature f .S;G/ indicates that substructure S is more representative of graph G; i.e. the
substructure explains the graph better. In other words, a smaller DL.GjS/ stems from substructures S
with smaller description lengths. Indeed, substructures with smaller description length that minimize
DL.GjS/ are considered more discriminative because they frequently appear in the graph. Note that the
Subdue algorithm searches for a substructure that maximizes the feature quantity, although it is based
on the minimum description length approach, because the description length of a graph compressed by
a substructure constitutes the denominator of the feature quantity definition (3).

The Subdue algorithm searches the best substructures that maximize the feature quantity f .S;G/ by
making use of a beam search strategy. The beam search strategy explores substructures by expanding
an edge to the promising set of subgraphs, starting from single-node subgraphs. After expanding an
edge, a limited number of subgraphs with larger feature quantity are chosen as the promising set
of subgraphs for the next procedure of the beam search. The limited number of subgraphs for the
promising set is referred to as the width of the beam search. Note that the beam search equals the
breadth-first search when the width of the beam search is large enough. The Subdue algorithm relies
on five parameters: (1) beamwidth: the width of the beam search; (2) limit: a limit of the rounds (i.e.
amount of computation) in the beam search; (3) maxsize: the maximum number of vertices for an
extracted substructure; (4) minsize: the minimum number of vertices for an extracted substructure; and
(5) maxsubs: the maximum number of the substructures to be returned.

A feature vector space is constructed to embed the extracted substructures of TCGs. Let S D
¹S1; : : : ; Snº be the set of substructures extracted from one or more than one TCGs, where the number
of the substructures in S is n, the feature vector f for a given TCG Gx is defined in equation (4):

f .Gx/ WD Œf .S1; Gx/; : : : ; f .Sn; Gx/� (4)

Here, we use the same feature quantity as used in the Subdue algorithm to construct the feature
vector space because it also represents how frequently the substructure appears in the graph. Note that
the set of extracted substructures S may contain duplicate substructures (i.e. the actual dimension of
the vector space is less than n) but we do not eliminate duplicates because it does not lead to significant
problems in application profiling. This is further discussed in Section 5.

3.2.2. Similarity measure between feature vectors for application identification
We use the cosine similarity between two feature vectors to measure the similarity between two TCGs.
The cosine similarity is commonly used for a similarity measure in the research area of natural lan-
guage processing [28]. A feature of cosine similarity, that it is independent of the magnitude of vectors,
is beneficial in measuring the similarity between feature vectors of TCGs because the magnitude of
feature vectors varies by the size of TCGs. The cosine similarity (sim) between vectors u and v is
defined by equation (5):

sim.u; v/ WD
u � v

kukkvk
(5)

where u � v denotes the inner product of u and v in the vector space Rn, and kvk denotes the `2-norm
of the vector v.
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Let us now assume that TCG learned vectors are available from supervised learning achieved on
packet traces with available ground truths. The detailed learning procedures are discussed in Section 5.
Application identification is achieved by searching the learned feature vector that is most similar to
the feature vector computed from a target input TCG. A naive identification algorithm is used to find
the learned feature vector which attains the maximum cosine similarity to the feature vector of the
input TCG.

4. PERFORMANCE EVALUATION

Accuracy of the application identification procedure is now evaluated. To that end, a leave-one-out
cross-validation procedure and a k-fold cross-validation using ground truth packet traces as learning
and validation datasets are conducted.

4.1. Experimental setup

To create ground truth packet traces for the evaluation of automated application traffic profiling, we
captured packet traces of five P2P file sharing applications (BitTorrent, Cabos, Winnyp, Share, and
Perfect Dark), of one P2P video streaming application (BBbroadcast), and of one voice over IP and
chat application (Skype) on a clean-installed operating system (Windows 7). Note that we focus on P2P
applications since they are difficult to identify because they use random ports and they may support
encrypted communication. Indeed, four of these seven P2P applications—Winnyp, Share, Perfect Dark
and Skype—use encryption by default. Three traces are captured for each application program, and
split each trace into 10-minute subtraces. For example, the duration of trace 1 of Skype is equal to or
larger than 350 minutes but less than 360 minutes and then split into 35 subtraces. The ground truth
packet traces of the application programs and the number of 10-minute subtraces for each application
program are summarized in Table 1. The total number of 10-minute subtraces is 831. We construct
TCGs with � D 1[s] and ER-Rules 1, 2 and 3 for each packet trace. The vertices of TCGs are labeled
with the protocol number in the five-tuple of flows; i.e. TCP, UDP and ICMP.

The Subdue algorithm relies on five parameters, as described in Section 3.2.1. In this experiment,
we use 128, half the value of the number of edges in the input graph, 6, 1 and 50, for beamwidth, limit,
maxsize, minsize and maxsubs, respectively. Among these parameters, beamwidth is the only param-
eter subject to optimization in the beam search strategy. The other parameters can be set if we use
the breadth-first search strategy instead of the beam search strategy. Here, we discuss beamwidth to
demonstrate that the value 128 for beamwidth is large enough to extract the best substructures appro-
priately. The feature quantities of extracted substructures and the number of extracted substructures
are computed as functions of the beamwidth, for every subtrace from the ground truth datasets, and
shown in Figure 4. It shows that both the feature quantities and the number of extracted substructures

Table 1. Ground truth packet traces for automated application
traffic profiling

No. of 10-minute subtraces

Application program Abbr. (Trace 1) (Trace 2) (Trace 3)

BitTorrent bt 4 04 7
Cabos cabos 13 16 278
Winnyp winny 4 4 5
Share share 45 22 36
Perfect Dark pd 8 24 4

BBbroadcast bbb 4 9 26

Skype skype 35 264 19
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Figure 4. Average feature quantity of extracted substructures and the number of extracted substruc-
tures as functions of the beamwidth

saturate when beamwidth is equal to or larger than 32, thus showing that the best substructures are
appropriately extracted. Note that the feature quantity of 50th substructure displayed in this figure is
most strongly affected by the beamwidth since it is the last one when we choose 50 for maxsubs. We
conjecture that the value 128 for beamwidth is large enough to achieve results (i.e. substructures) that
approximately match those obtained from the breadth-first search strategy. Note that 128 is the value
that we expected to be large enough before this discussion on the beamwidth and used for preliminary
experiments, so we use this specific value.

Since the number of 10-minute subtraces varies strongly among ground truth traces, we use at
most 24 subtraces for each trace for this experiment. This limitation yields 291 subtraces in total.
We first extract the best substructures from these 10-minute subtraces. The total number of extracted
substructures is 10 779. We then construct a feature vector space using these 10 779 extracted sub-
structures. Note that this limitation also aims at reducing the computational time because the subgraph
isomorphism problem used in the Subdue algorithm is NP-complete and thus requires a huge amount
of time to conduct this evaluation. Computational complexity is further discussed in Section 5.

4.2. Feature vectors and identification results

The feature vectors are computed according to equation (4) from the TCG of each 10-minute subtrace.
We first demonstrate that the similarity between feature vectors is effective for application identifica-
tion. Figure 5 displays the feature vectors of each 10-minute subtrace in the constructed feature vector
space. Note that each column of the matrix represents a feature vector of a subtrace. Only the best 5
substructures are used to construct the feature vector space to draw this figure. This limitation reduces
the number of elements of the feature vector space to 1443 from 10 779, in accordance with typical
high-resolution printing of 600 dpi. This figure illustrates that feature vectors computed from traces
associated with the same application display similar patterns. It is indeed not surprising that the feature
quantity corresponding to substructures extracted from one same subtrace is large. Yet horizontal stripe
patterns among subtraces related to the same application can also be observed. Note that the cosine
similarity is independent of the magnitude of the feature vectors, and consequently the absolute feature
quantities of horizontal stripes (e.g. horizontal lines through subtraces) are meaningless, but horizontal
stripe patterns from the bottom of the figure to the top are significant. This demonstrates that subtraces
from the same application display similar patterns in the feature vector space. The similarity between
feature vectors can thus be used for the application program identification.

Application identification performance is then evaluated. To that end, two types of cross-validations
are conducted: the leave-one-out cross-validation and the k-fold cross-validation. In the leave-one-out
cross-validation, we use one 10-minute subtrace for validation and the other subtraces for learning. In
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Figure 5. Feature vectors of each 10-minute subtrace for the best 5 substructures: horizontal and
vertical axes represent the 10-minute subtraces and corresponding substructures in the constructed
feature vector space, respectively. For readability, only the best 5 substructures in the feature vector

space are used to draw this figure

Table 2. Confusion matrix by the leave-one-out cross-validation

Inputnoutput bbb bt cabos share skype pd winny

bbb 37 0 0 0 0 0 0
bt 0 13 1 0 1 0 0
cabos 1 2 48 1 1 0 0
share 0 0 2 61 6 0 1
skype 0 0 7 2 58 0 0
pd 0 0 0 0 0 36 0
winny 0 0 1 3 0 0 9

Table 3. Confusion matrix by the k-fold cross-validation

Inputnoutput bbb bt cabos share skype pd winny

bbb 31 0 6 0 0 0 0
bt 0 10 3 0 2 0 0
cabos 1 1 47 1 3 0 0
share 1 0 20 39 7 0 3
skype 0 0 34 0 33 0 0
pd 0 0 0 0 0 36 0
winny 0 0 1 2 0 0 10

the k-fold cross-validation, we use 10-minute subtraces belonging to one of three traces for validation
for each application and the other subtraces for learning. Thus we obtain k=3 partitions for the k-fold
cross-validation.

Table 2 summarizes the confusion matrix of the leave-one-out cross-validation. The diagonal
elements in this table indicate correct application identification, while off-diagonal terms quantify
miss-classifications, thus showing a 90:0% accuracy in application identification.

Similarly, Table 3 displays the confusion matrix of the k-fold cross-validation. The proposed frame-
work achieves a 70:8% accuracy in application identification. This accuracy is lower than the accuracy
in the leave-one-out cross-validation because the number of feature vectors for learning is smaller due
to the different learning dataset selection of cross-validation, and consequently significant feature vec-
tors are not found for some subtraces. As shown in Figure 6, the cosine similarity values corresponding
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Figure 6. Cumulative distribution functions (CDFs) of cosine similarity by the identification result:
in the k-fold cross-validation, the cosine similarity of incorrect identification is distributed at smaller
values than that of correct identification. This characteristic is not obvious in the leave-one-out
cross-validation but in the k-fold cross-validation. This is because the number of the learned fea-
ture vectors in the k-fold cross-validation is smaller than that in the leave-one-out cross-validation,
and the accuracy of application identification is lower. (a) Leave-one-out cross-validation. (b) k-fold

cross-validation

to incorrect identifications in the k-fold cross-validation are observed to be distributed across smaller
values than those for correct identifications, as opposed to what can be seen in the leave-one-out cross-
validation. If the similarity of incorrect identifications is distributed almost at 1.0, the feature vector
space constructed from the learning dataset is not good for the identification because it is able to find
a similar vector from the learned vectors but it is that of a different program. On the other hand, if the
similarity of incorrect identifications is distributed at smaller values, the learning is not enough because
it does not find any similar vectors from the learned feature vectors. Therefore, the proposed framework
cannot find feature vectors from the learning set that are similar to the target set because the number of
learned feature vectors is not large enough in the k-fold cross-validation. Table 2 also shows another
reason for this lower accuracy in the k-fold cross-validation: a significant number (39%) of incorrect
identifications stem from Skype and Share identified as Cabos. This is because the subtraces of these
applications have similar feature vectors. Figure 5 confirms that analysis, showing similar horizontal
stripe patterns shared by these applications. To avoid these incorrect identifications, the quality of the
learned feature vectors should be improved by collecting more datasets for learning. Another possible
solution is to improve the extraction of discriminative substructures or identification algorithm (e.g.
similarity measure) to appropriately identify these applications.

5. DISCUSSION

Let us now further discuss some issues raised in the previous sections.

5.1. TCG composition

Due to multitasking of current operating systems, flows from different applications may be inaccu-
rately connected during the TCG composition. A case study in the prior work [20] showed that a TCG
component of a web browser could be composed from a traffic trace captured at a gateway router, con-
taining traffic from other applications and other hosts. However, inaccurate connections during TCG
composition potentially occur. To mitigate these inaccurate connections, we will consider extending
the flow dependency extraction method proposed in Kandula et al. [23] to the TCG composition in
order to divide a TCG into several components. The threshold � in the edge connection algorithm
should also be discussed. A shorter threshold possibly mitigates the inaccurate connections due to

Copyright © 2014 John Wiley & Sons, Ltd
DOI: 10.1002/nem

Int. J. Network Mgmt 2014; 24:  289–303



300 H. ASAI ET AL.

multitasking but causes a split in a TCG. The threshold � and the accuracy and computational
complexity should be evaluated in the future.

5.2. Complexity of vertex labeling

We labeled vertices with the protocol number in the five-tuple in Section 3.2. The vertex labeling
can be extended, and properties of flows as well as the other fields in the five-tuple can be used
for the vertex labeling. For example, the statistical properties of flows that have been used in traffic
classification methods [9–11] can be added to vertex labeling parameters. However, these extension
might increase the complexity of the methodology. This is one reason why we adopt vertex labeling
based on conventional five-tuple.

5.3. Computational complexity

Two bottlenecks exist in the proposed framework in terms of the computational complexity. The
first bottleneck is the TCG construction method. The computational complexity of Algorithm 1 is
O.kV k2/, where kV k is the number of vertices (i.e. flows) if the threshold � is not set. This compu-
tational complexity can be reduced by setting an appropriate threshold � . The other bottleneck is the
feature quantity computation that is used both in the Subdue algorithm and application identification.
The subgraph isomorphism problem used in the feature quantity computation is NP-complete. This
computational complexity can be reduced by the following two methods: (1) reducing the size of the
graph with the threshold � ; and (2) reducing the size of the subgraph with the parameter maxsize of
the Subdue algorithm. For the Subdue algorithm, the number of the feature quantity to compute can be
reduced by tuning the parameters beamwidth, limit and maxsubs. However, this parameter tuning might
affect the accuracy of the profiling. Therefore, tuning of these parameters is required to be carefully
carried out so as not to degrade the accuracy and not to increase the computational complexity.

5.4. Advantages against existing approach based on spatial interactions between flows

Spatial interactions between flows are used for traffic classification in BLINC [14]. This approach does
not focus on the causality of flows and cannot easily profile application programs without payload
inspection, though they might succeed in profiling certain application classes such as P2P file shar-
ing. The graphlets1 proposed in BLINC of six ground truth packet subtraces of three applications
used in Section 3.2.1. (Table 1) are drawn in Figure 7, which sheds light on the difficulty in profiling
application programs with simple rules on graphlets as proposed in Karagiannis et al. [14]: shapes of
the graphlets between different applications, Cabos (a) and Skype (f) are similar, and the shapes of the
graphlets between the same application, Skype (c) and (f), are not similar. An advanced analysis of
graphlets [19] has been proposed but it still does not focus on the application programs. Note that graph
mining or other advanced techniques might be also be applied to graphlet-based application program
profiling but this has not yet been investigated.

5.5. Graph-mining algorithm and duplicate substructures in the feature vector space construction

We adopted the Subdue algorithm based on the MDL approach for graph mining. In the Subdue
algorithm, its graph-mining procedure to search discriminative substructures is based on complete
matching, and the similarity between substructures is not taken into account, extending substructure
isomorphism. Other graph-mining algorithms that take into account similarity might improve the
definition of description length and the profiling performance, though it would definitely further
increase computational complexity. Moreover, duplicate substructures are not eliminated in the feature
vector space because they do not yield significant issues for application profiling. However, profiling
performance will be improved by taking into account similarity.

1The term ‘graphlet’ here is different from another definition by Pržulj et al. [29,30] used in the bioinformatics research
area.
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(a) cabos (subtrace in Trace 1) (b) share (subtrace in Trace 1) (c) skype (subtrace in Trace 1)

(d) cabos (subtrace in Trace 3) (e) share (subtrace in Trace 3) (f) skype (subtrace in Trace 2)

Figure 7. Graphlets of application programs: (a) Cabos (subtrace in trace 1); (b) Share (subtrace in
trace 1); (c) Skype (subtrace in trace 1); (d) Cabos (subtrace in trace 3); (e) Share (subtrace in trace 3);

(f) Skype (subtrace in trace 2)

5.6. Learning of feature vectors

We use the same environment and one version for each application both for learning of the feature
vectors and for identification. However, different versions of application, underlying environments
or topologies possibly result in different flow patterns, as mentioned in device-fingerprinting works
[31,32]. The impact on the profiling induced by these differences is to be evaluated. One possibility
to be tolerant of this impact is unsupervised learning. We use supervised learning to tag the feature
vectors with the name of application programs, in Section 3.2. However, the proposed framework
can adopt unsupervised learning by using similarity as achieved in the research area of natural lan-
guage processing [28], though the tag of the feature vectors (i.e. exact application name) cannot be
annotated. We will examine several clustering techniques and apply them to feature vectors (e.g.
Figure 5) to achieve unsupervised learning and classification for a more advanced network application
traffic-profiling framework.

6. CONCLUSION

We propose a network application profiling framework adopting TCGs that represent temporal and
spatial causality of flows to identify application programs. We leverage a graph-mining algorithm to
extract discriminative substructures from TCGs as features for network application profiling. It over-
comes the limitations stemming from manually selected simple features that we used in an earlier work.
We evaluated the accuracy of the proposed framework in the application program identification with
ground truth packet traces of seven P2P application programs, and demonstrated that this framework
achieved 90:0% accuracy in application identification.

The contributions of this manuscript are that the proposed framework enables us to automatically
extract discriminative substructures as features using a graph-mining algorithm, and that the proposed
framework achieves high accuracy in application program identification for P2P applications that are
difficult to identify because they used random ports and might encrypt communication.
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