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Supérieure de Lyon, 46 allée d’Italie,

Lyon, 69364/Cedex 07, France
∗azadeh@mast.queensu.ca

†pierre.borgnat@ens-lyon.fr
‡patrick.flandrin@ens-lyon.fr

Considering the problem of extracting a trend from a time series, we propose a novel
approach based on empirical mode decomposition (EMD), called EMD trend filtering.
The rationale is that EMD is a completely data-driven technique, which offers the possi-
bility of estimating a trend of arbitrary shape as a sum of low-frequency intrinsic mode
functions produced by the EMD. Based on an empirical analysis of EMD, an automatic
procedure is proposed to select the requisite intrinsic mode functions. The performance
of the EMD trend filtering is evaluated on simulated time series containing different
forms of trends. Comparing furthermore to two existing techniques (�1-trend filtering
and Hodrick–Prescott filtering), we observe that the EMD trend filtering performs very
similarly, while it does not require assumptions on the form of the trend and it is free
from estimation parameters. We also illustrate the performance of the technique on the
S&P 500 index, as an example of real-world time series.

Keywords: Trend filtering; Hodrick–Prescott filtering; �1-trend filtering; empirical mode
decomposition.

1. Introduction

Many real-world time series can be characterized by a “composite” behavior where
one part is considered as “fluctuation” and another part is considered (loosely
speaking) as a “trend.” Since fluctuation and trend may carry different types of
information, trend filtering is a desirable objective, either for trend estimation or,
on the contrary, for trend removal.

Although a disentanglement “fluctuation versus trend” is often physically intu-
itive, it heavily relies on the ambiguous task of defining “trend,” which depends
strongly on a number of side information — or assumptions — on the analyzed
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time series. Generally speaking, a trend is viewed as a function with monotone
variations. Furthermore, if a model is applicable, trend estimation can be turned
into a well-posed problem of regression (e.g., linear models would use linear regres-
sion). However, if no such model is available, the problems of trend definition and
trend estimation become more complicated since they may depend on the process
under study and also on the observed time series. To make this point more explicit,
let us consider a toy example where a realization of a given white noise process is
superimposed on an oscillatory component with frequency f0. Depending on the
observation scale N , such a component can be interpreted as an effective oscillation
if N � 1/f0, or as a trend in the above sense if N � 1/f0. Therefore, deciding
whether such a contribution is a trend or not appears as a matter of interpretation.
In the following, we adopt the pragmatic approach of a relative definition, consider-
ing a trend in the signal to be any contribution that is slowly varying in comparison
with the fluctuation.

Estimating a trend from the regression point of view has received a great deal of
attention in the literature. The purpose of this paper, however, is not to review the
corresponding contributions. The aim here is rather to focus on a recent publication
detailing two such approaches [Kim et al. (2009)] and to contrast them with what
can be obtained, on similar datasets, with the help of the model-free technique
called empirical mode decomposition (EMD) trend filtering. The rationale is that,
by construction, EMD sequentially extracts, at each step of the decomposition, a
“fluctuation” part that is “quickly varying” as compared to the remaining residual,
thus permitting to identify the trend with such a residual at some significant level of
the decomposition that has to be adequately chosen. This kind of idea has already
been pushed forward, either based on some assumed model for the background noise
[Flandrin et al. (2004)], or by deliberately considering the trend as the final residual
[Wu et al. (2007)] of the EMD. We revisit here the first of these two approaches
by proposing a new, model-free, criterion aimed at identifying, in an automatic
way, the level of the decomposition which delineates the fluctuation from the
trend.

More precisely, the paper is organized as follows. In Sec. 2, we review some
preliminaries which are necessary to the framework of this paper and a brief back-
ground on the Hodrick–Prescott (H–P) filtering in Sec. 2.1 and �1-trend filtering in
Sec. 2.2. In Sec. 3 we describe the EMD trend filtering approach by first reviewing
the EMD in Sec. 3.1 and details on the proposed method in Sec. 3.2. The perfor-
mance of the EMD trend filtering is evaluated in Sec. 4 via three simulated examples
and one real-world example. The concluding remarks are made in Sec. 5.

2. Preliminaries and Background Material

Let Y = {Yt}t≥0 be a discrete-time real-valued stochastic process. The process Y

is said to be broadband if its spectrum SY (f) is nonzero and purely continuous in
the interval f ∈ [0, 1/2]. Let Y = (Y0, Y1, . . . , YN−1) be a realization of Y and let
C = (C0, C1, . . . , CN−1) ∈ Rn be a trend component. From Y and C, we can make
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two time series: The first is Y + C, the additive mix of Y and C; the second is YC,
the multiplicative mix of Y and C. In either case, we say Y is the fluctuation of
the mix.

Now let X be an additive or multiplicative mix of Y and C. The question we
would like to answer in this paper is that solely given X as data, how can one
estimate C from X ? In order to answer this question, loosely speaking, we define
the trend here to be that C which is locally slowly varying as compared to Y.

For the remaining of this section, we review two existing trend estimation tech-
niques known as the H–P filtering and the �1-trend filtering in Secs. 2.1 and 2.2,
respectively.

2.1. Hodrick–Prescott filtering

Recall Y and C from above. Let X = (X0, X1, . . . , XN−1) be an additive mix of
Y and C. The H–P filtering [Hodrick and Prescott (1997)] is a commonly used
technique for trend estimation. In this technique, the trend estimate is chosen such
that the weighted sum

1
2

N−1∑
t=0

(Xt − Ct)2 + λ

N−2∑
t=1

(Ct−1 − 2Ct + Ct+1)2 (1)

is minimized. Here, λ ≥ 0 is known as the regularization parameter and it controls
the trade-off between the smoothness of Ct and the size of the residual Xt − Ct.

We can write Eq. (1) such that

1
2
||X − C||22 + λ||DC||22, (2)

where for u = [· · · u−1 u0 u1 · · ·], ||u||22 = (
∑

i u2
i )

1/2 is the L2-norm of the vector
u. Here, D ∈ R(N−2)×N is the second-order difference matrix

D =


1 −2 1 0 · · · 0 0
0 1 −2 1 0 · · · 0
...

. . . . . . . . .
...

0 0 · · · 1 −2 1 0
0 0 0 · · · 1 −2 1

 .

The trend estimate CHP is the unique minimizer of Eq. (2) such that

CHP = (I + 2λDTD)−1X , (3)

where I ∈ RN×N is the identity matrix.
Some of the main properties of the H–P filtering are listed below:

• The number of steps necessary for computation of CHP is O(N).
• CHP is a linear function of X .
• As λ → 0, CHP converges to X .
• As λ → ∞, CHP converges to the best affine fit to X .
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For further detail about H–P filtering see [Hodrick and Prescott (1997)] or [Kim
et al. (2009)].

2.2. �1-trend filtering

Let C, Y and X be as in Sec. 2.1. The �1-trend filtering [Kim et al. (2009)] is a
variation of the H–P filtering where the trend is estimated such that the weighted
sum

1
2

N−1∑
t=0

(Xt − Ct)2 + λ
N−2∑
t=1

|Ct−1 − 2Ct + Ct+1|, (4)

is minimized. Here, λ ≥ 0 is a regularization parameter as in the H–P filtering,
used to control the trade-off between the smoothness of the trend and the size of
the residual. Similarly to the H–P filtering, we write Eq. (4) in a matrix form

1
2
||X − C||22 + λ||DC||1, (5)

where ||u||1 = (
∑

i |ui|) is the L1-norm of the vector u. In the above, D is as in
Sec. 2.1. The minimizer of Eq. (5) is unique and is denoted by C�1 . Note that,
�1-trend filtering does not provide a closed form expression for C�1 analogous to
Eq. (3) and the computation is entirely numerical. An efficient algorithm to solve
this optimization problem (based on simple primal-dual method) is discussed in the
paper by [Kim et al. (2009)].

Some of the basic properties of �1-trend filtering are as follows:

• The number of steps necessary to numerically compute C�1 is O(N).
• In contrast with CHP, C�1 is not a linear function of X .
• As λ → 0, C�1 converges to X .
• As λ → ∞, C�1 converges to the best affine fit to X . This convergence, however,

happens for finite value of λ.

In general the �1-trend filtering is advantageous to the H–P filtering when the trend
is a piecewise linear function. For further detail about �1-trend filtering see [Kim
et al. (2009)].

3. Trend Estimation Via EMD

Estimation of the trend in the H–P filtering and the �1-trend filtering depends
strongly on the choice of the regularization parameter λ, for which there exists no
deciding rule. We propose a novel estimator of the trend which does not require
any free parameter and uses the EMD in its development. This novel estimator is
called the EMD trend filtering.

In this section, we review the EMD in Sec. 3.1 and introduce the EMD trend
filtering in Sec. 3.2.
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3.1. The Empirical mode decomposition

The EMD is an algorithm which decomposes a time series into a finite additive
superposition of oscillatory components, each of which is called an intrinsic mode
function (IMF); see [Huang et al. (1998)]. The EMD does not rely on any techni-
cal assumptions concerning the nature of the time series; note that this includes
modelling assumptions. The basic idea is that IMFs are computed subject to two
requirements: First, the number of local extrema and number of zero crossings of
each IMF vary by at most one. Second, the mean of the upper and lower envelopes
of each IMF should be identically equal to zero, where the envelopes are computed
by means of a fixed interpolation scheme. (In the numerical results presented in
this paper, we have confined ourselves to the use of cubic spline and linear inter-
polations.) The IMFs are computed by means of an iterative scheme. This scheme
however depends on a stopping criterion which guarantees that the requirements
above are satisfied within a given tolerance while at the same time each extracted
IMF is meaningful in both its amplitude and frequency modulations; we again refer
to [Huang et al. (1998)] for details.

To make this intuitive description more precise, let Z = {Zt}t≥0 be a (real-
valued, discrete-time, stochastic) process, and let Z = (Z0, Z1, . . . , ZN−1) be a
realization of Z. As an initialization step, set i = 1 and R0 = Z. The EMD
computes the IMFs of Z using the following algorithm.

(1) Identify the local maxima and local minima of Ri−1.
(2) Together with the chosen interpolation scheme, use the maxima and minima

from step (1) to compute the upper and lower envelopes of Ri−1.
(3) Determine the local trend, denoted Qi, as the mean of the upper and lower

envelopes from step (2).
(4) Compute the local fluctuation, denoted H = Z −Qi.
(5) If H is not an IMF, in the sense that it does not satisfy the two requirements

described in the beginning of this section, then increment i and go to step (1)
with Ri−1 = H. (Authors in [Huang et al. (1998)] call this the sifting process ;
it is this process which depends on the stopping criterion.)

(6) If H is an IMF, in the sense that it satisfies the two requirements described
at the beginning of this section, then the ith intrinsic mode function of Z is
Mi = H, and the ith residual is Ri = Z −Mi. Increment i and go to step (1).

The algorithm halts when the ith residual has no further oscillations, in the
sense that it has no local maxima or local minima. We denote by im the largest
index for which Mi is defined. Then

Z =
im∑
i=1

Mi + Rim . (6)

In this decomposition, M1 through Mim can be thought of as containing a “spec-
trum” of local oscillations in Z, with the shortest-period (highest frequency)



September 2, 2011 11:14 WSPC/1793-5369 244-AADA
S1793536911000751

46 A. Moghtaderi, P. Borgnat & P. Flandrin

oscillations represented in M1 and the longest-period (lowest frequency) oscilla-
tions represented in Mim . The computational complexity of the algorithm depends
on Z, the chosen interpolation scheme, and the stopping criterion. However, the
algorithm usually halts in a reasonably small number of steps. For example, it is
known [Flandrin et al. (2004)] that if Z is a broadband process, then the decompo-
sition produced by the EMD has an almost dyadic filter-bank structure, typically
with im ≈ log2 N . Moreover, it is known that the sifting process typically halts
after some tens of iterations [Huang et al. (1998)].

3.2. EMD trend filtering

In this section, we introduce a novel technique for trend estimation which we call the
EMD trend filtering. The EMD trend filtering generalizes and modifies a technique,
which was introduced by the authors in [Moghtaderi et al. (2010)]. In the following,
we describe the details of this technique.

Recall Y and C from Sec. 2. Let X be an additive mix of Y and C. We apply
EMD to X in order to extract its IMFs, denoted Mi = (M i

0, M
i
1, . . . , M

i
N−1) for

1 ≤ i ≤ im. Recall the definition of trend from Sec. 2. Also recall from Sec. 3.1
that in EMD the successive IMFs are oscillations going from high frequency to low
frequency, and that this property is valid locally in time (there is not necessarily a
global separation of spectrum of successive IMFs) [Huang et al. (1998)]. Hence, a
pragmatic way of satisfying this is that the trend should be obtained as the sum of
the last few IMFs and the residual extracted from X such that

C ≈
im∑

i=i∗

Mi + Rim . (7)

Clearly, in order to estimate C, all we need to do is to estimate i∗. In the following,
we denote the estimate of C by Ĉ, and the estimate of i∗ by î∗.

Note that if the mix is multiplicative and the elements of C are positive, then
the situation reduces to the additive case. Indeed, one can take logarithms to obtain
log |X | = log C+log |Y|, where the logarithm and absolute value functions are being
applied elementwise.

EMD trend filtering, described over the course of the next three subsections,
actually consists of three approaches to estimating i∗. These are called, respectively,
the ratio, energy, and energy-ratio approaches.

3.2.1. Energy approach

In this section, we describe the first approach for evaluating î∗.
Let {Zt}t≥0 be an arbitrary process. For a given time series which is a realization

of {Zt}, we define the energy of its ith IMF, denoted Gi, by

Gi �
N−1∑
t=0

|M i
t |2, 1 ≤ i ≤ im.



September 2, 2011 11:14 WSPC/1793-5369 244-AADA
S1793536911000751

Trend Filtering: Empirical Mode Decompositions 47

Assume now that we have B different time series obtained from {Zt}. Given the
bth time series, 1 ≤ b ≤ B, if Gi,b denotes the energy of its ith IMF, the averaged
energy of its ith IMF is defined by

Gi � 1
B

B∑
b=1

Gi,b. (8)

It is shown in [Rilling et al. (2005)] that if the time series under study are realizations
of a generic broadband process, then Gi is a decreasing sequence in i. The authors in
[Rilling et al. (2005)] concluded this by studying fractional Gaussian noise processes,
which provide a general model for broadband processes with no particular frequency
band. The power spectral density of a fractional Gaussian noise process at frequency
f can be approximated by K|f |1−2h when |f | → 0. Here, K is a constant and
0 < h < 1 is known as the Hurst exponent. As a result, fractional Gaussian noise
processes are convenient models for processes with broadband or power-law spectra.
For details about fractional Gaussian noise processes, see [Flandrin et al. (2004)] or
[Rilling et al. (2005)].

Keeping what we described above in mind, our key observation is that, generi-
cally, Gi increases for i near the index i∗ [Moghtaderi et al. (2010)]. Identifying the
smallest index i ≥ 2 such that Gi > Gi−1 evaluates î∗. This approach is called the
energy approach.

The limitation with the energy approach is that one is often given a single time
series to use in the trend estimation procedure. Clearly, Computation of energy,
based on only one time series, may cause false increases in Gi at indices which do
not associate with the trend.

3.2.2. Ratio approach

In this section, we describe the second approach to evaluate î∗.
For a given time series, we denote the zero crossing number of its ith IMF

by Zi, and define Ri = Zi−1/Zi for i ≥ 2. We call Ri the ith ratio of the zero-
crossing numbers (ith RZCN). We observe that if the time series under study is a
realization of a generic broadband process, the approximation Ri ≈ 2 holds. This
number might be slightly different based on the type of interpolation used in the
EMD but always remains the same within a given interpolation scheme.

In order to assess the truth of this approximation, we construct 21 broadband
processes, including (1) 17 fractional Gaussian noise processes with Hurst exponents
h = 0.1, 0.15, 0.2, 0.25, . . . , 0.9, (2) two autoregressive process of order 2 (or AR(2)),
and (3) two non-stationary processes, the first being AR(2) with time-dependent
coefficients and the second being frequency modulated. For each process, we create
10,000 realizations of length N = 2, 000, and compute the IMFs and RZCNs for
each realization. We denote the ith RZCN of the bth realization by Ri,b, where
2 ≤ i ≤ ibm and write �Rb = [R2,b R3,b · · · Rib

m,b]. We then compute the empirical
distribution of the elements of �R = [�R1 �R2 · · · �R10,000]. The same procedure was
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Fig. 1. Empirical distribution of the elements of �R: The top-left (resp. top-right) plot displays
the empirical distribution of the elements of �R for 21 broadband (log-transformed broadband)
processes when cubic spline interpolation is used in the EMD. The bottom-left (resp. bottom-
right) plot displays the empirical distribution of the elements of �R for 21 broadband (resp. log-
transformed broadband) processes when linear interpolation is used in the EMD. In all plots,
different processes are represented by different line types and colors.

also applied to the log-transformed version of each process in the collection. Figure 1
displays the empirical distributions of the elements of �R computed for each process
and each log-transformed process when cubic spline and linear interpolations are
used in the EMD. The result of our simulation encourages the idea that Ri ≈ 2.
In fact, these distributions appear to be approximately Gaussian with mean 2. We
also observe that apart from the expected peak at the center of the distribution,
there exist several smaller but visible peaks. They appear in the presence of high
order IMFs which have small values of zero crossing numbers.

Our key observation is that, generically, the approximation Ri ≈ 2 fails for i near
the index i∗. We therefore evaluate î∗ by looking for the smallest index i for which
Ri is “significantly different from two.” The result of simulation suggests that a
common threshold test could be used to conclude whether or not Ri is significantly
different from two. In order to do so, we compute α and 1−α (0 ≤ α ≤ 1) significance
level of the empirical distribution of the elements of �R as the right threshold and
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Table 1. Right and left thresholds for a few values of α.

α T sp
r T sp

l T ln
r T ln

l Lsp
r Lsp

l Lln
r Lln

l

0.01 4.9762 1.5033 4.9762 1.5033 3.5317 1.5073 3.0000 1.2665
0.03 3.8095 1.6708 3.0000 1.3804 3.0238 1.6647 2.5079 1.3487
0.05 3.0433 1.7377 2.5179 1.4990 2.7030 1.7232 2.3359 1.4692
0.08 2.9244 1.8014 2.2912 1.5000 2.5000 1.7708 2.1433 1.5000
0.1 2.6454 1.8300 2.1912 1.5534 2.4117 1.7941 2.0542 1.5050
0.2 2.2589 1.9183 2.0000 1.6863 2.1687 1.8587 1.9281 1.6456

Note: T sp
r and T sp

l (resp. T ln
r and T ln

l ) are the right and left thresholds of the
top-left (resp. bottom-left) plot in Fig. 1. Similarly, Lsp

r and Lsp
l (resp. Lln

r and
Lln

l ) are the right and left thresholds of the top-right (resp. bottom-right) plot in
Fig. 1.

the left threshold, respectively. Precisely, we compute the left and right thresholds
for each process and then average them to obtain the final value. Table 1 reports
the right and left thresholds for all the empirical distributions shown in Fig. 1 and
for a few values of α.

Finally, any RZCN which is outside of the appropriate right and left thresholds
is considered significantly different from two.

The problem with the ratio approach is that, since selection of the left and right
thresholds is entirely based on empirical results, it is always possible that for a
given α, the smallest i for which Ri appears significantly different from 2 is a false
detect.

3.2.3. Energy–ratio approach

As described in the previous two sections, the energy and ratio approaches are
confronted with possible false detections of the smallest index, which does not
associate with the trend. Since the criteria proposed by the energy approach and
ratio approach to evaluate î∗ are independent, the number of false detects can be
reduced by combining these two approaches.

To be more precise, for each 2 ≤ i ≤ im, we compute each index i such that
Gi > Gi−1. We also evaluate every index i where Ri is significantly different from
two. We then evaluate î∗ to be the smallest common index in both approaches. This
approach is called the energy–ratio approach. The performance of the energy–ratio
approach and its ability to reduce the number of false detects is discussed in the
paper by [Moghtaderi et al. (2010)] via simulations.

4. Examples

In this section, we demonstrate the performance of the EMD trend filtering by
applying it to three simulated examples in Sec. 4.1 and one real-world example
in Sec. 4.2. For each example, we compare the performance of the EMD trend
filtering via the energy-ratio approach with �1-trend filtering and H–P filtering.
The comparison method we use here is based on the Euclidean distance between
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the theoretical trend and the estimated trend obtained from a given method as

E =

(
N−1∑
t=0

|Ct − Ĉt|2
)1/2

. (9)

Clearly, if any given example follows a multiplicative mix, we replace Ct in Eq. (9)
with log Ct and Ĉt with l̂og Ct.

In the following, we use α = 0.08 in the energy–ratio approach (this choice
of α is due to its good performance in a large number of simulations.)

4.1. Simulated examples

In this section, we introduce three simulated examples. For each example, we con-
struct a time series of length N = 2,000 and apply EMD to it once using cubic
spline interpolation and once using linear interpolation. For each example and each
method of interpolation, we extract the IMFs and apply the energy–ratio approach
to them in order to evaluate î∗. We then estimate the trend using î∗ as described
in Sec. 3.2.

For each example, we use the same time series used in the EMD trend filtering in
order to estimate the trend using �1-trend filtering and H–P filtering. We select the
regularization parameter λ to be the nonnegative integers satisfying 0 ≤ λ ≤ λmax

where λmax ∈ N. We then compute the Euclidean distance for each λ and find the
value λ which associates with the minimum Euclidean distance. We denote this
value by λ∗.

4.1.1. Simulated example 1

Let Y (1) = {Y (1)
t }t≥0 be an AR(2) process such that

Y
(1)
t = 0.8Y

(1)
t−1 − 0.4Y

(1)
t−2 + ζt.

Here {ζt} is a white noise process with variance 104. Now, let Y(1) =
(Y (1)

0 , Y
(1)
1 , . . . , Y

(1)
N−1) be a realization of Y (1) and C(1) be a trend component which

is randomly constructed using peacewise linear spline technique. Using Y(1) and
C(1), we can now construct the additive mix X (1) = C(1) + Y(1). The left hand side
plot in Fig. 2 displays C(1) and the right hand side plot displays C(1) superimposed
on X (1).

We apply EMD to X (1) using cubic spline interpolation (resp. linear interpo-
lation), and obtain im = 9 (resp. im = 11). The energy-ratio approach evaluates
î∗ = 7 (resp. î∗ = 9) which we use to estimate C(1). Figure 3 displays the energy–
ratio approach for both interpolation schemes and Fig. 4 displays the estimated
trends based on the energy–ratio approach.

We now use X (1) to estimate C(1) using �1-trend filtering. Recall from Sec. 2
that the best affine fit in the �1-trend filtering is obtained for a finite value of λ.
The Euclidean distance for the best affine fit to X (1) is E = 9.956. We therefore
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Fig. 2. Trend in example 1: The left-hand side plot displays C(1) and the right-hand side plot
displays C(1) superimposed on X (1).
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Fig. 3. Energy-ratio approach in example 1: The top-left (resp. top-right) plot displays the energy
approach when using cubic spline interpolation (resp. linear interpolation) in EMD. The small
circles are log2 Gi for 1 ≤ i ≤ 9 (resp. 2 ≤ i ≤ 11) and the small triangles mark those indices
i ≥ 2 where Gi > Gi−1. The bottom-left (resp. bottom-right) plot displays the ratio approach
when using cubic spline interpolation (resp. linear interpolation) in EMD. The small circles are
log2 Ri for 2 ≤ i ≤ 9 (resp. 2 ≤ i ≤ 11), the dashed lines are T sp

l and T sp
r (resp. T ln

l and T ln
r ) for

α = 0.08 in Table 1, and the small triangles mark those indices i where Ri is significantly different
from two. Here, the energy approach evaluates bi∗ = 7 (resp. bi∗ = 7), the ratio approach evaluates
bi∗ = 6 (resp. bi∗ = 9), and the energy–ratio approach evaluates bi∗ = 7 (resp. bi∗ = 9) which we use
to estimate C(1).

increase λmax until the Euclidean distance associated with λmax reaches 9.956. This
happens at λ ≈ 32×103. Here, the minimum Euclidean distance is E = 0.858, which
associates with λ∗ = 15. Figure 5 displays the Euclidean distance as a function of
λ and the estimated trend using λ∗ = 15.

Similarly, we can use X (1) to estimate C(1) using H–P filtering. Recall from
Sec. 2 that the best affine fit in the H–P filtering is obtained when λ → ∞. Compu-
tationally speaking, we cannot choose λmax to reach the best affine fit to X (1). We
therefore select λmax large enough to see the increase in the Euclidean distance and
find an approximate range for λ∗. We select λmax = 3 × 108 and observe that the
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Fig. 4. EMD trend filtering in example 1: The left-hand side (resp. right-hand side) plot displays
C(1) (dashed line) versus bC(1) (solid line) using the energy-ratio approach when bi∗ = 7 (resp.
bi∗ = 9). The Euclidean distance for this estimate is E = 0.559 (resp. E = 1.078).
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Fig. 5. The best estimate of C(1) using �1-trend filtering in example 1: The left-hand side plot
displays the Euclidean distance as a function of λ. The larger plot shows the Euclidean distance
only up to λ = 100 so the minimum Euclidean distance E = 0.858 at λ∗ = 15 can be seen clearly.
The smaller plot shows the Euclidean distance for λmax = 4×104. The Euclidean distance clearly
reaches the best affine fit to X (1), which is marked with a dashed-dotted line. The right-hand side
plot displays C(1) (dashed line) versus bC(1) (solid line) for λ∗ = 15.

minimum Euclidean distance appears at λ∗ ≈ 545×103, where we obtain E = 0.538.
Figure 6 displays the Euclidean distance as a function of λ and the estimated trend
using λ∗ = 545 × 103.

It is clear from the outcome of our simulating example that all trend filtering
methods discussed here perform similarly: the magnitude of the Euclidean distances
is comparable and the general appearance of all the estimated trends does not differ
significantly.

4.1.2. Simulated example 2

Let Y (2) = {Y (2)
t }t≥0 be a fractional Gaussian noise process with Hurst exponent

h = 0.7. Let Y(2) = (Y (2)
0 , Y

(2)
1 , . . . , Y

(2)
N−1) be a realization of Y (2) and C(2) be
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Fig. 6. The best estimate of C(1) using H–P filtering in example 1: The left-hand side plot displays
the Euclidean distance as a function of λ. The larger plot displays the Euclidean distance as a
purely decreasing function of λ up to λ = 2× 105. The smaller plot shows the Euclidean distance
for λmax = 3× 108, which shows that the Euclidean distance increases but will not reach the best
affine fit for a finite λ. Here, λ∗ ≈ 545 × 103, where E = 0.538. The right-hand side plot displays
C(1) (dashed line) versus bC(1) (solid line) for λ∗ = 545 × 103.
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Fig. 7. Trend in example 2: The left-hand side plot displays C(2) and the right-hand side plot
displays C(2) superimposed on X (2).

a trend component which is randomly constructed using peacewise cubic spline
technique. Using Y(2) and C(2), we now construct the additive mix X (2) = C(2) +
Y(2). The left hand side plot in Fig. 7 displays C(2) and the right hand side plot
displays C(2) superimposed on X (2).

We apply EMD to X (2) using cubic spline interpolation (resp. linear interpola-
tion) and obtain im = 8 (resp. im = 12). In this case, the energy–ratio approach
evaluates î∗ = 7 (resp. î∗ = 9) which we use to estimate C(2). Figure 8 displays
the energy–ratio approach for both interpolation schemes and Fig. 9 displays the
estimated trends based on the energy–ratio approach.

Now, we use X (2) to estimate C(2) using �1-trend filtering and H–P filtering. For
the �1-trend filtering, we select λmax = 4× 104 and obtain λ∗ = 15 with minimized
Euclidean distance E = 0.876. For the H–P filtering, we select λmax = 5 × 107 and
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Fig. 8. Energy–ratio approach in example 2: The top-left (resp. top-right) plot displays the
energy approach when cubic spline interpolation (resp. linear interpolation) is used in the EMD.
The small circles are log2 Gi for 1 ≤ i ≤ 8 (resp. 2 ≤ i ≤ 12) and the small triangles mark
those indices i ≥ 2 where Gi > Gi−1. The bottom-left (resp. bottom-right) plot displays the ratio
approach when cubic spline interpolation (resp. linear interpolation) is used in the EMD. The
small circles are log2 Ri for 2 ≤ i ≤ 8 (resp. 2 ≤ i ≤ 12), the dashed lines are T sp

l and T sp
r (resp.

T ln
l and T ln

r ) for α = 0.08 in Table 1, and the small triangles mark those indices i where Ri is

significantly different from two. Here, the energy approach evaluates bi∗ = 5 (resp. bi∗ = 9), the
ratio approach evaluates bi∗ = 7 (resp. bi∗ = 9), and the energy–ratio approach evaluates bi∗ = 7
(resp. bi∗ = 9) which we use to estimate C(2).
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Fig. 9. EMD trend filtering in example 2: The left-hand side (resp. right-hand side) plot displays
C(2) (dashed line) versus bC(2) (solid line) using the energy–ratio approach when bi∗ = 7 (resp.
bi∗ = 9). The Euclidean distance for this estimate is E = 0.850 (resp. E = 0.886).

obtain λ∗ ≈ 2197 × 103 with Euclidean distance E = 0.829. Figure 10 display the
best estimated trend for �1-trend filtering and H–P filtering using λ∗ in each case.

4.1.3. Simulated example 3

Let Y (3) = {Y (3)
t }t≥0 be a fractional Gaussian noise process with Hurst exponent

h = 0.4. Let Y(3) = (Y (3)
0 , Y

(3)
1 , . . . , Y

(3)
N−1) be a realization of Y (3). Now, let C(3) and

C(4) be two trend components where C(4) is randomly constructed using peacewise
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Fig. 10. The best estimate of C(2) using �1-trend filtering and H–P filtering in example 2: The
left-hand side (resp. right-hand side) plot displays C(2) (dashed line) versus bC(2) (solid line) using
�1-trend filtering (resp. H–P filtering) for λ∗ = 15 (resp. λ∗ = 2197×103). The Euclidean distance
is E = 0.876 (resp. E = 0.829).

linear spline technique and

C
(3)
t = 100 +

(
t + 10
500

)2

.

We first construct a multiplicative mix X (3) = C(3)Y(3) and use it to construct an
additive mix X (4) = X (3)+C(4). The top-left plot in Fig. 11 displays log C(3) and the
top-right plot displays log C(3) superimposed on log |X (3)|. The bottom-left plot in
Fig. 11 displays C(4) and the bottom-right plot displays C(4) superimposed on X (4).

We first apply EMD to X (4) using cubic spline interpolation (resp. linear inter-
polation) and obtain im = 8 (resp. im = 12). The energy–ratio approach evaluates
î∗ = 7 (resp. î∗ = 10) which we use to estimate C(4). Figure 12 displays the energy–
ratio approach for both interpolation schemes and Fig. 13 displays the estimated
C(4) based on the energy–ratio approach.

We now use X (4) to estimate C(4) using �1-trend filtering and H–P filtering. For
the �1-trend filtering, we select λmax = 4 × 104 and obtain λ∗ = 8 with minimized
Euclidean distance E = 0.284. For the H–P filtering, we select λmax = 5 × 107 and
obtain λ∗ ≈ 2×105 with Euclidean distance E = 0.307. Figure 14 displays the best
estimated trend for �1-trend filtering and H–P filtering using λ∗ in each case.

We now turn into estimating log C(3). In order to do that, let Z = X (4)−Ĉ(4) be
an estimate of X (3) where Ĉ(4) denotes the estimated C(4). Since X (3) = C(3)Y(3) is
a multiplicative mix, we apply EMD to log |Z| using cubic spline interpolation
(resp. linear interpolation) and obtain im = 10 (resp. im = 12). In this case,
the energy–ratio approach evaluates î∗ = 8 (resp. î∗ = 10) which we use to esti-
mate log C(3). Figure 15 displays the energy–ratio approach for both interpolation
schemes and Fig. 16 displays the estimated log-transformed trends using the energy–
ratio approach.

We now use log |Z| to estimate log C(3) using �1-trend filtering and H–P filtering.
For the �1-trend filtering, we select λmax = 4 × 104 and obtain λ∗ = 487 with
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Fig. 11. Trends in example 3: The top-left and right plots display log C(3) and log C(3) superim-
posed on log |X (3)| respectively. The bottom-right and left plots display C(4) and C(4) superim-
posed on X (4) respectively.
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Fig. 12. Energy–ratio approach to estimate C(4) in example 3: The top-left (resp. top-right) plot
displays the energy approach when cubic spline interpolation (resp. linear interpolation) is used
in the EMD. The small circles are log2 Gi for 1 ≤ i ≤ 8 (resp. 2 ≤ i ≤ 12) and the small triangles
mark those indices i ≥ 2 where Gi > Gi−1. The bottom-left (resp. bottom-right) plot displays the
ratio approach when cubic spline interpolation (resp. linear interpolation) is used in the EMD.
The small circles are log2 Ri for 2 ≤ i ≤ 8 (resp. 2 ≤ i ≤ 12), the dashed lines are T sp

l and T sp
r

(resp. T ln
l and T ln

r ) for α = 0.08 in Table 1, and the small triangles mark those indices i where

Ri is significantly different from two. Here, The energy approach evaluates bi∗ = 6 (resp. bi∗ = 10),
the ratio approach evaluates bi∗ = 7 (resp. bi∗ = 8), and the energy–ratio approach evaluates bi∗ = 7
(resp. bi∗ = 10) which we use to estimate C(4).
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Fig. 13. EMD trend filtering to estimate C(4) in example 3: The left-hand side (resp. right-hand
side) plot displays C(4) (dashed line) versus bC(4) (solid line) using the energy–ratio approach when
bi∗ = 7 (resp. bi∗ = 10). The Euclidean distance for this estimate is E = 0.471 (resp. E = 0.415).
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Fig. 14. The best estimate of C(4) using �1-trend filtering and H–P filtering in example 3: The
left-hand side (resp. right-hand side) plot displays C(4) (dashed line) versus bC(4) (solid line) using
�1-trend filtering (resp. H–P filtering) for λ∗ = 8 (resp. λ∗ = 2 × 105). The Euclidean distance is
E = 0.284 (resp. E = 0.307).

minimized Euclidean distance E = 3.894. For the H–P filtering, we select λmax =
5 × 108 and obtain λ∗ ≈ 1271 × 103 with Euclidean distance E = 5.287. Figure 17
displays the best estimated trend for �1-trend filtering and H–P filtering using λ∗
in each case.

4.2. S&P 500 index data

In this section, we use the S&P 500 index data used in [Kim et al. (2009)] to
demonstrate the performance of the EMD trend filtering in comparison with the
�1-trend filtering and H–P filtering. Fig. 18 displays the S&P 500 index data from
March 25th, 1999 to March 9th, 2007.

The authors in [Kim et al. (2009)] estimated the trend of the log-transformed
S&P 500 index data using the �1-trend filtering with parameter λ = 100 and H–P
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Fig. 15. Energy–ratio approach to estimate log C(3) in example 3: The top-left (resp. top-right)
plot displays the energy approach when cubic spline interpolation (resp. linear interpolation) is
used in the EMD. The small circles are log2 Gi for 1 ≤ i ≤ 10 (resp. 2 ≤ i ≤ 12) and the small
triangles mark those indices i ≥ 2 where Gi > Gi−1. The bottom-left (resp. bottom-right) plot
displays the ratio approach when cubic spline interpolation (resp. linear interpolation) is used in
the EMD. The small circles are log2 Ri for 2 ≤ i ≤ 10 (resp. 2 ≤ i ≤ 12), the dashed lines are
Lsp

l and Lsp
r (resp. Lln

l and Lln
r ) for α = 0.08 in Table 1, and the small triangles mark those

indices i where Ri is significantly different from two. Here, The energy approach evaluates bi∗ = 8
(resp. bi∗ = 8), the ratio approach evaluates bi∗ = 3 (resp. bi∗ = 10), and the energy–ratio approach
evaluates bi∗ = 8 (resp. bi∗ = 10) which we use to estimate log C(3).

0 500 1000 1500 2000
4

6

8

10

12

14

16

t
0 500 1000 1500 2000

4

6

8

10

12

14

16

t

Fig. 16. EMD trend filtering to estimate log C(3) in example 3: The left-hand side (resp. right-

hand side) plot displays log C(3) (dashed line) versus ̂log C(3) (solid line) using the energy–ratio
approach when bi∗ = 8 (resp. bi∗ = 10). The Euclidean distance for this estimate is E = 10.156
(resp. E = 14.764).

filtering with parameter λ so to obtain the same fitting error. Figure 19 displays
these trend estimates.

Here, we use EMD trend filtering to estimate the trend of the log-transformed
S&P 500 index data using both cubic spline and linear interpolation schemes.
Figure 20 displays these estimates. We can clearly see that the estimates obtained
from this method are comparable with those obtained in [Kim et al. (2009)].
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Fig. 17. The best estimate of log C(3) using �1-trend filtering and H–P filtering in example 3: The

left-hand side (resp. right-hand side) plot displays log C(3) (dashed line) versus ̂log C(3) (solid line)
using �1-trend filtering (resp. H–P filtering) for λ∗ = 487 (resp. λ∗ = 1271 × 103). The Euclidean
distance is E = 3.894 (resp. E = 5.287).
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Fig. 18. S&P 500 index data: The S&P 500 index from March 25th, 1999 to March 9th, 2007.
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Fig. 19. Estimating trend for the log-transformed S&P 500 index data using �1-trend filtering
and H–P filtering: The left-hand side plot displays the trend estimate using �1-trend filtering
for λ = 100 and the right-hand side plot displays the trend estimate using H–P filtering with
λ = 2 × 106.
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Fig. 20. Estimating trend for the log-transformed S&P 500 index data using EMD trend filtering:
The left-hand side (resp. right-hand side) plot displays the trend estimate when cubic spline (resp.
linear) interpolation is used in the EMD. In the left-hand side (resp. right-hand side) plot, we have
used bi∗ = 7 (resp. bi∗ = 11) using the energy–ratio approach with im = 9 (resp. im = 13).

5. Conclusion

In this paper, we have considered EMD as an alternative to more classical
approaches to trend filtering, namely H–P filtering and a recent �1-variation upon
it. The EMD rationale for what is considered here as trend filtering is to disentan-
gle the fluctuating part of a signal from a slowly varying contribution made of a
number of IMFs beyond some critical order. A mixed criterion, based on the prop-
erties of the IMFs’ energy and zero-crossing numbers, has been proposed for the
automatic selection of this critical order, leading to an EMD trend filtering strategy
that has been compared to H–P and �1 via extensive and well-controlled simulation
experiments. As a general result of this study, it turns out that none of the three
methods outperform significantly the two other ones in all cases, differences lying
mostly in prior assumptions and/or effective implementation.

It is clear that, if some prior assumption about the trend is available, making
use of it could help when choosing the estimation method: this is, e.g., the case with
a piecewise linear model that is implicit in the use of the �1 approach. On the other
hand, one strength of EMD is to be data driven rather than model based, and it
is worth noticing that its performance compares favorably with �1 in the piecewise
linear case while being more versatile in other situations since the solution it offers
is not a priori constrained.

Another issue is that EMD trend filtering only depends on basic degrees of free-
dom of EMD (interpolation scheme, stopping criterion) and on detection thresh-
olds that are fixed once for all, whereas both H–P and �1 call for a regularization
parameter λ whose variation can result in dramatically different performance. In
this respect, an encouraging feature of the EMD trend filtering is that the perfor-
mance it achieves is generally close to that of H–P and/or �1 when λ is chosen in
an optimal way (minimum error), a situation that is not feasible in practice when
the actual trend is of course unknown.
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Even if, because it is based on EMD which still lacks strong theoretical grounds,
EMD trend filtering would require further studies, it is believed that it could be an
interesting addition to the existing toolkit of trend filtering methods, to be used in
conjunction with them.
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