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This work deals with the decomposition of a signal into a collection of intrinsic mode
functions. More specifically, we aim to revisit Empirical Mode Decomposition (EMD) based
on a sifting process step, which highly depends on the choice of an interpolation method,
the number of inner iterations, and that does not have any convergence guarantees. The
proposed alternative to the sifting process is based on non-smooth convex optimization
allowing to integrate flexibility in the criterion we aim to minimize. We discuss the choice
of the criterion, we describe the proposed algorithm and its convergence guarantees, we
propose an extension to deal with multivariate signals, and we figure out the effectiveness
of the proposed method compared to the state-of-the-art.
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1. Introduction

Numerous signals stemming from natural phenomena
and/or man-made systems (e.g., in meteorology, oceano-
graphy, biology, or energy networks, to name but a few)
exhibit non-linear and/or non-stationary behaviours [2,3].
One useful class of models aimed at describing such signals
can be expressed as a sum of AM-FM signals

(VteR) Xx(t)= f} ay(t) cos Gi(t) (1.1)

where «a(t) is assumed to be non-negative and smoother
than cos 6y(t), and wy(t) = (d/dt)o,(t) > 0. The limit case
where wg(t)=0 permits us to account for a trend in the
data represented by a(t).
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According to such a model, the challenge is twofold: on
the one hand, extract each component x,(t) = a(t) cos 0, (t)
from x(t) and, on the other hand, for every ke {1,...,K},
evaluate the instantaneous frequency wy(t) and the instanta-
neous amplitude o (t). A toy example is provided in
Fig. 1. Instantaneous frequency and amplitude of a mono-
component AM-FM signal (i.e.,, K=1) can be defined through
the concept of analytic signal introduced by Ville [4]. When
K > 1, an extraction of (ay); < ;< and (wy); <, <x based on
the analytic signal is not anymore feasible. Consequently,
during the last few decades, numerous solutions have been
investigated such as zero crossing methods [5,6], reassign-
ment methods [7], synchrosqueezing [8], or Empirical Mode
Decomposition (EMD) [9]. These methods can be split into
two classes:

1. Methods that evaluate instantaneous frequencies and
amplitudes  without extracting the components
(X1 < <k from x.

2. Methods that first extract the components (Xi); <<y
from x and then evaluate instantaneous frequency and
amplitude from each x;.
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Fig. 1. (a) Signal x(t) that is a sum of K=3 AM-FM signals and (b) its spectrogram. (c) First AM-FM component x;(t) = a;(t) cos 6;(t) and (d) its
spectrogram. (e) Second AM-FM component X, (t) = ax(t) cos 6,(t) and (f) its spectrogram. (g) Third AM-FM component x3(t) = a3(t) cos 65(t) and (h) its

spectrogram.

Synchrosqueezing and reassignment belong to the first
class of methods and EMD to the second one. Reassign-
ment aims at sharpening a time-frequency representation
by allocating each value to a different point in the time-
frequency plane according to its local behaviour. The
synchrosqueezing proposed by Daubechies et al. [8]
appears to be a particular case of reassignment that

operates along the frequency direction only.! This restric-
tion allows us to reconstruct each component individually

! The synchrosqueezing theory has been developed initially through
the wavelet formalism, but it can be formulated as well for the Short-
Time Fourier Transform [10].
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if the components are locally well-separated in frequency.
However, in order to extract the components, their num-
ber and the definition of their domains are required and it
needs to be supervised [11,12].

From a different perspective, EMD extracts iteratively
the intrinsic mode functions of a signal. Instantaneous
frequency and amplitude can then be obtained directly
from each mode as well as correlations between modes or
other kinds of mode analysis. Nonetheless, this technique
faces the difficulty of having no mathematical definition
besides its algorithm and thus no convergence properties.
The purpose of this work is to propose an efficient
alternative to EMD based on a variational approach and
convex optimization methods which allows us to have
convergence guarantees, to be flexible regarding the signal
to be analysed, to deal with signals having zero-valued
segments without creating artificial oscillations, and to be
robust to sampling effects.

Section 2 aims at recalling the EMD principle, together
with alternatives that have been proposed in the literature.
The proposed variational approach is detailed in Section 3.
Section 4 evaluates the performance of the proposed
solution on simulated and real data.

2. State of the art
2.1. Empirical Mode Decomposition

We consider a signal x = (x[n]); -, -y € R" of length N
which may be written as

K
x= Y di+ay, 2.1
k=1

where, for every ke {1,...,K}, d; € RN denotes the intrinsic
mode function (IMF) of order k, and agx e RY denotes
the trend of order K. To this end, an average envelope is
defined as the mean of an upper envelope and a lower
envelope, both constructed (via a cubic splines interpola-
tion) from local maxima and minima, respectively. The
IMF characterization imposes this average envelope to be
almost zero everywhere.

EMD is a procedure in K steps allowing us to find
(di)1 <k <k and ak from x. At each step, the trend and the
IMF of order k > 1, respectively denoted by a, and dy, are
extracted from the trend of order k—1 (note that ag = x).
This decomposition stage is known as the sifting process
and it consists in:

(i) set i=0 and initialize a temporary variable s = qa,_1,
(ii) identify all extrema of s®,
(iii) interpolate between minima (resp. maxima) ending
up with some envelope eq, (resp. emax),
(iv) compute the mean envelope m = (epin +€max)/2,
(v) extract the residual s+ =s® —m and increment i,
(vi) iterate Steps (ii)-(v) until the residual s achieves a
zero mean envelope,
(vii) let the IMF of order k be d,=s® and the trend of
order k be a =a,_q —d.

This adaptive approach proved its efficiency for analys-
ing signals through numerous applications (see [3] and

references therein). However, the result of this method is
highly dependent on the interpolation process in Step (iii),
it has also been pointed out to be sensitive to sampling
effects [13], and this method is not efficient to deal with
signals having null segments. Worst of all, no proof of
convergence can be established for this technique.

Before detailing the solution we propose, we will first
briefly review recent EMD variants which focus on a modal
decomposition with convergence guarantees that rely on
convex optimization tools.

2.2. Modal decomposition with convex optimization tools

A first intuitive variation on EMD introducing convex
optimization is the work by Huang and Kunoth [14], aiming
at modifying the way the envelopes are computed. The goal is
to avoid intersection between the upper (resp. lower) envel-
ope and the signal that leads to an over (resp. under) shooting
effect in Step (iii) of the EMD. This method replaces the
interpolation step with an estimation of the upper (resp.
lower) envelope based on an optimization scheme that can be
solved with classical convex optimization tools such as interior
point method or projected gradient. In [15], the estimation of
the lower and upper envelopes is based on a parabolic partial
differential equation (PDE). The resulting envelopes are piece-
wise cubic polynomial curves interpolating the maxima (resp.
minima) of the signal. In [15], the authors have also proposed
a PDE based method allowing us to directly estimate the
mean envelope through the inflection points. In [16], a genetic
algorithm is proposed in order to efficiently estimate the
envelopes. It is also interesting to refer to the work by Hawley
et al. [17] where the cubic spline interpolation is replaced by a
trigonometric interpolation. If this interpolation method is
less accurate than a cubic one, then it has the advantage of
proposing a theoretical framework from which it is possible to
derive convergence guarantees of the mean envelope to zero.

Another interesting approach was proposed by Meignen
and Perrier in [18] and Oberlin et al. [19]. The authors
have replaced the sifting process by a convex optimiza-
tion procedure. More precisely, the authors extract the
trend of order k by solving the following minimization
problem:
ay=argmin |jall; subj.to aellNC, (2.2)

aeRrN

where /7 denotes the space of cubic spline functions, and
Cq,_, denotes a constraint onto the dynamic range of the
mean envelope at the location of the extrema of a;_;. To
be more specific, we have to specify that the variable to
be optimized in (2.2) is not the trend but the coefficients
associated to the Hermite interpolant of a. In [19], the
dynamic range constraint is replaced by a constraint
which imposes the symmetry of the upper and lower
envelopes of ay_;—a. The main limitation of this
approach is that a first approximation @ of ay is required
in order to involve a convex constraint. This second
approach also looks for the mean envelope in the space
of spline functions. The IMF of order k is then deduced
from ay and a,_, (i.e., d, = a,_1 —ay). This method will be
named OMD (for Optimization based Mode Decomposi-
tion) in the following.
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More recently a dictionary learning procedure com-
bined to sparse optimization has been proposed for modal
decomposition [20,22]. This method aims at solving the
following minimization problem:

K
. X= 3 a cos 0,
subj. to k=1

(Vke{l,...,K}), o cos €D,

minimize K

where D is a highly redundant dictionary requiring a; to
be smoother than cos 6, and the derivative of 6, (instan-
taneous frequency) to be positive (i.e., ¢, >0). The first
solution, proposed by Hou and Shi [20], deals with the
decomposition of x into its local median a9 and an IMF
a1 cos 0 considering a variational approach based on the
total variation (TV) [21]. This minimization problem can
be solved by a Gauss-Newton technique considering an
additive variable. The resulting algorithm involves to
update alternatively (ag, a1) and the phase function ¢, that
highly depends on the initialization and thus, in general,
does not have any convergence guarantees to a global
minimizer. The second solution, proposed by Hou and Shi
[22], appears to be an extension of the previous one to K
components and to be more robust to noise. The resolution
of the above minimization problem is similar to the
previous formulation. In [23], a convergence proof has
been proposed under restrictive assumptions.

3. Multicomponent variational problem

The sifting process aims at extracting a trend and
a fluctuation of order k or, in other words, elementary
structures of the signal. This problem appears to be highly
related to texture-geometry decomposition methods develo-
ped in the image processing field. In the context of denois-
ing, this decomposition has been achieved in [21] with a
total variation penalty in order to extract a piecewise smooth
component. In [24,25], a criterion combining total variation
and G-norm, modelling strong oscillations, has been con-
sidered in order to perform texture-geometry decomposi-
tion. In most recent works, the oscillating patterns have
been extracted in considering #;-norm applied on frame
coefficients [26-28].

In this work, we propose to adapt the texture-geometry
framework in order to replace the sifting steps. The
successive extraction of modes requires an iterative pro-
cedure based on specific choice for the involved func-
tionals. In other words, we proceed K sequential steps
allowing us to extract (ay,dy)k. 1. k) by solving a mini-
mization problem. Note that in usual texture-geometry
extraction, the procedure is not sequential but simulta-
neous, i.e., a variational problem is formulated in order to
extract simultaneously (dy, ..., dx, ak). In order to be com-
parable to usual EMD we adopt a sequential approach
here. The general Sequential Variational Modal Decom-
position (Seq-VMD) can be formulated as below:

Problem 3.1. We denote x e R" the signal to be decom-

posed in (dy, ..., di, ax). Let dg =0 and let ag = x. For every
ke{1,..., K},
(ar. dy) e Argmin f(a,d;a,_1)+g(@)+h(d) (3.1

aeRN, de RN

where g:RN—>]—o0, +00] and h:RN—]—o0, +o0] are
potentials promoting the properties of the trend and fluctua-
tion components of order k separately, while f(-,-;a,_4):
RN x RN -] — oo, + 0] is a coupling term modelling their
interaction.

The functions f, g, and h have to be specified to obtain a
EMD-like decomposition. While the IMF of order k is
expected to have a zero-mean envelope and to be quasi-
orthogonal to the IMF of order j < k, on the other hand, the
trend of order k has to be a smooth signal or at least
smoother than the fluctuation of order k. We now propose
to specify f(-,-;ax_1), g and h in order to model the listed
properties that we want to impose onto each component.

3.1. Proposed solution

The first condition (zero-mean average envelope) is the
most difficult to impose. We propose a method derived
from [19] to deal with such a constraint. The location of
the local extrema of a;_; is denoted by (£x[¢]); < » < ,- Note
that these extrema are alternatively minima and maxima.
We can approximate the first condition by considering, for
every ke {1,...,K},

ard[tl2 — 111+ B, dit[£+ 1]
Qg +ﬁ[’

(VZef{l,...L}) |ditde+

< Ekp
(32

where a, = ti[£+ 11—t [£], B, = t[¢£]1—ti[£ — 1], and err > 0.
The coefficients a, and g, are chosen so that, in Eq. (3.2),
the point d[t,[#]] (that is generally close to extrema of d,
e.g., a maximum) is approximately compared to its mirror-
point that would be on the symmetric envelope, locally
defined thanks to d[t,[¢—1]] and d[t,[¢+ 1]]. Note that no
envelope is explicitly computed. Fig. 2 illustrates this
condition.
One could globally rewrite (3.2) as

Dl < e 33)

dfte[{]]

Fig. 2. Illustration of the zero-mean envelope constraint.
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where g>1,e,= Y el , and D e R*N denotes a matrix
which models the penalization imposed on d at each
location t[#]. Each row of Dy is sparse and the non-zero
values are 1, as/(as+p,), and B, /(as+p,) at the locations
te[£], te[¢ —1], and t,[¢ + 1] respectively.

The smoothness condition on the trend can be achieved
by imposing, for every ke {1,...,K},

lAallp < (34

where 5, >0, p > 1 (typically p=1 or p=2), and A denotes
a derivative operator (first or second order derivative).
If p=1, it corresponds to a total variation constraint that
favours piecewise constant signals and more generally allows
non-smooth behaviour.

Algorithm Seq-VMD

Initialization

Fork=1,...,.K

(0)
V2 k

[N
Vg k41 =

Forn=0,1,...
u = S o)
Forr=1,...,k—1

ER—

o = o) +

= (@R +71%)

(n) _
1r =

)

= v

(n)
1Lk
() _ (n) —(n) ~(n)
Yok = Vo + 7 (T101%)
(n) _ (=(n)
Yik+1 = (vl,k+1

(n) )
3/27,11”1 =

n k+1 n
P = e

Forr=1,...,k—1

Forr=1,...,k—1

q§n7‘) = pgnr) - 'ang,lr)

(n) _ (n) (n)

Gar = P2, +InPiy
(n) _ (=(n) | ~(n) (n)
Qg = (pl,k +p1,k) — InP2

a5 =S+ (@0, BYY)

(n) (n)
41, k41
(n)
92 k41

Forr=1,...,k+1

n+1 n n n
uf™ = uf™ — (") 4 g
oY = o~y 4 gf)

| (ak, di) = limp o0 ugc")

~(n)

+=(n)
= WAy 1,01 e

_ ((n w=(n)  ~(n)
= (p1,7c+1 — A P2 k4+1:P1 k41 — %kaz,kﬂ

317

We want to impose that the sum of the trend and the
IMF of order k is close to a;_;. This can be modelled by
considering the constraint

i1 =d+a

or, if we want to reduce the sampling effects, we can use a
£>-norm:

2
llak_1 —d—all3.

At last, the quasi-orthogonality condition requires
to impose a constraint taking the form, for every ke
{1,....K},

Let (w;)i1<r<r be real numbers in ]0, 1] such that -7 w, =1

Evaluate Dy according to ax and let 8 = max {1, max{||A|, || Dx|/}}

Let € €]0,1/(8 4+ 1)[ and let (yn)nen be a sequence in [g, (1 — ) /]
(vre{l,....,k—1}), v{) = (Eé?l,ié?z) eRY xRY and v(”) = (5(1?2,175?2) cRY xRN
€ RY and ofY) = (21,57 € RY x RY

(Eg?,l+1,5§?,1+1) € RY x R and ”§(,);3-,+1 = (@§?2,+1,5§?g+1) € RY x REwk+1

Fix the parameters ny, €k, and, for every r € {1,...,k — 1}, (k.

- ‘YnDﬁ:(),"ﬁ“)

(5;7“1 + A/"A5<17,le+l’5§tlk)+l + ’Y”DkEY,Zk?JrI)

| P8 =) =P e ()
(n) _  (n) -1, (n)
pz',lk = yz?k — Tn prOX%f H'*ak—lug("/" yztlk)
M) _ (=(n) 1)y ~() “1~(n)
Po g1 = (yz,k+1 - A/"Pc,',’k (Vn y?,k+1)7 Yo k+1 — 'Y"chk (Vn yz,k+1)>

s« ~(n) >

_ (=) () ~(n) ~(n)
= (p2,k+1 +'YnAp1,k+17U2,k+1 + 'Y"kauwl)

Fig. 3. Seq-VMD algorithm.



318 N. Pustelnik et al. / Signal Processing 102 (2014) 313-331

where {;; > 0. For some signals as the one presented in
Fig. 1 the quasi-orthogonality constraint is usually satisfied
but we can only check it a posteriori while adding this
constraint allows us to quantify a priori this point.

The criterion we propose to consider is summarized in
Problem 3.2.

Problem 3.2. We denote x € RN the signal to be decomposed
in (dq,....dg,ax). Let dg=0 and let ap=x. For every
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Problem 3.2 is a specific case of Problem 3.1 with, for
every ((a,d) e RV x RY)

fa.d;a_1)=llay_,—d—alj3,
@ =1 <, (@),
A < . 3.7)
h(d) = YDeeIIb < o)+ 'Zol\<4,dj>\ <@,
iZ

In (3.7), we use the indicator notation that is defined for a
Hilbert space H and a closed convex set C € H as, for every
xeH, ic =0 if x belongs to C and + oo otherwise.

One could have noticed that Problem 3.2 can be equi-
valently written in a regularized form, i.e.,

(ax. dy) € Argmin||a_; —a—d||5+AllAallb + x| Did |l

aeRV
subj. to (Vje(0,...k=1}), Kd,d))l <&, 3.8)

where 4, e R and y, e R denote the regularization para-
meters. The constrained and the regularized problems lead
to the same solutions for specific values for #y, g, A, and yy.
However, the bounds (e.g., n. and &) appear to be
generally easier to handle when several constraints are
involved because they have a physical meaning that 4, and
xk do not have [30-33].

Table 1

3.2. Related solutions

According to the general formulation given by Problem 3.1,
one might derive numerous solutions that differ from
Problem 3.2. We propose to describe some other solutions
that are proposed in the literature or that could be derived
and we discuss the reasons why we have preferred the
formulation of Problem 3.2

® Trend estimation.
Considering f=0 and h=0 in Problem 3.1 leads to the
estimation of the trend alone. Then, the IMF of order k is
obtained considering d, = a;_ 1 —a,. Smart choices of g
have been proposed in [18,19] as discussed in Section 2.2.
Another interesting particular case is discussed in [29]
and it corresponds to the following smooth criterion:
& € Argmin||Aal3 +AIDi(@; -1 — @)lI3

aeR

where Dy is also designed from the extrema of a;_ . This
specific minimization problem leads to the closed form
given below:

_ AD;ﬁDkak,l
A*A+DiDy
dk =ag_1—dg.

Qg

Normalized mean square error for different values of »; (different lines) and &, (different columns), p=2, q=2 (top) and g=1 (bottom). The light grey boxes
correspond to results better than EMD and OMD while the dark grey boxes match the results only better than OMD. The dark grey boxes denote the
unfeasible solutions. It corresponds to the decomposition result of a sum of a triangular trend and a AM-FM signal. The top table presents the normalized

MSE for d; while the bottom table lists the results for a;.

0.05 0.10 0.50 1.00 5.00 10.00 50.00
0.05 0.0167 0.0173 0.0300 0.0469 0.1868 0.3078 0.3078
0.10 0.0232 0.0240 0.0358 0.0563 0.1909 0.3102 0.3102
0.50 0.0421 0.0458 0.0610 0.0824 0.2021 0.3141 0.3141
1.00 0.0631 0.0670 0.0855 0.1081 0.2273 0.3439 0.3439
5.00 0.1851 0.1861 0.1929 0.2087 0.3080 0.4192 0.4192
10.00 0.3919 0.3922 0.3962 0.4024 0.4701 0.5565 0.5565
50.00 0.3919 0.3922 0.3962 0.4024 0.4701 0.5565 0.5565
0.05 0.0136 0.0141 0.0244 0.0382 0.1518 0.2501 0.2501
0.10 0.0188 0.0195 0.0291 0.0457 0.1552 0.2521 0.2521
0.50 0.0342 0.0372 0.0496 0.0669 0.1643 0.2553 0.2553
1.00 0.0512 0.0544 0.0695 0.0879 0.1847 0.2795 0.2795
5.00 0.1505 0.1512 0.1568 0.1696 0.2503 0.3407 0.3407
10.00 0.3185 0.3187 0.3220 0.3271 0.3820 0.4522 0.4522
50.00 0.3185 0.3187 0.3220 0.3271 0.3820 0.4522 0.4522
0.05 0.10 0.50 1.00 5.00 10.00 50.00
0.05 0.0180 0.0176 0.0408 0.0837 0.3078
0.10 0.0278 0.0288 0.0295 0.0297 0.0474 0.0915 0.3102
0.50 0.0399 0.0412 0.0443 0.0460 0.0740 0.1261 0.3141
1.00 0.0579 0.0594 0.0635 0.0662 0.1004 0.1543 0.3439
5.00 0.1882 0.1884 0.1894 0.1911 0.2116 0.2483 0.4192
10.00 0.3929 0.3930 0.3934 0.3935 0.4032 0.4263 0.5565
50.00 0.3929 0.3930 0.3934 0.3935 0.4032 0.4263 0.5565
0.05 0.0146 0.0143 0.0332 0.0680 0.2501
0.10 0.0226 0.0234 0.0240 0.0241 0.0385 0.0743 0.2521
0.50 0.0324 0.0335 0.0360 0.0374 0.0601 0.1025 0.2553
1.00 0.0470 0.0483 0.0516 0.0538 0.0816 0.1254 0.2795
5.00 0.1530 0.1531 0.1539 0.1553 0.1720 0.2018 0.3407
10.00 0.3193 0.3194 0.3197 0.3198 0.3277 0.3464 0.4522
50.00 0.3193 0.3194 0.3197 0.3198 0.3277 0.3464 0.4522
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It can be noticed that this formulation is restrictive for
large size signals due to the computation of (A*A+
ADEDy)~ 1. An iterative procedure could then be provided.
However, one of the main limitations is that sharp features
in the trend could not be recovered with a #,-norm and
that sampling effects are not dealt with.

® Trend and fluctuation estimation
In order to limit the sampling effects, a criterion such as
(. d) < Argminiia., —a—dii3 + 7 1Aal3 + 2 IDed

ae

could have been employed. The solution can be efficiently
obtained considering

_R+nA A4
_ (24 2D{Dya_1
T d+4,DD,

The previous remark related to inability to deal with sharp
behaviour of the trend stays valid.

Numerous applications involve multivariate data or a set of
univariate data [34,36-38]. While the most straightforward
approach to extract the modes from this class of signals is
to apply EMD separately on each univariate signal [39,40],
efficient bivariate/multivariate EMD solutions have been first
proposed in [41-44,35,36]. A part of these methods is based

Table 2

on the projection of the multivariate signal along multiple
directions on hyper-spheres in order to calculate their envel-
opes and local means. The main limitation of this approach is
the dimensionality that increases exponentially with the
number of signals we want to deal with simultaneously. To
overcome this restriction, an alternative solution that esti-
mates the mean envelope as the signal which interpolates the
barycenters of the elementary oscillations (i.e., piece of the
signal defined between two consecutive local extrema) was
proposed in [41] while in [36] the mean envelope is obtained
by averaging the mean of the upper and lower envelopes
for all the signals. However, all these methods still require a
sifting process and do not have convergence guarantees. In
this part, we suggest an alternative based on our convex
optimization formalism using a mixed norm [45] rather than
a Zp-norm for promoting the properties of the multivariate
trend (ie., favour correlations when they exist). The mini-
mization problem we address is detailed below:

Problem 3.3. We denote x = (x;); -;.; € (RM) the multi-
variate signal to be decomposed in (ds, ..., dk, ax) € (RV) x
wox (RN x (RNY. Let dy=0 and let ay=x. For every
ke{l,...K},

I
o 2
Argmin > llai+di—ag_1;ll5
(a.d)e RN x®Y) i=1

(ay, dy) €

Normalized mean square error for different values of ; (different lines) and &; (different columns), p=2, g=2 (top) and g=1 (bottom). The light grey boxes
correspond to results better than EMD and OMD while the dark grey boxes match the results only better than OMD. The dark grey boxes denote the
unfeasible solutions. It correspond to the decomposition result of a sum of a triangular trend and a AM-FM signal. The top table presents the normalized

MSE for d; while the bottom table lists the results for a;.

0.05 0.10 0.50 1.00 5.00 10.00 50.00
0.05 0.1659 0.3073 0.3073
0.10 0.0099 0.0285 0.1673 0.3072 0.3072
0.50 0.0184 0.0362 0.1728 0.3077 0.3077
1.00 0.0120 0.0242 0.0410 0.1780 0.3086 0.3086
5.00 0.0365 0.0383 0.0548 0.0744 0.2041 0.3262 0.3262
10.00 0.0754 0.0789 0.1004 0.1222 0.2523 0.3634 0.3634
50.00 0.3919 0.3922 0.3962 0.4024 0.4701 0.5565 0.5565
0.05 0.1348 0.2498 0.2498
0.10 0.0080 0.0232 0.1360 0.2497 0.2497
0.50 0.0150 0.0294 0.1404 0.2501 0.2501
1.00 0.0097 0.0196 0.0333 0.1447 0.2508 0.2508
5.00 0.0297 0.0312 0.0445 0.0604 0.1658 0.2651 0.2651
10.00 0.0613 0.0641 0.0816 0.0993 0.2050 0.2953 0.2953
50.00 0.3185 0.3187 0.3220 0.3271 0.3820 0.4522 0.4522
0.05 0.10 0.50 1.00 5.00 10.00 50.00
0.05 0.3073
0.10 0.0165 0.0159 0.0127 0.0100 0.0040 0.0513 0.3072
0.50 0.0171 0.0168 0.0141 0.0119 0.0181 0.0658 0.3077
1.00 0.0192 0.0188 0.0151 0.0338 0.0747 0.3086
5.00 0.0361 0.0373 0.0393 0.0400 0.0615 0.1066 0.3262
10.00 0.0682 0.0696 0.0738 0.0761 0.1053 0.1535 0.3634
50.00 0.3929 0.3930 0.3934 0.3935 0.4032 0.4263 0.5565
0.05 0.2498
0.10 0.0019 0.0018 0.0016 0.0015 0.0032 0.0417 0.2497
0.50 0.0039 0.0039 0.0037 0.0040 0.0147 0.0535 0.2501
1.00 0.0083 0.0083 0.0090 0.0275 0.0607 0.2508
5.00 0.0293 0.0303 0.0320 0.0325 0.0500 0.0866 0.2651
10.00 0.0554 0.0565 0.0600 0.0619 0.0856 0.1248 0.2953
50.00 0.3193 0.3194 0.3197 0.3198 0.3277 0.3464 0.4522
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N 1
Z | §1|<Aai)[n1|2 <,
1

Y IDkdillg < e,
i=1

(Vie(l,...I}) (Vje{O,...k—1}),

subj. to

Kdi, dii)| < Ckjis

where, for everyie({1,...,I} and ke {1,...,K}, 7, >0, ¢, > 0,
Ckji=0,p=1,Ae€ RN*N and Dy;e REixN,
It can be observed that the proposed multivariate

Seq-VMD is a slightly modified version of the univariate
Seq-VMD. The difference comes from the grouping
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behaviour of the trend that we impose through the
¢21-norm, i.e., through the constraint

N I
(Va=@)<ic e @) X 4/ X A <.

3.3. Proposed algorithm

In order to design an efficient algorithm, we have to
clearly identify the properties (convexity, differentiability,
etc.) of the functions involved in Problem 3.2. First note
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Fig. 5. Decomposition of a sum of a rectangular trend and a chirp signal.
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Table 3

Normalized mean square error for different values of »; (different lines) and ¢, (different columns), p=2, g=2 (top) and g=1 (bottom). The light grey boxes
correspond to results better than EMD and OMD while the dark grey boxes match the results only better than OMD. The dark grey boxes denote the
unfeasible solutions. It correspond to the decomposition result of a sum of a rectangular trend and a chirp signal. The top table presents the normalized

MSE for d; while the bottom table lists the results for a;.

0.05 0.10 0.50 1.00 5.00 10.00 50.00
0.05 74.9329 73.0283 751258 76.3650 71.6330 22.3897 31.4454
0.10 58.7398 56.9335 57.3676 58.8151 13.6045 21.4195 26.5218
0.50 42408 4.6040 5.7935 7.0201 142755 19.8392 242024
1.00 4.9829 53223 6.7908 8.2000 15.6040 19.7077 24,2024
5.00 11.0635 11.2055 11.8293 12.2245 15.8395 19.7077 24,2024
10.00 11.0635 11.2055 11.8293 12.2245 15.8395 19.7077 242024
50.00 11.0635 11.2055 11.8293 12.2245 15.8395 19.7077 24,2024
0.05 0.7970 0.7759 0.7814 0.7943 0.7451 0.2329 0.3271
0.10 0.6110 0.5922 0.5967 0.6118 0.1415 0.2228 0.2759
0.50 0.0441 0.0479 0.0603 0.0730 0.1485 0.2064 0.2517
1.00 0.0518 0.0554 0.0706 0.0853 0.1623 0.2050 0.2517
5.00 0.1151 0.1166 0.1230 01272 0.1648 0.2050 0.2517
10.00 0.1151 0.1166 01230 01272 0.1648 0.2050 0.2517
50.00 0.1151 0.1166 0.1230 01272 0.1648 0.2050 0.2517

0.05 0.10 0.50 1.00 5.00 10.00 50.00
0.05 97.7348 92,2843 31.4454
0.10 50.3829 57.9646 57.3807 70.6997 113666 26.5218
0.50 33318 3.5169 42410 47184 6.7169 9.8981 24,2024
1.00 3.9052 41315 49170 5.4150 7.6817 111345 242024
5.00 10.6108 10.7798 11.1961 11.4939 12.2361 13.8879 242024
10.00 10.6791 10.7798 111961 11.4939 122361 13.8879 24,2024
50.00 10.6791 10.7798 111961 11.4939 12.2361 13.8879 24,2024
0.05 1.0166 0.9599 0.3271
0.10 0.5241 0.6029 0.5969 0.7354 0.1182 0.2759
0.50 0.0347 0.0366 0.0441 0.0491 0.0699 0.1030 0.2517
1.00 0.0406 0.0430 0.0511 0.0563 0.0799 0.1158 0.2517
5.00 0.1104 0.1121 0.1165 0.1196 0.1273 0.1445 0.2517
10.00 0.1111 0.1121 0.1165 0.1196 01273 0.1445 0.2517
50.00 0.1111 0.1121 0.1165 0.1196 01273 0.1445 0.2517

that Problem 3.2 denotes a minimization problem under
non-linear constraints that can be equivalently written as

: 2
pomin A d—all3 +uap <, (@ +1yp, g < o, (d)

k-1
+ .20 l‘<,_d}>‘ < k) (d) (39)
]:

It clearly appears that (3.9) requires to minimize a criterion
involving convex but non-necessarily differentiable func-
tions. According to the recent literature on non-smooth
convex optimization (see [47-49] and the references
therein) it is interesting to remark that (3.9) is a particular
case of a more general problem that is

R
min rgl fr(L-u) 3.10)

where H denotes a real Hilbert space (in the following it
will be reduced to the product of Euclidean spaces),
(Ly); <y g denote linear operators from # to RM, and
(fr)1 <<z model convex, lower semi-continuous (l.s.c.),
proper’ functions from RM to ]— oo, +00]. Indeed, in
(3.10), the choices R=k+1, u=(a,d)eR" xRN, ie,

2 The assumptions convex, lower semi-continuous, proper are the
usual assumptions in convex optimization [48].

H=RN x RN denotes a product space equipped with the
usual vector space structure and the scalar product

(V(ui,up) e H x H), (uy,uzy—(ajlaz)+(di|dz), (3.11)
and

fi:(a,d)e RN x RN |lay_; —d—all3
£2:(@,d) € RN x Rbssry o _ (@) +140(d)
f3:(a,d)e RN x RN’_”\(-.do)\ <{lko (d)

fr(a,d) e RY x RNos1 g 1y <o, (@ (3.12)

Id O

A 0
Lz:ODk'

lead to the minimization (3.9). Note that (f;), _ , - r denotes
non-differentiable convex functions, consequently usual
gradient-based algorithms cannot be used to solve (3.9).
For several years, numerous algorithms have been
designed to efficiently (in terms of computational time
and convergence guarantees) deal with convex but non-
smooth optimization techniques. These algorithms often
called proximal algorithms are based on the proximity
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operator [46], that is defined, for every u e H,
prox: u~Argmin f(v)+1||u—v||2. (3.13)
veH 2

where H denotes a real Hilbert space and fis a convex, Ls.
c., and proper function from H to ] — co, 4 oco]. A particular
example of proximity operator is the projection onto a
nonempty closed convex set C c H. Indeed, if f =1 (the
indicator function of C) then the projection operator Pc is
prox,.. For a detailed account of the theory of proximity
operators, see [47] and references therein. In what follows
we recall some of the proximity operators required for
solving Problem 3.2.

The projection onto the convex set C,={ue RN |
llull; <x} when p=1 can be computed iteratively by
considering [57] or by using epigraphical projection tech-
niques as detailed in [58]. For p=2, the projection onto the
convex set Cy = {u e R" | ||u||3 <«} is given in [59]:

u if ull3 <«
(Vu € RN), Pc;u = Ku
llul3

otherwise. (B.14)

For every re{1,...,k—1}, the projection onto the con-
straint set Ef'-“ ={ueRN||ud) < ri} is given in [59] and

Table 4

such that, for every ue RV,

u if [(u,di)| < &g

k— (ua dr>

& (3.15)
U+t
[EATH

P = .
gorac U d, otherwise.

Let 7€]0, +oc[, the proximity operator of f=7| - ||3 is
given in [60] by, for every u e RV,
u

PIOX gt =175

(3.16)

The proximal algorithms include ADMM [50], Split
Bregman iterations [51,52], or primal-dual algorithms such
as Chambolle-Pock algorithm [53]. The large interest
for proximal tools has lead to develop a large panel of
algorithms to efficiently solve problems being formulated
as (3.10).

The class of proximal algorithms can be roughly split
into two groups: the primal algorithms [47] and the
primal-dual algorithms [53-56]. To summarize, the primal
algorithms generally require to compute the inverse of
> L*L, whereas the primal-dual iterations only involve the
computation of L, and its adjoint L}.

Due to the difficulty to invert efficiently DiD,, for every
ke{l,..,K}, and thus the difficulty to invert },L7L,
Problem 3.2 will be solved with a primal-dual proximal
algorithm derived from [61]. For the paper to be self-content,

Normalized mean square error for different values of »; (different lines) and &, (different columns), p=1, g=2 (top) and g=1 (bottom). The light grey boxes
correspond to results better than EMD and OMD while the dark grey boxes match the results only better than OMD. The dark grey boxes denote the
unfeasible solutions. It correspond to the decomposition result of a sum of a rectangular trend and a chirp signal. The top table presents the normalized

MSE for d; while the bottom table lists the results for aj.
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we first recall the iterations and the convergence properties

of the algorithm M+ SFBF proposed in [61] in Algorithm
and its convergence guarantees in Proposition 3.5.

Algorithm 3.4. M+ SFBF [61].
Initialization
Let(wr); < - g be real numbers in ]0, 1] such that ¥¥_ o =1
Let p=max; <, gL |l
Let e€]0,1/(p+1)[ and let (y,), . be a sequence in [e,(1—¢)/f]
For every re {1,....R}. v{) e H and v\) € G;

34
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Fig. 6. Decomposition of a sum of two chirps.
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Proposition 3.5 (Bricefio-Arias and Combettes [61,
Proposition 4.4]). Let H be a finite dimensional Hilbert space.
For every re{1,...,R}, let G, be a Hilbert space, let ¢, be a
convex, Ls.c., and proper function from G, to ] — oo, +oc] and
let L.: H— G, be a bounded linear operator. Assume that the
set of solutions of minY X _ ;¢,0L; is not empty. The sequence
u™), . generated by Algorithm3.4 converges to a mini-
mizer of YR_ ,¢,0L,.

We may easily derive from Algorithm 3.4 and
Proposition 3.5, the proposed Seq-VMD algorithm (cf.
Fig. 3) and the associated convergence guarantees des-
cribed in Proposition 3.6.

Proposition 3.6. For every ke {1, ...,K}, assume that the set
of solutions of (3.9) is not empty, then the sequence (u;(")),, N
generated by Algorithm Seq-VMD (cf. Fig. 3) converges to
(., d).

The convergence result in Proposition 3.6 is obtained
by applying [61, Proposition 4.4] in H = RN x RN and using
Eq. (3.11).

In Algorithm Seq-VMD, the constraint sets (Es™), cr<k—1
CP, and Cy are involved. The projection operators associated
to it have been defined previously.

Note that other multicomponent proximal algorithms
could be derived for solving Problem 3.2. The purpose of

Table 5

this work is however not to compare all proximal methods,
but to figure out the efficiency of one of them. In the next
section, the experimental results will show that despite the
iterations which may appear tedious, the solution can be
obtained in a few seconds.

4. Experimental results

In order to evaluate the proposed method and compare
it to the state-of-the-art, we first analyse the performances
of the proposed approach on simulated data and then we
analyse the behaviour on real data. In our experiments we
consider that the value of K is known. However, one can
employ the method proposed in [12] in order to estimate
the number of components.

4.1. Simulated data

The first experiment is dedicated to evaluate the beha-
viour of the proposed method for signals with non-smooth
components. In Fig. 4, we deal with the decomposition of a
sum of a triangular trend and a AM-FM signal. We run Seq-
VMD with K=1, 3 x 10* iterations, #; =0.1, & =1, and
p=q=1 in order to achieve convergence and attain a
feasible solution. The time computational cost of EMD [9]
is less than 1's, OMD [19] requires about 5 s, and Seq-VMD

Normalized mean square error for different values of »; (different lines) and &; (different columns), p=2, g=2 (top) and g=1 (bottom). The light grey boxes
correspond to results better than EMD and OMD while the dark grey boxes match the results only better than OMD. The dark grey boxes denote the
unfeasible solutions. It correspond to the decomposition result of a sum of two chirps. The top table presents the normalized MSE for d; while the bottom

table lists the results for a;.

0.05 0.10 0.50 1.00 5.00 10.00 50.00
0.05 0.3849 0.3871 0.4026 0.4161 0.5016 0.5664 0.9944
0.10 0.3835 0.3857 0.4014 0.4150 06756 1.0505
0.50 0.3686 0.3712 0.3881 0.4024 0.4702 0.4724 0.9210
1.00 0.3452 0.3481 0.3654 0.3795 0.4630 0.5317 0.7564
5.00 0.2839 0.3928 0.3928
10.00 0.2895 03711 03711
50.00 0.3435 0.3459 0.3613 0.3746 0.4291 0.4981 0.4981
0.05 0.9981 0.9986 1.0000 1.0003 1.0443 1.0631 1.0021
0.10 0.9931 0.9936 0.9951 0.9955 [oes3e 1.0586
0.50 0.9437 0.9445 0.9462 0.9455 0.9760 0.9158 0.9280
1.00 0.8674 0.8683 0.8679 0.8634 0.7508 0.5357 0.7622
5.00 0.2861 0.3958 0.3958
10.00 0.2917 0.3740 0.3740
50.00 L 0.4324 0.5019 0.5019
0.05 0.10 0.50 1.00 5.00 10.00 50.00
0.05 0.9912
0.10 0.9999
0.50 0.9210
1.00 0.7564
5.00 0.3928
10.00 0.3711
50.00 0.4981
0.05 0.9988
0.10 1.0075
0.50 0.9280
1.00 0.7622
5.00 0.3958
10.00 0.3740

50.00

0.5019
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about 40 s. According to the results, the proposed method
allows us to efficiently recover sharp features compared to
state-of-the-art methods. Note that classical EMD (thanks to
the sifting process) and the proposed approach allow us to
limit sampling effects but OMD does not take them
into account. The normalized mean square errors for each
method are summarized in Fig. 4. The impact of the choice of
n, €1, D, and q is evaluated in Tables 1 and 2. The proposed
method is clearly better for small values of #; and &;.

A second example is illustrated in Fig. 5. It consists in the
sum of a rectangular signal and an AM-FM signal. We run
Seq-VMD with K=1, 2 x 10* iterations, #; = 0.9, &; =0.2,
and p=qg=1 in order to achieve convergence and attain a
feasible solution. The time computational cost of EMD is
0.3 's, OMD requires 3 s, and Seq-VMD 22 s. One can notice
that the proposed method performs better than the other
ones. EEMD [62] could have been employed to deal with the
null sections but this method also suffers from a lack of
mathematical background. The good quantitative perfor-
mances in terms of normalized mean square errors of the
proposed method are presented in Fig. 5. The impact of the
choice of 71, €1, p, and q is evaluated in Tables 3 and 4.

The third experiment aims at recovering a sum of two
chirps. This is a classical example where usual filter banks
cannot perform the decomposition. The results are pro-
vided in Fig. 6. We run Seq-VMD with K=1, 10 iterations,

Table 6

71 =56, £¢=08, p=2, and q=1 in order to achieve
convergence and attain a feasible solution. The time
computational cost of EMD is 0.3 s, OMD requires around
65, and Seq-VMD around 1s. The performance is quite
similar from one method to the other. The impact of the
choice of 51, €1, p, and q is evaluated in Tables 5 and 6.

In Fig. 7, we deal with a bivariate decomposition. We
consider two signals that each consists in the sum of a
triangular trend and a AM-FM signal, yet with different
frequencies. With this example, we want to illustrate
the performance of the #,;-norm applied on the two-
component trend as compared to a #;-norm applied on each
trend. We run Seq-VMD with K=1, 10* iterations, ; = 0.8,
and ¢ =0.06 in order to achieve convergence and attain a
feasible solution. The time computational cost of the bivari-
ate EMD needs less than 15, Seq-VMD applied on each
component requires around 10 s, and the bivariate Seq-VMD
takes around 6 s. The resulting IMFs of order 1 are similar
from one approach to the other, but the trend appears to be
better estimated as indicated in the blue boxes.

We present the decomposition results obtained with Seq-
VMD for K=2 and N=500 in Fig. 8. The first step of Seq-
VMD takes 10> iterations and the second step takes 10%
iterations, the parameters are such that ; =6.5, ¢y =1.2,
n,=0.1,e,=2,¢;5,=10,p=2, and q=1 in order to achieve
convergence and attain a feasible solution. The time

Normalized mean square error for different values of 5, (different lines) and & (different columns), p=1, =2 (top) and g=1 (bottom). The light grey boxes
correspond to results better than EMD and OMD while the dark grey boxes match the results only better than OMD. The dark grey boxes denote the
unfeasible solutions. It correspond to the decomposition result of a sum of two chirps. The top table presents the normalized MSE for d; while the bottom

table lists the results for a;.

0.05 0.10 0.50 1.00 5.00 10.00 50.00
0.05
0.10
0.50
1.00
5.00
10.00
50.00
0.05
0.10
0.50
1.00
5.00
10.00
50.00

0.05 0.10 0.50 1.00 5.00 10.00 50.00
0.05 0.3849 0.3871 0.4026 0.4161 0.5016 0.5664 0.9944
0.10 0.3835 0.3857 0.4014 0.4150 [ oers6 1.0505
0.50 0.3686 0.3712 0.3881 0.4024 0.4702 04724 0.9210
1.00 0.3452 0.3481 0.3654 0.3795 0.4630 0.5317 0.7564
5.00 0.2362 0.2496 0.1775 0.2025 0.2839 0.3928 0.3928
10.00 0.1491 0.1618 0.2017 0.2137 0.2895 0.3711 0.3711
50.00 0.3435 0.3459 0.3613 0.3746 0.4291 0.4981 0.4981
0.05 0.9981 0.9986 1.0000 1.0003 1.0443 1.0631 1.0021
0.10 0.9931 0.9936 0.9951 0.9955 [ oes36 1.0586
0.50 0.9437 0.9445 0.9462 0.9455 0.9760 0.9158 0.9280
1.00 0.8674 0.8683 0.8679 0.8634 0.7508 0.5357 0.7622
5.00 0.2812 0.3039 0.1788 0.2040 0.2861 0.3958 0.3958
10.00 0.1503 0.1631 0.2033 0.2153 0.2917 0.3740 0.3740
50.00 0.3462 0.3486 0.3641 0.3775 04324 0.5019 0.5019
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Fig. 7. Bivariate decomposition. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)
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Fig. 8. Decomposition of a 3 component signal.

computational cost of the bivariate EMD requires around 1 s,
Seq-VMD requires less than 50 s, and the OMD takes around
1 min. The results of the proposed approach are similar to
EMD except in the flat areas where the proposed method has
a better behaviour. Moreover, the decomposition is better
achieved with Seq-VMD than with OMD where residual
oscillations can be observed in a,.

In Tables 1-6, one could note that the black boxes
denote the unfeasible solutions, i.e., solutions for which all
the constraints cannot be satisfied simultaneously. Such
solutions occur for small values of 7, and ¢, that lead to
restrictive constraints.

4.2. Real data

In this section we evaluate the performance of the
proposed approach on a real signal that corresponds to a
light consumption in a building [63,64]. This signal is
interesting because it presents some discontinuities (signal
equals zero when the light is shut down) that are usually
difficulty to deal with usual mode decomposition methods.
The results are provided in Fig. 9. We run Seq-VMD with
K=2, 7, =08, £ =0.001, 7, =003, & =0.1, {5 =10%
p=q=1 (for k=1) and p=2 and q=1 (for k=2) in order
to achieve convergence so that a feasible solution exists.
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Fig. 9. Real data decomposition.

The computational cost of the EMD is 0.4 s, the Seq-VMD
requires around 4 s, and the Seq-VMD less than 13 s. Thanks
to its behaviour on non-smooth components, where EMD
and OMD suffer from mode mixing (i.e., attempt at decom-
posing flat part in oscillations), the proposed method leads to
a better mode decomposition (i.e., flat area is preserved on
the first IMF, no mode mixing between the first and the
second IMF, the trend is correctly extracted).

5. Conclusions and discussion

In this work we have proposed an efficient alternative to
EMD in order to deal with mode extraction. The empirical
sifting process step is replaced by a convex optimization
procedure having convergence guarantees. Although the

proposed solution is related to texture-geometry decomposi-
tion ideas developed in image processing, we incorporate
EMD spirit considering extrema-based constraints, quasi-
orthogonality constraint, and iterative mode extraction rather
than a simultaneous mode extraction as proposed in [24] in
the context of texture-geometry extraction. The good perfor-
mance of the proposed algorithm is evaluated on signals
where usual filter banks would not be suited (e.g., sum of
chirps) and on signals having non-smooth behaviour which
may be often encountered in real data such as the one
considered in building energy consumption.

The constraint formulation allows us to facilitate the
selection of the parameters, however, it also leads to
the problem of unfeasible solutions that have to be
handled carefully.
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