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Abstract

Weierstrass–Mandelbrot functions are given a time–frequency interpretation which puts emphasis
possible decomposition on chirps as an alternative to their standard, Fourier-based, representation. Exa
deterministic functions are considered, as well as randomized versions for which the analysis is applied to e
estimates of statistical quantities.
 2003 Elsevier Inc. All rights reserved.
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1. The Weierstrass–Mandelbrot function

In 1872, Weierstrass introduced a function defined by a semi-infinite superposition of weighted “
(or Fourier modes) whose frequencies are geometrically spaced, namely [22]:

W ∗(t)=
∞∑
n=0

λ−nH cosλnt, (1)

with λ > 1 andt ∈ R.
Assuming that the free parameterH , which governs the relative weights of the different tones, is s

that 0<H < 1, the series given in (1) is convergent and the corresponding functionW ∗(t), referred to
as theWeierstrass function(WF), is a well-defined quantity. The point which has since then rece
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much attention is that this function, although continuous, is nowhere differentiable: it is in fact H
continuous of orderH everywhere [13]. As such, it has been widely used as a paradigmatic examp
fractal function, various measures of dimensions for its graph [3,8,16,21] ending up with the non
value 2−H .

Despite its fractal structure, the WF is not trulyH -self-similar since we only haveW ∗(λt) =
λH [W ∗(t)− cost] �= λHW ∗(t). This is so because the WF (1) is defined as a semi-infinite sum sta
with n = 0, an operation which consists in adding frequenciesω � λ with no upper limit, but also with
no spectral contributions below the lowest frequency defined byλ. The construction is therefore bas
on afinite larger scale which naturally prevents any form ofcompletescale invariance. This observatio
prompted Mandelbrot [16] (see also [17]) to modify the original definition (1) by adding in some su
way the “missing” lower frequenciesω < λ. His proposal was to generalize and complete (1) accor
to

W(t)=
∞∑

n=−∞
λ−nH

(
1− eiλ

nt
)
eiϕn , (2)

so as to maintain convergence, with the extra degree of freedom of arbitrary phasesϕn.
From (2), it is immediate to examine the way thisWeierstrass–Mandelbrot function(WFM) behaves

under scale changing operations. If, e.g.,ϕn = µn, we haveW(λkt)= e−iµkλkHW(t) and, in the specia
case whereµ= 0 (which implies thatϕn = 0 for all n ∈ Z), this leads to

W
(
λkt

) = λkHW(t) (3)

for anyk ∈ Z. In this case, the WMF turns out to beexactlyscale invariant, butonly with respect to the
preferred scaling ratioλ (and any of its integer powers): such a situation is referred to as “discrete
invariance” (DSI) [20]. If theϕn’s are i.i.d. random variables uniformly distributed on[0,2π ], we get a
randomized version of the WMF which satisfies a companion form ofstatistical DSI (in the sense of [5]{

W
(
λkt

)
, t ∈ R

} d= {
λkHW(t), t ∈ R

}
(4)

for anyk ∈ Z, where the notation “
d=” stands for equality of all finite-dimensional distributions. A spec

interest of such a stochastic version of the WMF (and variations thereof, with Gaussian prefactors
it can be used for approximatingH -self-similar processes such as fractional Brownian motion [8,15

The specific form of the WMF given in (2) can itself be further generalized to

Wg(t)=
∞∑

n=−∞
λ−nH

(
g(0)− g

(
λnt

))
eiϕn , (5)

whereg(t) can be any periodic function, provided that it is continuously differentiable att = 0 [21].
Scaling properties of WMF’s (2) carry over to their generalized form (5), thereafter referred to
generalized WMF(GWMF).

Typical examples of (G)WMF’s are given in Fig. 1.
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Fig. 1. Examples of Weierstrass–Mandelbrot functions—each graph displays 1000 points of a WMF over the interv[0,1].
Subplots (a) to (c) correspond to the classical WMF defined in Eq. (2), whereas subplot (d) is a generalized WMF a
in Eq. (5) withg(t) = cos2(t). Parameters are as follows: (a)λ = 1.5, H = 0.2, ϕn = 0; (b) λ = 1.07, H = 0.3, ϕn = n/2;
(c) λ= 1.2,H = 0.5, ϕn i.i.d. over[0,2π]; (d) λ= 1.15,H = 0.8, ϕn = n.

2. Tones vs chirps

2.1. Scale invariance and periodicity

For the above-mentioned suitable choices of phases, the WMF (2) and its generalization (5) a
characterized by two key properties: scale invariance and periodicity. The co-existence of the
properties is made possible because they operate at different levels: periodicity refers to the natu
building blocks upon which the functions are constructed, whereas scale invariance appears as
of the superposition. In the stochastic case, the (G)WMF is usually understood as a superpos
processes (e.g., randomly phased tones) which are individually stationary, but whose superpositio
since it isH -self-similar (as is well known (see, e.g., [19]), stationarity and self-similarity are mut
exclusive properties). In the deterministic case, the periodicity of the individual building blocks is e
broken by the superposition. This remark suggests that there should exist alternative representa
(G)WMF’s, based upon scale invariant building blocks rather than periodic or stationary ones. R
of this type can be found in [3,12], but we would like here to adopt a general approach base
transformation capable of trading stationarity for self-similarity, and vice versa. Such a transform
exists: it is referred to as theLamperti transform.
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2.2. The Lamperti transform

Definition 1. GivenH > 0, the Lamperti transformLH operates on functions{Y (t), t ∈ R} according to

(LHY )(t) := tHY (logt), t > 0, (6)

and the corresponding inverse Lamperti transformL−1
H operates on functions{X(t), t > 0} according to(

L−1
H X

)
(t) := e−HtX

(
et

)
, t ∈ R. (7)

This transform has been first considered by Lamperti in a seminal paper on self-similar process
and it has been later reintroduced independently by a number of authors (see, e.g., [21] or the re
quoted in [11]). Whereas various extensions of the Lamperti transform have been recently con
[6,7], the key property of the Lamperti transform—the one which indeed motivated its introductio
that it allows for a one-to-one correspondence between stationary and self-similar processes
equivalent deterministic context [21], between periodic and self-similar functions.

Periodic functions and stationary processes can naturally be expanded on “tones” (or Fourier

ef (t) := ei2πf t , (8)

whose Lamperti transform expresses straightforwardly as

cH,f (t) := (LHef )(t)= tH+i2πf , t > 0. (9)

Such waveforms are referred to as (logarithmic)chirps [9], i.e., amplitude and frequency modulat
signals of the forma(t)exp{iψ(t)}, with ψ(t) = 2πf log t . It thus follows that the derivative of th
phaseψ(t) is such thatψ ′(t)/2π = f/t , supporting the idea of a time-varying (“chirping”) instantaneo
frequency, in contrast with tones whose instantaneous frequency is constant (see Fig. 2). One ca
that logarithmic chirps are a key example of functions exhibiting (discrete) scale invariance (in the
of (3)) without being fractal: their graph is a smooth function fort > 0.

Whereas the tones (8) are the elementary building blocks of the Fourier transform, the chirps (9
elementary building blocks of theMellin transform[4] for which we will adopt the following definition

Definition 2. GivenH > 0,β ∈ R, andcH,β(t) as in (9), the Mellin transform of a function{X(t), t > 0}
is defined by

(MHX)(β) :=
+∞∫
0

X(t)cH,β(t)
dt

t2H+1
, (10)

with the corresponding reconstruction formula

X(t)=
+∞∫

−∞
(MHX)(β)cH,β(t)dβ. (11)

2.3. Chirp decomposition of the GWMF

Based on the different tools that have been introduced, we can now enounce the following prop
which is the central result of this section:
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Fig. 2. Tones and chirps—the Lamperti transformation puts in a one-to-one correspondence a tone with a constant
(left column) and a logarithmic chirp with a power-law amplitude (right column). The top row displays examples o
waveforms, and the bottom row the corresponding time–frequency images which evidence and contrast their “insta
frequency” structures (constant for the tone and hyperbolic for the chirp).

Proposition 1. The scale-invariant generalized Weierstrass–Mandelbrot function(5) admits the chirp
decomposition

Wg(t)=
∞∑

m=−∞

(MHG)(m/ logλ)

logλ
cH,m/ logλ(t), (12)

with (MHG)(·) the Mellin transform ofG(t) := g(0)− g(t).

Proof. “Delampertizing” the GWMF (5) withϕn = 0, we readily get that(
L−1
H Wg

)
(t)= (

L−1
H Wg

)
(t + k logλ) (13)

for anyk ∈ Z, thus proving (as expected) that the inverse Lamperti transform of a scale-invariant G
is periodic of period logλ. As a periodic function, it can thus be expanded in a Fourier series

(
L−1
H Wg

)
(t)=

∞∑
wm em/ logλ(t), (14)
m=−∞
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with

wm = 1

logλ

logλ∫
0

(
L−1
H Wg

)
(t)em/ logλ(t)dt.

Inverting (14) and using the fact that the Lamperti transform of a Fourier tone is a chirp (see E
we get

Wg(t)=
∞∑

m=−∞
wmcH,m/ logλ(t),

with

wm = 1

logλ

logλ∫
0

[
e−Hθ

∞∑
n=−∞

λ−nHG
(
λn eθ

)]
em/ logλ(θ)dθ

= 1

logλ

∞∑
n=−∞

λ−nH

λn+1∫
λn

G(u)
(
λ−nu

)−H
em/ logλ(logu− n logλ)

du

u

= 1

logλ

∞∑
n=−∞

λn+1∫
λn

G(u)c−H,m/ logλ(u)
du

u
= 1

logλ

∞∫
0

G(u)cH,m/ logλ(u)
du

u2H+1

= (MHG)(m/ logλ)

logλ
,

whence the claimed result.✷
One can deduce from this chirp decomposition that the Mellin transform of the GWMF takes

very simple form, since it reads

(MHWg)(β)=
∞∑

m=−∞

(MHG)(m/ logλ)

logλ
δ

(
β − m

logλ

)
and thus consists in an infinite series of equispaced peaks. This is the Mellin counterpart
geometrical comb structure that holds for the Fourier spectrum of the WMF.

Example. As a special case, let us consider the standard WMF (2) withϕn = 0. We have in this cas
g(t)= eit and

wm = 1

logλ

∞∫
0

(
1− eiu

)
u−s−1 du,

with s =H + i2πm/ logλ. An integration by parts leads to

wm = e−iπ/2

s

∞∫
eiuu(1−s)−1 du,
0
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Fig. 3. Tone and chirp models for the WMF—the top row displays 1000 points of a WMF over the interval[0,1], with
parametersλ= 1.1,H = 0.4, andϕn = 0. The synthesis has been obtained either from the “tone model” (2) with 185 term
column) or from the “chirp model” (12) with 20 terms (right column). The bottom row displays the corresponding det
waveforms.

with Re{1 − s} = 1 −H > 0, thus guaranteeing the convergence of the integral. Making the chan
variablev = ue−iπ/2, we finally end up with the result given in [3]

wm = − 1

logλ
exp

{
−i

π

2

(
H + i2πm

logλ

)}
$

(
−H − i2πm

logλ

)
, (15)

where$(·) stands for the Gamma function.

Time–frequency interpretation.The so-obtained decomposition can be given a nice interpretatio
the time–frequency plane. If we focus, for instance, on the real part of the WMF, the chirp exp
deduced from (12) is comprised of oscillating contributions associated to indexesm �= 0, superimposed
to a slowly-varying trendTW(t) which is captured by the indexm= 0

TW(t)= $(1−H)cos(πH/2)

H logλ
tH .

An example of the real part of a WMF and its associated detrended graph, obtained from eit
standard frequency representation (2) or its chirp counterpart (12), are plotted in Fig. 3, wherea
displays the corresponding time–frequency representations.

Without entering into algorithmic details, one can remark that, depending on which expansion i
discrete-time synthesis of WMF’s is faced with different advantages and drawbacks. In both cases
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Fig. 4. Time–frequency interpretation of WMF models—idealized time–frequency structures of the WMF models of Fi
displayed in the left column, together with actual time–frequency distributions in the right column. For a sake of interpr
one has also superimposed to the left diagrams an ellipse whose dimensions give an indication of the time–frequenc
involved in the computation of the (reassigned) spectrograms used for producing the diagrams of the right column.
fixed window, it clearly appears that model components (either tones or chirps) are “seen” as such when they enter ind
the window. On the contrary, when more than one component is simultaneously “seen” within the window, what the
reveals is the result of their superposition: chirps emerge as superimposed tones (top right diagram, lower frequen
tones emerge as superimposed chirps (bottom right diagram, higher frequencies).

finite number of terms can be summed up in practice, and frequency limitations occur due to samp
finite duration effects. If we first think of the lower frequencies, the chirp expansion is clearly fa
since the trend is fully taken into account by only one term (m = 0), whereas the Fourier expansi
would necessitate an infinite number of them (all negativem’s). On the contrary, if we think of the highe
frequencies, sampling conditions are easily dealt with in the Fourier expansion, whereas all chir
a priori no built-in frequency limitation. This explains why the two waveforms of Fig. 3 are not
identical.

For a sake of improved localization on chirps, we used as time–frequency representations rea
spectrograms [1,2] which basically perform a Fourier analysis on a short-time basis. As is well k
a spectrogram and its reassigned version are naturally equipped with a “time–frequency window”
dimensions are determined by the equivalent duration and spectral width of some a priori chose
time window. Therefore, if we superimpose the occupation area of this time–frequency window
idealized WMF models of Eq. (2) (which consists of geometrically spaced spectral lines) and E
(which consists of chirps), we clearly see that different regimes may be observed, depending on
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spectral lines and chirps are “seen” through the window. Given a fixed spectral width for the w
spectral lines will be considered as natural individual components as long as their spacing will b
enough to not allow more than one line to enter the window at the same time: this is what we obse
sufficiently high frequencies. On the contrary, when many spectral lines are simultaneously prese
window, what time–frequency analysis reveals in the result of the superposition, i.e., chirps: this
we observe at lower frequencies. Reasoning along the same lines leads to the same result if w
the “tone model” (2) by the “chirp model” (12). In this case, the perspective is reversed and spectr
appear at high frequencies as the result of the co-existence of multiple chirps within the time–fre
window, whereas the emergence of chirps is privileged at lower frequencies, where they are de
individually.

2.4. The case of randomized WMF’s

The underlying chirp structure that has been evidenced for deterministic GWMF’s can be vie
a result of the fixed phase relationships which exist between the constitutive tones. In particular
simplest case whereϕn = 0 for all n’s, all tones are in phase at timet = 0, with the consequence th
the time origin plays a very specific role. In the case where the phasesϕn are i.i.d. random variables, th
picture is drastically changed, and no coherent phase organization can be expected to occur in in
realizations of randomized GWMF’s. However, this limitation does not prevent from still identif
chirps in quantities related to ensemble averages, and the task proves to be made easy by the
while being nonstationary processes, randomized GWMF’s (in particular, WMF’s) may turn out to
stationary increments.

More precisely, givenθ > 0, we will introduce aθ -increment operator by its action on a functionX(t)
according to

(&θX)(t) :=X(t + θ)−X(t).

Assuming that the phasesϕn are i.i.d. random variables uniformly distributed on[0,2π ], it
follows immediately from (5) that the correspondingθ -increment process is zero-mean, i.e., t
E(&θWg)(t)= 0. Second-order properties of(&θWg)(t) can be evaluated as well, leading to

E(&θWg)(t)(&θWg)(s)=
∞∑

n=−∞
λ−2nH (&λnθG)

(
λnt

)
(&λnθG)

(
λns

)
, (16)

with G(t)= g(0)− g(t) as previously. In particular, the variance can be simply expressed as

E

∣∣(&θWg)(t)
∣∣2 =

∞∑
n=−∞

λ−2nH
∣∣(&λnθG)

(
λnt

)∣∣2. (17)

Further simplications can be obtained in the specific case of the WMFW(t) for whichg(t)= eit , since
we then have|(&λnθG)(λ

nt)|2 = |1− eiλ
nθ |2 for all t ’s, from which it follows that:

E
∣∣(&θW)(t)

∣∣2 = 2
∞∑

n=−∞
λ−2nH (

1− cosλnθ
)
. (18)

As a function of timet , the variance of theθ -increments of randomized WMF’s is therefore a quan
which is constant. As a function of the increment stepθ , the same quantity (which can also be refer
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Fig. 5. Variogram of randomized WMF—in the case of a randomized WMF, the ensemble averaged variogram is expec
itself a WMF. When dealing with one realization (top left diagram, in this caseλ= 1.07,H = 0.3, andϕ i.i.d. over[0,2π]), one
can estimate an empirical variogram from the 1000 observed data points (top right). Detrending this estimate by a fi
differencing operator (bottom left) gives a function whose time–frequency analysis (bottom right) reveals the mixed s
of tones and chirps observed in deterministic WMF’s (see Fig. 4).

to as avariogram, or a second-order structure function) is nothing but (twice) the real part of th
deterministic WMF (2), with exponent 2H and phasesϕn = 0. Since the variogram is itself a WM
it can be expanded on chirps and the results given previously for deterministic WMF’s apply. Fi
gives an example of a randomized WMF, together with an empirical estimate of its variogram
simulation consisting of a discrete-time approximation{Wg[n], n = 1, . . . ,N}, the variogram estimat
is simply given by

V̂ [k] = 1

N − k

N−k∑
n=1

∣∣W [n+ k] −W [n]∣∣2
, k = 0, . . . ,K, (19)

with K �N so as to guarantee a statistical significance to the estimation. In theory, i.e., if the var
was indeed evaluated via an ensemble average in place of the time average (19), a trend
could be applied in closed form, as in the deterministic case. When dealing with only one reali
this is unfortunately no more possible but, based upon the reasonable assumption that the tr
different from one realization to the other, has a significantly slower evolution than the oscillating
components, a poorman’s substitute can be proposed by simply computing(&1V )[k]. The outcome o
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Fig. 6. WMF and increments—the top graph displays 1000 points of a WMF over the interval[0,1], with parametersλ= 1.07,
H = 0.3, andϕn i.i.d. over [0,2π]. The two graphs below display the corresponding increment processes obtaine
increment steps 1 and 4, respectively. Both are stationary processes.

this crude simplification is plotted in Fig. 5, together with the corresponding time–frequency an
which can be compared with profit to those of Fig. 4.

Still restricting to the WMF case, the companion specification of the two-point correl
function (16) gives

E(&θW)(t)(&θW)(s)= 2
∞∑

n=−∞
λ−2nH

(
1− cosλnθ

)
eiλ

n(t−s), (20)

a function which only depends on the differencet − s, thus guaranteeing that theθ -increments proces
(&θW)(t) is second-order stationary for anyθ .

Denoting byRθ(τ) the real part of the corresponding stationary autocorrelation functionE(&θW)(t)×
(&θW)(t + τ), we do not get (for a fixedθ ) a quantity which would be exactly scale-invariant a
function of τ . However, comparing the real part of (20) with (1), we observe that it correspond
WF of a similar type, properly extended to negativen’s by weighting each Fourier mode cosλnτ of
amplitudeλ−2nH by a regularizing term(1 − cosλnθ): we get therefore an approximate form of sc
invariance which depends on the increment stepθ . For a fixedλ, a largerθ tends to increase the relativ
contribution of negativen’s in the sum, i.e., to enhance lower frequencies. An illustration of this fa
given in Figs. 6 and 7 where, proceeding as for the variance and noting that the autocorrelation f
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Fig. 7. Autocorrelation of WMF increment processes—the left column displays the empirical autocorrelation estim
the (stationary) WMF increment processes considered in Fig. 6. The right column displays the corresponding time–f
images, supporting the expectation that such quantities undergo an approximate self-similar behavior, close to that o
with a relative contribution of lower frequencies which is reinforced when the increment step is made larger.

of Re{(&θW)(t)} and Im{(&θW)(t)} are identical and both equal toRθ(τ)/2, we used the empirica
estimate

R̂m[k] = 2

N − k

N−k∑
n=1

Re
{
W [n+m] −W [n]}Re

{
W [n+m+ k] −W [n+ k]}.

3. Concluding remarks

The results presented here were intended to shed a new light on alternative chirp decomp
that may be used for representing (generalized) Weierstrass–Mandelbrot functions. Special emp
been put on a time–frequency interpretation according to which both tones and chirps equally
constitutive building blocks of GWMF’s, and can be revealed by an adapted analysis. As such
frequency analysis appears as a powerful tool which can be applied to other types of functions
to evidence in a simplified way the existence of a rich inner structure in a waveform (one can
report to [10] for an application of the same technique to Riemann’s function). One can also th
further extensions related directly to the basic formulation (2) (e.g., the “non-chiral” extensions p
forward in [17]), or to the chirp expansion (12) (for which it is worth stressing the fact that a nu
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of results have already been obtained about different behaviors and their classification, dependin
structure of amplitude and phase terms [12]). In the classical formulation (5), GWMF’s appear
extension of (2) in which tones are replaced by otherfunctionswhereas, in the chirp formulation (12
the same extension relies in a simpler way on a modification ofcoefficients, leaving room to additiona
manipulations on the chirps themselves (e.g., by making use of a collection of differentH ’s). This may
pave the road to newly controlled variations on the WMF and its (old and new) generalizations.
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