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Abstract—We develop a signal processing approach to the mul-
tiscale detection of communities in networks, that is of groups of
nodes well connected together. The method relies on carefully en-
gineered wavelets on graphs to introduce the notion of scale and
to obtain a local view of the graph from each node. Computing the
correlations between wavelets centered at different nodes, one has
access to a notion of similarity between nodes, thereby enabling a
clustering procedure that groups nodes according to their commu-
nity at the scale of analysis. By using a collection of random vec-
tors to estimate the correlation between the nodes, we show that
the method is suitable for the analysis of large graphs. Further-
more, we introduce a notion of partition stability and a statistical
test allowing us to assess which scales of analysis of the network
are relevant. The effectiveness of the method is discussed first on
multiscale graph benchmarks, then on real data of social networks
and on models for signal processing on graphs.

Index Terms—Community mining, graph wavelets, multiscale
community, spectral graph theory, wavelet transform.

I. INTRODUCTION

I N many complex systems, data are naturally represented
as networks (or weighted graphs): social networks, sensor

networks, Internet networks, neuronal networks, transportation
networks, biological networks…[5] A striking property of many
networks, and a commonway of simplifying the network’s anal-
ysis, is their modular structure, i.e., there exists groups of nodes,
called communities [6], that are more connected with them-
selves than with the rest of the network. As nodes in a same
community tend to share common properties, a partition of the
network in communities may provide both a sketch of the struc-
ture of the network, and some insight into the properties of the
nodes, for signal processing issues especially [7]. In network
science, state of the art of community detection (see the review
[6]) is often based on the optimization over the possible parti-
tions of nodes of a suitable criterion, such as the popular mod-
ularity [8] or other criteria such as the normalized cut [9]; or
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by mapping random walks from an information theory point of
view such as in [10].
Often, the structural reality of a network is a superposition

of several partitions in communities at different scales, with,
for instance, small communities with only a few nodes, em-
bedded in larger communities. Examples of these are shown
later on in Fig. 3 for a classical benchmark of complex networks,
Fig. 9 for a real-world network of social interactions, and Fig. 11
for a toy-model sensor network. One could add other examples
of networks displaying this property, such as connectivity net-
works in the brain [11], [12] or metabolic networks [13]. The
issue of the scale of description is usually implicitly discarded
as soon as an algorithm is asked to output only one partition as
a representation of an often complex structural reality. In fact,
the scale is generally not chosen by the user but arbitrarily im-
posed by the algorithm. For instance, this has been shown for
algorithms based on modularity optimization which favor an in-
trinsic scale of description [14], [15]. To deal with this issue and
to propose a more comprehensive description of a graph’s com-
munity structure, some authors have proposed multiscale com-
munity mining algorithms that output one partition per scale of
description. They are either based on random walk processes
[16], [17], on definitions of parametric modularities [18], [19],
or simply by studying the different solutions of an agglomera-
tive clustering algorithm [9]. These methods have various no-
tions of scale parameters: the strength of the added self-loops
in [19], the Markov time in [16], or the loop-number of an ag-
glomerative algorithm in [9]. It is our goal in this paper to design
a new multiscale method, deeply rooted in signal processing.
In fact, community detection being a central tool of complex
graph analysis that informs about the structure of many net-
works, we believe it is of importance to tackle this problem with
the methods of the emerging field of graph signal processing [5].
Communities in a graph may be considered as inhomogeneities,
and we will explore throughout this paper how one may use
graph wavelets to detect them.
A first contribution of the present work takes advantage of

graph wavelets to obtain a scale-dependent analysis of commu-
nities in networks. There are several frameworks to introduce
wavelets on graphs [20]–[22]. We use the one of Hammond et
al. [20] based in spectral graph theory of the Laplacian, for three
reasons: the relevance of the Laplacian in community detection
[6], [7], the easiness with which we can force the wavelet to
be sensitive to communities, and the existence of a fast wavelet
transform that will be used for fast community mining and de-
tection of stable communities. By construction, a wavelet asso-
ciated to a node is local in the graph: it is centered around this
node and spreads on its neighborhood so that the larger the scale
is, the larger is the spanned neighborhood. Wavelets on graphs
provide an “egocentered” view of how a node “sees” the net-
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work at that scale. Taking advantage of this local information
encoded in wavelets, we develop an approach that clusters to-
gether nodes whose local environments are similar, i.e., whose
associated wavelets are correlated.
A second contribution of this work is a way to apply the

method to larger networks (e.g., ten thousand nodes) by com-
puting the wavelet transform of a few random vectors to esti-
mate the wavelets’ correlation.
This work’s third contribution is a novel way to assess the sta-

bility of the communities, hence their relevance. Indeed, multi-
scale community mining is the sum of two challenges: output
a partition per scale, and assess each of these partitions’ rele-
vance. Defining a stability measure of a partition in communi-
ties, and a statistical test comparing the studied graph to ran-
domized ones, we develop a way to detect at which scales the
network has a relevant community structure.
A preliminary version of this work is presented in [4] where

a filtered modularity is used to find the best communities. Here,
the optimization of a filtered modularity function is no longer
used and we propose a new, simpler and faster method to cut
the dendrogram given by the hierarchical clustering algorithm,
inspired by the gap statistics method [23] and detailed in
Section IV.
The paper is organized as follows. Section II recalls back-

ground material on spectral graph theory and graph wavelets.
Some developments of the use of spectral graph wavelets for
community mining are presented in Section III: we discuss that
once a network is given, a proper choice of scale boundaries
ends up with parameters for the band-pass filter defining the
wavelets that are different from [20]. Section IV describes the
multiscale community mining procedure. Section V shows how
one may use the wavelet transform of random vectors to speed
up the algorithm and enable the analysis of larger networks.
Section VI describes how to detect stable communities by mea-
suring the stability of all uncovered partitions. Section VII dis-
cusses a statistical test that enables an automatic detection of
scales for which the associated partitions in communities are
relevant. Performance obtained with the proposed method is il-
lustrated and discussed on two benchmark networks from the
literature in Section VIII and compared to other methods. Then,
in Section IX, we successfully apply this method to several ex-
amples. We conclude in Section X.
Notations: The following notations will be used. Vectors are

denoted by boldface lowercase letters such as a graph signal
. Matrices are denoted by boldface capital letters such as the
adjacency matrix . Ensembles are denoted by capital letters in
calligraphic style such as the ensemble of nodes . Scalars are
denoted either by lowercase letters such as the eigenvalues ,
or by capital letters such as the number of nodes .

II. SPECTRAL GRAPH THEORY AND WAVELETS

A. The Graph Fourier Transform
Let be a undirected weighted graph with

the set of nodes, the set of edges, and the weighted ad-
jacency matrix such that is the weight of
the edge between nodes and . Note the total number of
nodes. Let us define the graph’s Laplacian matrix

where is a diagonal matrix with
the strength of node . The normalized Laplacian matrix reads

, where is the iden-
tity matrix of size N. is real symmetric, therefore diagonal-
izable: its spectrum is composed of its set of eigen-
values that we sort:
[24]; and of the matrix of its normalized eigenvectors:

. Considering only connected graphs, the mul-
tiplicity of eigenvalue is 1 [24]. By analogy to the con-
tinuous Laplacian operator whose eigenfunctions are the contin-
uous Fourier modes and eigenvalues their squared frequencies,
is considered as the matrix of the graph’s Fourier modes, and

its set of associated “frequencies”. A more com-
prehensive discussion is in [25]. For instance, the graph Fourier
transform of a signal defined on the nodes of the graph reads:

. Note that other definitions of Fourier vectors could be
considered, for example [26]. However, using Fourier vectors
defined with the Laplacian is relevant for community detection
as its has been widely used in spectral clustering [6]. There is an
on-going debate over which version of the Laplacian (normal-
ized or not) should be used. Donetti et al. [27] show their spec-
tral algorithm is more efficient with the normalized Laplacian,
without proposing an explanation. More generally, it has been
proved that the spectrum of the normalized Laplacian has very
close links with famous graph invariants such as the Cheeger
constant or the discrepancy, or that , for instance, is related
with the speed of convergence of random walks on the graph
[24]. Moreover, the fact that the spectrum is bounded between
0 and 2 generally makes calculations involving the normalized
Laplacian easier. For all these reasons, we choose here to use
the normalized Laplacian.

B. Spectral Graph Wavelets
Spectral graph wavelets were defined in [20] using the graph

Fourier modes previously defined. In the following, we write
the theory of [20] in the more condensed language of linear al-
gebra. Let us note the wavelet at scale centered
around node . Its construction is based on band-pass filters
defined in the graph Fourier domain, generated by stretching a
unique band-pass wavelet filter kernel by a scale param-
eter . The stretched filter has a matrix representation

that is diagonal on the Fourier
modes (the eigenvectors of ). Hence, the wavelet basis at
scale reads as:

(1)

For just one wavelet, this reads equivalently as:

(2)

Then the wavelet coefficient at scale and node of a signal
reads . Our first use will be of the localized

wavelets themselves, and the wavelet transform of signals
is required later on in Section V. Note also that the filter kernel
function is defined as a continuous function defined on
and sampled on the graph Fourier space. On the other hand, for
each given scale parameter , the filter is discrete : only the
values of on the spectrum are needed, hence
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Fig. 1. (a) Shape of the filter function for four different values of .
(b) Band-pass wavelet filter functions for different scales and ,

, and . The actual eigenvalues of the network (the
multi scale SP benchmark used in Section VIII) with 640 nodes are indi-
cated with crosses on the axis. A fifth filter function is shown with a dashed
line: it corresponds to a scale even smaller than .

the matrix notation. However, the wavelets are continuous in
scale and discrete in space: is a column vector of size
giving its value at each node.
The intuition behind this definition of wavelets on graphs

is that, at small scales (small ), the filter is stretched
out. It thus lets through high frequency modes essential to good
localization; the corresponding wavelets extends only to their
close neighborhood in the graph. At large scales (large ) the
filter function is compressed around low frequency modes and
this creates wavelets encoding a coarser description of the local
environment.
The parameters defining the precise shape of the band-pass

wavelet filter kernel are important. Part of our contribution
is to engineer a suitable filter kernel for community detection:
details are given in Section III.

C. Fast Wavelet Transform
Beyond a size of 1000 nodes, the computational cost of the

Laplacian’s diagonalization becomes prohibitive: the exact
computation of the Fourier matrix is no longer possible.
Hammond et al. [20] designed an efficient way of bypassing
the diagonalization of the Laplacian and obtained an approx-
imation of the wavelets by using Chebychev polynomials to
approximate the filters [28]. We will write the operator
corresponding to this fast wavelet transform at scale . For
a given signal , is a vector where the element

is the wavelet coefficient of at node and
scale . Then the wavelet basis at scale can be efficiently
approximated by:

(3)

where is the identity matrix of size . The error of approxi-
mation is tuned by the degree of the Chebychev polynomial:
the larger is , the better is the approximation. Unless other-
wise specified, we use in the following .

III. GRAPH WAVELET FILTER PARAMETERS
We use the band-pass filter kernel proposed in [20]:

for
for
for .

(4)

where is taken as the unique cubic polynomial interpola-
tion that respects the continuity of and its derivative . The in-
tegers and , and the transition points and are the param-
eters of the filter, which we here define in a novel way adapted
for community mining. For that, let us study which scale bound-
aries are relevant. The parameters are based on an argument of
spectral clustering of graphs [6], [7]: the eigenvector (associ-
ated to the smallest non-zero eigenvalue , also called Fiedler
vector) is the first in importance for community mining because
it contains information on the coarsest description of the graph.
The following describes one proposition for the construction of
the band-pass wavelet filter from this argument.
A first consequence is that the maximum scale is set

so that the filter function starts decaying as a power
law only after , hence . We require also
that the filter at the maximum scale is highly selective around
; for that, all other eigenmodes (especially ) have to be

attenuated. Choosing an attenuation by a factor 10, this leads us
to: , hence . We
thereby ensure that the filter at the maximum scale essentially
keeps the information from .
Second, we need to keep a part of in the wavelets of every

scale, so that all wavelets are sensitive to large scale commu-
nity structure. We propose as minimum scale the one for
which becomes smaller than 1. Using (4), this gives

. Imposing also that spans at least the
whole range of eigenvalues between 0 and 1 (indeed, spectral
clustering algorithms always consider only the first few eigen-
vectors [29], and experimentally we never need to stretch the
band-pass further than ) we need .
This argumentation gives us a value for and three equations

linking , , and :

(5)

where we see that has the unique effect of translating the
scale boundaries and on the axis. can therefore
be safely fixed to 1. This leaves , describing the cut-off at low
frequency. In classical wavelets, corresponds to the number
of moments equal to zero. But in our case, this interpretation is
not valid because the smallest value of is , and
is therefore already too large to be affected by . In fact, only
has an indirect effect on the maximum of : the larger is ,
the larger is the maximum value of , the more selective is
the filter between and as shown on Fig. 1(a). This selec-
tivity is wished for at large scale but this is already insured by
the other parameters we fixed. The effect of will especially be
seen at medium and small scales for which we want to keep the
information of small eigenvalues: we do not want the filter to
be too selective. Moreover, for localization purposes (see [20]),
needs to be larger than 1. We therefore fix it to 2 in the fol-

lowing. Fig. 1(b) shows wavelet filters with the proposed
range of scale and parameters for an example of the Sales-Pardo
benchmark network [30] (see Section VIII-A).
Finally, we have to choose a sampling of scales between

the scale boundaries: .
We choose them logarithmically spaced because the density
of eigenvalues on the interval is not uniform: they are
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much more grouped around 1 than 0 for complex graphs with
communities [31]. This non-uniformity is indeed observable
in Fig. 1(b), where the eigenvalues are plotted on the -axis.
Therefore, a small difference at small scale (a small scale takes
into account the largest eigenvalues) has a much bigger im-
pact on the clustering than the same small difference at large
scale. As for the number of scales we decide to scan, we
choose, by analogy to the classical 1-D discrete wavelets case:

where is typically inferior to 10, and the
number of nodes [25].

IV. MULTISCALE COMMUNITY MINING

At a given scale , the proposed community mining pro-
tocol is described in the following three key points. It consists in
applying unsupervised classification to a set of scale dependent
feature vectors defined by the wavelet transform.

A. Scale-Dependent Feature Vectors

The aim is to group together nodes whose topological envi-
ronments are similar. As the local information and topology in
a graph is encoded in the wavelets we define for each node its
feature vector to be its associated wavelet .

B. Correlation Distance

To compare nodes, we use a distance between their features,
chosen as the correlation distance between the wavelet centered
around node and the one centered around node (at scale ):

(6)

Experimentally, this correlation distance yields better results
than, e.g., the Euclidean distance.
Note that this is a correlation distance because the wavelet

have zero mean. Indeed, as we use the normalized Laplacian ,
the relevant mean of any signal reads:

(7)

With this definition of the mean (used for instance in [20,
Section 5.1]), we have that:

since is an orthonormal matrix.
By definition of a wavelet filter, the constant component
is null, hence . Note that if we had used the combi-
natorial Laplacian , whose first eigenvector is constant, the
mean of any signal defined on the nodes would have been the
classical mean: .

C. Clustering Algorithm

We use a hierarchical “average-linkage” clustering algorithm
[32], [33] on this distance matrix . This hierarchical algo-
rithm gives a dendrogram as its output that one needs to cut
horizontally to obtain the partition (see Fig. 2(b) for an ex-
ample of a dendrogram of a toy graph with il-
lustrated in Fig. 2(a)). A main question is: where should we cut

Fig. 2. A toygraph with is illustrated in (a). (b) the dendro-
gram obtained at an intermediate scale for this graph; in red is an example of
dendrogram path corresponding to a node ; (c) the associated gap function ;
(d) , the average of all gap functions: it is maximal for an interval of correlation
distance bounded by the two vertical green dashed lines. The vertical red line
is the middle of the interval. (e) the effect of the corresponding cut: it separates
nodes in communities. (f) and (g) are equivalent to (d) and (e) for a larger scale
parameter.

this dendrogram? As we do not know beforehand how many
clusters there are in the network, we have to define a criterion
to cut the dendrogram. In previous works [1], [4], inspired by
the gap statistics method [34], we simply used to cut the den-
drogram at its maximal gap. Here, we propose a criterion to cut
the dendrogram based on averaging the maximal gaps of all the
root-leaf paths of the dendrogram, as this method is more robust
to outliers.
More precisely, consider a node and define its dendrogram-

path: it is the path between the leaf of the dendrogram corre-
sponding to node and the root of the dendrogram (the node
of the dendrogram that has the highest correlation distance).
Fig. 2(b) shows an example of a dendrogram with, in red, an
example of a dendrogram-path. For this node , one can plot
its gap function built the following way: follow the dendro-
gram-path starting at zero correlation distance. For each corre-
lation distance, the path is between two dendrogram nodes: plot
the gap between them. The gap function corresponding to the
dendrogram-path shown in Fig. 2(b) is plotted in Fig. 2(c). By
averaging all gap functions corresponding to all nodes, one ob-
tains the global gap function:
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shown in Fig. 2(d). Following the gap statistics intuition [34],
we consider that the best possible partition given this dendro-
gram is obtained by cutting the dendrogram at the maximum
of (see Fig. 2(a) and (e) for an illustration). An example at a
larger scale is illustrated in Fig. 2(f) and (g).
Repeating these three steps for each scale , one obtains

the multiscale set of partitions .

V. FAST COMMUNITY MINING WITH RANDOM VECTORS
At step 1 of the method of Section IV, one needs to compute
, all wavelets at a given scale . For that, the fast wavelet

transform of Diracs is sufficient (see (3)). However, the infor-
mation that is really needed from these wavelets is their correla-
tion matrix (computed in step 2). It is possible to bypass the
full computation of each wavelet: we propose instead a method
to estimate directly the correlation matrix by computing the fast
wavelet transform of a few random signals.
Consider a random vector defined on the nodes of the

graph, composed of independent normal random variables of
zero mean and finite variance . Define the feature at
scale associated to node as the projection of that vector on
the wavelet :

(8)

Consider now the correlation of the features associated to nodes
and . By definition :

(9)

As a sum of independent normal random variables, is a
normal random variable of expected value

(10)

and variance

(11)

Therefore, (9) is rewritten as:

(12)

Compute the covariance :

(13)

Therefore:

(14)

The features’ correlation is exactly the correlation between the
wavelets centered around nodes and . Before discussing the
estimation of this correlation, let us show that and are
jointly Gaussian, i.e., that any linear combination
( ) is Gaussian. In fact:

is a sum of independent normal random variables, therefore
normal.
To estimate the correlation of (14), we use the classical

sample correlation estimator. Consider now realizations of
and store them in the matrix

where the -th column is the -th realization of . Note
the -th realization of , and concatenate all

its realizations in the feature vector :

(15)

The sample correlation coefficient estimator between and
reads:

(16)

where is the constant vector equal to the average of :
if is the constant vector equal to 1, .
As and are jointly Gaussian, this estimator is asymp-

totically consistent, hence:

(17)

Therefore: (18)

In practice, experiments will show (see Section VIII-A) that a
relatively small compared to is sufficient. Therefore, in-
stead of computing the fast wavelet transform of Diracs to
obtain all wavelets and then compute the corresponding corre-
lation matrix of vectors of size , one only needs to compute
the fast wavelet transform of a small number of random vec-
tors and then compute the correlation matrix of vectors of
size .
Let us recap this fast community mining procedure, at a given

scale , in three steps:
1. Generate a matrix of Gaussian random vectors of
zero mean and variance (in practice: ):

. Compute the fast wavelet
transform of each of those vectors to obtain one feature
vector per node:

2. Estimate the distance matrix :
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3. Same as step 3 of Section IV.
Repeating these three steps for each scale , one obtains

the multiscale set of partitions .

VI. DETECTION OF STABLE PARTITIONS
At this point of the discussion, we are able to output a set of

partitions , one for each scale. The question one
needs to address now can be formulated as a detection problem:
how can one detect if a given scale displays relevant communi-
ties for a given graph?
The relevance of a scale is usually linked to notions of sta-

bility of the associated partition. In the literature, many notions
of stability exist, e.g., some specific to multi-scale procedures
[17] or some based on the stochasticity of modularity maxi-
mization algorithms [35], [36]. Only two different measures will
be studied here, one from [17] and a new one that we intro-
duce. The first measure relies on creating resampled graphs
by randomly adding (typically ) to the weight
of each link and computing the corresponding sets of par-
titions . Then, for each scale , define the sta-
bility as the mean of the similarity between all pairs of
partitions of :

(19)

where the function is the Adjusted Rand Index, a partition
similarity measure recalled in Appendix B (other similarities
could be used indifferently). If, at a given scale , the partition
found for all resampled graph is the same, the partition is
stable ( will be close to 1); if not, it is unstable ( will
be close to 0).
The second measure takes advantage of the inherent

stochasticity of the fast community mining with random sig-
nals, presented here, as it is based on the transform of a few
random signals.
Consider sets of random signals (typically no larger

than a to keep the computation time limited, the choice
being in the following) and compute the associated
sets of partitions . For each scale , the stability

is defined as the mean of the similarity between all pairs
of partitions of :

(20)

Again, the more stable is the partition associated to the scale ,
the closer to 1 will be .
The two stabilities will be compared to each other in

Section VIII-A. We argue that it is preferable to use than
for several reasons. First, small scale structures are more

sensitive than large scale structures for a same perturbation
level : there is a risk that small structures get artificially
classified as unstable. Moreover, perturbing the graph perturbs
also its spectrum, therefore the scale interval and
ultimately the discrete set of scales . Therefore, each partition
in is not computed exactly at the same scale.
Finally, requires to fix arbitrarily a parameter . has none
of these inconveniences. One could argue that the variance

is a parameter, but as we look at correlations, it actually does
not have any impact. The only parameter one could find is ,
but this parameter is not added by the stability measure: it is
inherent to the community detection protocol.

VII. A STATISTICAL TEST FOR STABILITY

The protocol detailed in Section V outputs a set of partitions
, and Section VI explains how to obtain a score

that measures how stable each partition is. From this informa-
tion, one can extract the “best” scales of this network. Clas-
sical multiscale community mining methods stop at this point
of the discussion: they output one partition per scale and a mea-
sure of their stability. The problem that arises next is that these
methods will find the “best” partitions of, for instance, an
Erdös-Renyi (ER) graph, even though ER graphs have no com-
munity structure at any scale. In fact, what would be valuable
is a way to inform us how intrinsically good each scale is. This
issue exists for methods based on modularity [8], [17] for in-
stance, as modularity maximization outputs a solution even for
ER graphs: what is the threshold value of modularity over which
one decides that a given partition is objectively interesting?
In the framework of the proposed method, this turns into:

what is the threshold value over which one may say a parti-
tion is sufficiently stable? We tackle this problem using stability
statistics of randomized versions of the graph, against which the
measured stabilities will be compared. Section VII-A presents a
randomization procedure using the Chung Lu (CL) model [37].
A statistical test is then defined in Section VII-B to automati-
cally detect partitions that are statistically relevant. A general
discussion on the test will be found at the end of the next Sec-
tion (in Section VIII-C).

A. Randomized Graphs
Consider a graph and its degree

sequence. A Chung-Lu (CL) graph [37], [38] associated to
is a binary random graph with the same expected degree se-
quence. To construct it, first randomly re-allocate all the de-
grees to the nodes, and wire each edge (connecting nodes
and for instance) with a probability of where

is the expected total number of edges.
In applications where weighted graphs are considered (i.e.,
is not binary), a model of weighted Chung-Lu graph [39] is

recalled in Appendix C.

B. The Test
Consider a graph and its multi-scale set of

partitions and stability measure . To test which
scale is interesting, we compare its stability measure
to the stability measure of (weighted) Chung-Lu graphs. The
details are:
1. Formulate a Null Hypothesis H0: has no community
structure at any scale.

2. Generate a large number of randomized CL graphs as-
sociated to : .

3. Compute the stability measure for each random graph
, and empirically obtain the probability distribution

from all the values .
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Fig. 3. Sketch of a realization of the SP graph. Each node displayed is in fact a community of 10 nodes. Three partitions (associated to the three stable intervals
of scales of Fig. 4) are plotted in 1, 2 and 3, showing respectively the partition in 64, 16 and 4 communities (nodes drawn in the same color are in the same
community). The layout of the graph is obtained using implemented in Gephi [40].

Fig. 4. (a) Result of the multiscale community mining protocol on a realization
of a SP graph. Each scale outputs a partition and we plot its similarity with the
small (medium, large) theoretical scale. The scale interval 1 (resp. 2, 3) repre-
sents the scales where the exact small (resp. medium, large) scale theoretical
partition is uncovered. (b) Instabilities and versus scale . The
three intervals of scale are the same as in (a): the associated partitions of scales
with low instability (i.e., high stability) correspond to the theoretical partitions.

4. For each scale , if is higher than the higher
-quantile of , then we reject H0 with a confidence
of (if ): has a community structure at this
particular scale. Typically, we use and large
enough so that has a cardinal higher than 1000, i.e.,

. Indeed, each stability measure contributes
(one value per scale) to .

Finally, one ends up with a set of scales
for which the associated partitions

are stable under significance level .
VIII. PERFORMANCE ON BENCHMARK NETWORKS AND

COMPARISON TO OTHER METHODS
For a fair comparison of multiscale algorithms, we compare

the set of partitions found by each algorithm with the ground
truth of well controlled graph benchmarks. The performance of
a given algorithm is measured as the maximum value of the Ad-
justed Rand Index between the “true” partition of the bench-
mark and the partitions in . This measure has a name in infor-
mation retrieval: the recall ratio. In our context of multi-scale
methods, we will use hierarchical benchmarks that have sev-
eral ground truths. For instance, the first benchmark we use has
three “true” partitions, corresponding to three different scales.
We adapt the notion of recall ratio to this particular case: the
large (resp. medium, small) scale recall LSR (resp. MSR, SSR)
is the maximum value of the Adjusted Rand Index between the
large (resp. medium, small) scale “true” partition and the parti-
tions in .

A. Results on a Sales-Pardo Network
For a first illustration of this method, we apply it on a

three-level hierarchical graph benchmark first proposed by

Fig. 5. (a) SSR, MSR and LSR with respect to , the number of random vector
used: only 30 random vectors are necessary to recover perfectly the three scales
of description. (b) Computation time in seconds for the full community mining
procedure with respect to . Results are averaged over 100 realizations of a SP
graph with and .

Sales-Pardo et al. [30], and recalled in Appendix A. A sketch
of the three scales of this benchmark is illustrated in Fig. 3.
Sales-Pardo (SP) graphs are parametrized by that quantifies
how separated the three scales are (the smaller is the more
separated the scales are), and , the average degree, that con-
trols how dense the network is. The bigger is and the smaller
is the harder it is to uncover the communities. We apply
the costly protocol described in Section IV (which computes
all wavelets at each scale) to such a SP graph with
parameters and : see Fig. 4(a) for an illustration
of the result. There are intervals of scales where the theoretical
partitions are exactly uncovered. In this particular graph, the
recall ratios, i.e., the maximum value of the Adjusted Rand
Index, are all equal to 1 ( ).
To test the efficiency of the fast protocol based on random

vectors described in Section V, to study the effect of , and
to compute , we applied our method with variable to 100
realizations of the SP graph ( , ). Fig. 5(a) shows
that the true partitions are uncovered with a small number of
random vectors ( ) and that, as expected,
more vectors are necessary to detect community structures at
small scales. Here, 30 random vectors are enough to uncover all
levels of description of the network, instead of the 640 wavelets.
Fig. 5(b) shows the average computation time of the algorithm
with respect to : it is shorter than the 11.8 seconds required
if one uses the 640 wavelets (computations for Matlab run on a
laptop with Intel i7 Core@2.6 GHz with 8 GB of RAM). Results
in terms of stability ( , ) are discussed in Section VIII-C.
Let us compare our method with two other methods from

the multiscale community mining literature, namely Schaub
et al.’s proposition [16] based on Markov processes on the
graph and Arenas’ proposition [19] based on a parametrized
modularity (and here optimized with Louvain’s algorithm [41]).
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Fig. 6. Comparison between the LSR, MSR and SSR values obtained for three
different multiscale community mining methods on the SP benchmark for dif-
ferent parameters: left (resp. right) column for (resp. ) and different
values of . We plot the average and the 90% confidence intervals based on 20
realizations of SP graphs for each set of parameters.

Fig. 7. Comparison between the LSR and SSR values obtained for three mul-
tiscale community mining methods on the LFR benchmark for different param-
eters: left (resp. right) column for (resp. ), and different
values of . We plot the average and the 90% confidence intervals based on 20
realizations of LFR graphs for each set of parameters.

We first compare these three methods on the SP benchmark
with different sets of parameters. To this end, we used
random vectors for our method, the same number of scales for
all methods ( ), and the scale boundaries proposed in
the respective papers. Fig. 6(a) [resp. (b) and (c)] compares the
LSR (resp. MSR and SSR) of the three methods, for and
different values of . Fig. 6(d) [resp. (e) and (f)] compares the
LSR (resp. MSR and SSR) of the three methods, for the harder
case and different values of .

B. Results on a LFR Network
We also compare the three methods on the multiscale ver-

sion of the Lancichinetti-Fortunato-Radicchi (LFR) benchmark
[42], [43]. Codes to generate multiscale LFR graphs were re-
trieved from [44] and only non-overlapping graphs were cre-
ated with the following set of parameters: with
a mean degree of , a maximum degree of ,
a power law exponent of for the degree distribution,

Fig. 8. Result of the stability test for (a) the SP graph studied in Fig. 4; (b) a
randomized version (as explained in Section VII-A) of this SP graph; (c) a LFR
graph with two scales of community structure as shown by the two intervals of
scales where the exact theoretical partitions are uncovered [as shown in (d)].
The dashed horizontal line is the threshold value computed with the
test. A scale with an instability (resp. stability ) lower (resp. higher)
than (resp. ) is rejected by the test: its associated partition is more
relevant than a typical partition found at that scale in a random graph.

a power law exponent of for the community size dis-
tribution, a minimum of and a maximum of

nodes for the micro community sizes, a minimum
of and a maximum of for the
macro community sizes, and no overlapping ( ).
In this benchmark, there are only two community levels: a small
scale level and a large scale level. Fig. 7(a) [resp. (b)] compares
the LSR (resp. SSR) for a mixing parameter for the macro com-
munities of and different values of inter-micro com-
munities mixing values . Fig. 7(c) [resp. (d)] shows the same
for . To obtain this comparison, we used
random vectors for our method, the same number of scales for
all methods ( ), and the scale boundaries proposed in
the respective papers.
On average, our method does better than Arenas’s proposi-

tion, and Schaub’s method is slightly more accurate than ours.
In terms of computation time, Arenas’s version is quicker than
the two others (that are comparable in time) as we used the fast
Louvain algorithm to optimize their filtered modularity.

C. Results for the Statistical Test for Stability

To illustrate the stability measure, let us use sets
of random signals to estimate the stability of the
SP graph used for Fig. 4(a). The instability is plotted
in Fig. 4(b): the three annotated intervals corresponding to in-
tervals of scales where the theoretical partitions are exactly re-
covered correspond to high stability partitions (low instability

). The literature’s instability (computed with
) is also plotted in Fig. 4(b): both instabilities are here

almost superimposed.
Up to our knowledge, there isn’t any method in the multi-

scale community mining literature that we can compare our sta-
tistical test to. Therefore, we only illustrate its output on several
examples grouped in Fig. 8: (a) the SP graph studied in Fig. 4;
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Fig. 9. Stable communities of a graph of social interactions between children in a primary school: Fig. 1 (resp. 2, 3) shows the partition in 10 (resp. 5, 2) com-
munities (nodes drawn in the same color are in the same community). These 3 partitions are associated to the three stable scales of Fig. 10(a). The layout of the
graph is obtained using implemented in Gephi [40].

Fig. 10. (a) Results of the stability test for the social interaction network of
Section IX-A. random vectors were used. The dashed horizontal blue
line is the stability threshold given by the statistical test: it separates three inter-
vals of scales (represented by the vertical dotted lines). Each interval of scale can
be represented by its highest stability scale (represented in red circles). (b) shows
the corresponding partitions: the -axis corresponds to the nodes ordered with
respect to school grades. Two nodes in the same column have the same color if
they are in the same community. The partitions corresponding to the eight first
scales are not drawn here: they have too many communities for this mode of
representation.

(b) a randomized version (as explained in Section VII-A) of this
SP graph; (c) a LFR graph with two scales of community struc-
ture as shown by the two intervals of scales where the exact the-
oretical partitions are uncovered (as shown in Fig. 8(d)). The
ground truth in the case of Fig. 8(a) is that at least the scales
in the three intervals should have an instability lower than the
threshold, which is the case. There are false positives, i.e., scales
that have a lower instability than the threshold but for which the
associated partitions are not one of the three theoretical ones.
This is expected since the partitions corresponding to scales
between the intervals are typically combinations of theoretical
scales and are therefore more stable than partitions in random
graphs. The SP graph with these parameters is a particularly
structured graph and partitions found at scales between the three
intervals still show some stability. On a less structured graph
like the LFR graph of Fig. 8(c), there are less false positives. In
the case of Fig. 8(b), as the graph is random, the ground truth
is that no partition at any scale is relevant: indeed, we find that
no scale has an instability lower than the threshold. In the fol-
lowing, partitions that are not stable according to the test will
be discarded, and when whole intervals of scales have partitions
with an instability lower than the threshold, we select the sig-
nificant local minima.
The issue of this statistical test is the computation time it re-

quires. Indeed, one needs to compute the multiscale set of par-
titions of different randomized graphs, where is typically
around 20. Therefore, it is not suitable for graphs larger than
1000 nodes.

IX. THREE APPLICATIONS
We illustrate the method on three very different applications:

a social network in Section IX-A, a non-uniformly sampled
swiss roll manifold as an example of data that occurs in signal
processing on networks in Section IX-B, and finally an example
of a large SP graph in Section IX-C.

A. A Graph of Social Interactions Between Children in a
Primary School
The method is first applied on a graph of social interactions

between children in a primary school that was measured in 2009
by wearable RFID (Radio Frequency IDentification) sensors
[45]. The aggregated data over two days is naturally represented
by an adjacency weighted matrix where represents the
total time of contact between child and child . 242 children
and teachers participated in the experiment, separated in five
grades (from 1st grade to 5th grade), themselves separated in
two classes per grade. The graph has and we
use .
Fig. 10 shows the results for this dataset. Three stable in-

tervals of scales are uncovered (represented by the dotted ver-
tical lines in Fig. 10(a)). Within each interval, we choose the
scale with the highest stability (represented by a red circle in
Fig. 10(a)) to be representative of the whole interval. Indeed,
partitions within each interval are very similar: the mean sim-
ilarity index between the representative partition of the small
(resp. medium, large) scale interval and the other partitions of
this interval is 0.93 (resp. 0.92, 1). Thereby, three scales of de-
scription stand out: the coarse scale ( ) where the older
children (4th and 5th grades) are in one community and the
younger ones (1st, 2nd and 3rd grades) in another. A medium
scale description ( ) separates all the grades from one an-
other (groups together all pairs of classes of same grade). The
small scale ( ) separates all 10 classes from one another.
These three partitions are also shown in Fig. 9.

B. The Swiss Roll Manifold
A second example is based on the swiss roll manifold

shown in Fig. 11. This manifold is created as in [20] except
that the sampling points are non-uniformly sampled, drawing

from 5 Gaussian distributions on the manifold.
Then, a weighted graph is defined by using a Gaussian affinity
kernel: , with . We apply
the method with .
Fig. 12 shows the instability results for these data. Many

scales are more stable than the statistical test’s threshold. We
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Fig. 11. Stable communities of a non uniform swiss roll manifold: Fig. 1 (resp. 2, 3) shows the partition in 13 (resp. 5, 3) communities (nodes drawn in the same
color are in the same community). These 3 partitions are associated to the three stable scales of Fig. 12.

Fig. 12. Result of the stability test on the swiss roll manifold. random
vectors were used. The three most important local minima are drawn in red
circles and their associated partitions are presented in Fig. 11.

Fig. 13. Comparison between this paper’s multi-scale community mining
method (figures c and d) with Schaub et al.’s method (figures a and b) for a
large SP graph of 6400 nodes. Both methods used . For this
paper’s method, sets of random vectors were used.

choose to focus on the three most important local minima (rep-
resented by red circles in Fig. 12). Their associated partitions
are plotted in Fig. 11: they separate the manifold in respectively
3, 5, and 13 communities. The scale parameter takes very high
values because a few nodes of the graph are far from all others.
Being almost disconnected, the graph Laplacian’s first eigen-
values are very small, and and take therefore high
values. This illustrates the importance of Section III in selecting
automatically the relevant scale boundaries. Note that the inter-
mediate scale perfectly recovers the five Gaussians used to gen-
erate the data, and that the smaller and larger scale partitions
respect the geometry of the manifold.

C. A Large Sales-Pardo Graph
In order to show how the method behaves on larger graphs,

a Sales-Pardo graph of is considered with:
, , , ,

and . In Fig. 13, we compare ourmethod for
with Schaub et al. [16]’s method based on Markov

dynamics. For Schaub’s method, the instability measure used,
at a given Markov time, is the variation of information between
several solutions of the Louvain algorithm [41] at that Markov
time (indeed, the Louvain algorithm is inherently stochastic).
For this paper’s method, we used here random vectors
and only to estimate but in this example,
it is largely enough. In this case, the statistical test is not used
as the computation cost would be prohibitive. Both methods
have a similar average running time of 8 minutes to extract the
multi-scale structure of this graph.
The result for the proposedmethod is promising for this larger

graph, in that it points correctly to the three existing partitions at
different scales, with an instability measure with sharp separa-
tions between them, sharper than the ones proposed by Schaub
et al.’s method.

X. CONCLUSION
An original contribution to multiscale community mining in

networks is discussed, relying on the recently defined spectral
graph wavelets. The local information encoded in wavelets is
used to probe node-to-node correlations depending on the scale.
Then, a hierarchical clustering scheme finds the best partition
in communities at each scale. We propose a way to by-pass the
full computation of the wavelet correlationmatrices by using the
wavelet transform of a few random vectors, which improves the
computational cost of the algorithm. Also, an original instability
measure of partition in communities is introduced. This insta-
bility measure points at intervals of scales were the partitions
appear to be relevant and stable. Along with a statistical test
that compares the original graph to randomized ones, it enables
us to output statistically significant scales at which communities
exist -if they exist. The statistical test calls for improvements,
as the randomization procedure it uses destroys all communi-
ties, hence it cannot prevent us from falsely accepting combi-
nation of partitions at different scales as relevant ones. Still,
the local minima of the instability curves (when lower than the
threshold of the test) appear to clearly point to relevant parti-
tions in communities.
The proposed general framework opens the way to new man-

ners of dealing with complex network data and signals on them,
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by first aggregating the network using the proposed multiscale
approach based on a notion of scale rooted in signal processing,
before applying other techniques of analysis. We thus created a
bridge between the emerging field of graph signal processing
and its largest potential field of application : complex graph
analysis. A future objective would be, for instance, to leverage
the present work to define filtering operations on signals on
graphs which would be consistent with the step of community
detection in the graph.

XI. SOFTWARE

AMatlab implementation of the Multi Scale Community De-
tection using graph WAVelets (MSCD_Wav) Toolbox is avail-
able online at [46].

APPENDIX A
THE SALES-PARDO (SP) HIERARCHICAL BENCHMARK

This hierarchical benchmark is a non-weighted graph intro-
duced in [30], and later used in [17] to test multi scale commu-
nity mining tools. We consider nodes, and three community
structures nested in one another: consider communities
of nodes (the small scale level), nested in communi-
ties of nodes (the medium scale level), themselves nested in

communities of nodes (the large scale level), where
. Each node holds therefore 3 community

memberships, one at each scale. Consider any node and define
the number of nodes that hold community memberships in

common with . Here:
• nodes that are not in ’s large community do not hold any
common community memberships with : .

• nodes that are in ’s large community but not in ’s medium
community only hold one common community member-
ship with : .

• nodes that are in ’s medium community but not in ’s small
community hold two common community memberships
with : .

• nodes (different than ) that are in ’s small community
hold three common community memberships with :

.
Consider the average (on the nodes) intra small-commu-
nity degree, the average intra medium-community (but extra
small-community) degree, the average intra large-commu-
nity (but extra small and medium-community) degree and
the average extra large-community degree. We define:

(21)

where is the probability of existence of a link between two
nodes that hold common memberships. A first parameter
tunes how well separated the different scales are:

(22)

The smaller is the more separated are the scales, the easier it
is to extract the hierarchical community structure. A second pa-

rameter, the average degree , controls how dense the network
is:

(23)

The smaller is , the sparser is the graph, the harder it is to
recover the communities. Given a pair of parameters , we
obtain the following equations for the probabilities :

(24)

The being probabilities between 0 and 1, we have an implicit
constraint:

(25)

In this paper, we consider , and three com-
munity structures nested in one another: 64 communities of

(the small scale level), nested in 16 commu-
nities of (the medium scale level), themselves
nested in 4 communities of (the large scale
level). Therefore, , , and .
Then, given the parameters and one chooses to consider,
apply (24) to get the probabilities of link existence to generate
the graph. In IX-C , we use larger , , with .

APPENDIX B
THE ADJUSTED RAND INDEX OF SIMILARITY

Let and be two partitions we want to compare, and:
• be the number of pairs of nodes that are in the same
community in and in the same community in .

• be the number of pairs of nodes that are in different com-
munities in and in different communities in .

• be the number of pairs of nodes that are in the same
community in and in different communities in .

• be the number of pairs of nodes that are in different com-
munities in and in the same community in .

In other words, is the number of “agreements” between
and , and is the number of “disagreements” between
and . The Rand index is given by:

(26)

The Adjusted Rand (AR) index is the corrected-for-chance ver-
sion of the Rand index:

(27)

as explained in details in [47]. For instance, this corrects the fact
that two partitions in two communities have a higher chance to
have a high Rand Index than two partitions in twenty commu-
nities. The choice of this similarity index is not crucial; another
one could be used with no loss of generality of the method dis-
cussed here.
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APPENDIX C
WEIGHTED CHUNG-LU GRAPHS

In many applications, the adjacency matrix is weighted,
and for the test of Section VII-B, one needs a weighted version
of the classical Chung-Lu model: we present here weighted
Chung-Lu graphs (wCL). To this aim, we first create a CL
graph, and then allocate a weight to each edge. In real net-
works, weights and topology are often not independent [48]. In
fact, there is often a correlation between the average strength
of nodes and their degree (we recall that the strength of a node
is the sum of the weights of its edges). In order to keep these
correlations, we compute from the empirical distribution

of the weights of the links attached to nodes of degree
1.
A wCL graph associated to is then built in the following

way: start by creating a CL graph with the same expected de-
gree sequence as . For each node (of degree ) of this CL
graph, draw weights from the appropriate distribution and
randomly allocate them to its links whose weight has not yet
been specified (if is linked to a node that has already been
considered, then the weight of link has already been chosen
by using and is not computed again).
We thereby obtain a wCL graph with the same expected de-

gree sequence as , the same strength-degree correlation and a
similar weight sequence than [39]. A wCL graph associated
to a binary graph is a CL graph.
Finally, depending on the data at hand, other models could be

considered to obtain randomized graphs for the statistical test of
Section VII-B.
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