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Abstract

Weierstrass—Mandelbrot functions are given a time—frequency interpretation which puts emphasis on their
possible decomposition on chirps as an alternative to their standard, Fourier-based, representation. Examples of
deterministic functions are considered, as well as randomized versions for which the analysis is applied to empirical
estimates of statistical quantities.
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1. The Weierstrass—Mandelbrot function
In 1872, Weierstrass introduced a function defined by a semi-infinite superposition of weighted “tones”
(or Fourier modes) whose frequencies are geometrically spaced, namely [22]:

o
W*(t) =Y 2" cosr, 1)
n=0
with A > 1 andr € R.
Assuming that the free parametgr, which governs the relative weights of the different tones, is such
that 0< H < 1, the series given in (1) is convergent and the corresponding funétian), referred to
as theWeierstrass functiofWF), is a well-defined quantity. The point which has since then received
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much attention is that this function, although continuous, is nowhere differentiable: it is in fact Holder

continuous of ordeH everywhere [13]. As such, it has been widely used as a paradigmatic example of a
fractal function, various measures of dimensions for its graph [3,8,16,21] ending up with the noninteger
value 2— H.

Despite its fractal structure, the WF is not truly-self-similar since we only havéV*(it) =
AM[W*(t) — cost] # ATW*(1). This is so because the WF (1) is defined as a semi-infinite sum starting
with n = 0, an operation which consists in adding frequengies A with no upper limit, but also with
no spectral contributions below the lowest frequency defined.Byhe construction is therefore based
on afinite larger scale which naturally prevents any formcofmpletescale invariance. This observation
prompted Mandelbrot [16] (see also [17]) to modify the original definition (1) by adding in some suitable
way the “missing” lower frequencies < A. His proposal was to generalize and complete (1) according
to

W)=Y a(1-—e")en, 2)

n=—oo

S0 as to maintain convergence, with the extra degree of freedom of arbitrary gphases

From (2), it is immediate to examine the way thigierstrass—Mandelbrot functigitVFM) behaves
under scale changing operations. If, eq.= un, we haveW (A*r) = e"* )k W (¢) and, in the special
case wherg. = 0 (which implies thaty, = 0 for all n € Z), this leads to

W (3ke) = 2w (o) ®3)

for anyk € Z. In this case, the WMF turns out to legactlyscale invariant, bubnly with respect to the
preferred scaling ratia (and any of its integer powers): such a situation is referred to as “discrete scale
invariance” (DSI) [20]. If thep,’s are i.i.d. random variables uniformly distributed @) 2r], we get a
randomized version of the WMF which satisfies a companion forataifstical DSI (in the sense of [5])

(W(k), 1 eR} £ (MW (), 1 eR) @)
foranyk € Z, where the notation” stands for equality of all finite-dimensional distributions. A specific
interest of such a stochastic version of the WMF (and variations thereof, with Gaussian prefactors) is that
it can be used for approximating -self-similar processes such as fractional Brownian motion [8,15,18].

The specific form of the WMF given in (2) can itself be further generalized to

We(t)= > 27""(g(0) —g(r"t)) €, (5)

n=—oo

whereg(¢) can be any periodic function, provided that it is continuously differentiable=ab [21].
Scaling properties of WMF’s (2) carry over to their generalized form (5), thereafter referred to as a
generalized WMKEGWMF).

Typical examples of (G)WMF’s are given in Fig. 1.
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(a) (b)

(c) (d)

Fig. 1. Examples of Weierstrass—Mandelbrot functions—each graph displays 1000 points of a WMF over the[(htErval
Subplots (a) to (c) correspond to the classical WMF defined in Eqg. (2), whereas subplot (d) is a generalized WMF as defined
in Eq. (5) with g(r) = co(¢). Parameters are as follows: (a)= 1.5, H = 0.2, ¢, = 0; (b) A = 1.07, H = 0.3, ¢, =n/2;
(c)A=1.2,H =05, ¢, i.i.d. over[0, 27]; (d) A = 1.15, H = 0.8, ¢, = n.

2. Tones vs chirps
2.1. Scale invariance and periodicity

For the above-mentioned suitable choices of phases, the WMF (2) and its generalization (5) are both
characterized by two key properties: scale invariance and periodicity. The co-existence of these two
properties is made possible because they operate at different levels: periodicity refers to the nature of the
building blocks upon which the functions are constructed, whereas scale invariance appears as a result
of the superposition. In the stochastic case, the (G)WMF is usually understood as a superposition of
processes (e.g., randomly phased tones) which are individually stationary, but whose superposition is not,
since it isH -self-similar (as is well known (see, e.g., [19]), stationarity and self-similarity are mutually
exclusive properties). In the deterministic case, the periodicity of the individual building blocks is equally
broken by the superposition. This remark suggests that there should exist alternative representations for
(G)WMF's, based upon scale invariant building blocks rather than periodic or stationary ones. Results
of this type can be found in [3,12], but we would like here to adopt a general approach based on a
transformation capable of trading stationarity for self-similarity, and vice versa. Such a transformation
exists: it is referred to as tHeamperti transform
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2.2. The Lamperti transform

Definition 1. Given H > 0, the Lamperti transfornf ; operates on function& (¢), ¢ € R} according to

(LuY)(@):=t"Y(ogt), >0, (6)
and the corresponding inverse Lamperti transfaﬂrp’l operates on functiongX (¢), ¢+ > 0} according to
(L' X)) :=e""X(€), teR. @)

This transform has been first considered by Lamperti in a seminal paper on self-similar processes [14]
and it has been later reintroduced independently by a number of authors (see, e.g., [21] or the references
quoted in [11]). Whereas various extensions of the Lamperti transform have been recently considered
[6,7], the key property of the Lamperti transform—the one which indeed motivated its introduction—is
that it allows for a one-to-one correspondence between stationary and self-similar processes or, in an
equivalent deterministic context [21], between periodic and self-similar functions.

Periodic functions and stationary processes can naturally be expanded on “tones” (or Fourier modes)

€ () := eiant, (8)
whose Lamperti transform expresses straightforwardly as
cn (1) = (Lyep) () =" 1 >0, ©)

Such waveforms are referred to as (logarithnaiarps [9], i.e., amplitude and frequency modulated
signals of the forma(s) explivy (¢)}, with ¥ () = 27 f logt. It thus follows that the derivative of the
phasey (¢) is such thaiy'(¢) /2w = f/t, supporting the idea of a time-varying (“chirping”) instantaneous
frequency, in contrast with tones whose instantaneous frequency is constant (see Fig. 2). One can remark
that logarithmic chirps are a key example of functions exhibiting (discrete) scale invariance (in the sense
of (3)) without being fractal: their graph is a smooth functionfor 0.

Whereas the tones (8) are the elementary building blocks of the Fourier transform, the chirps (9) are the
elementary building blocks of thdellin transform[4] for which we will adopt the following definition:

Definition 2. GivenH > 0, 8 e R, andcy g(¢) as in (9), the Mellin transform of a functioiX (¢), ¢ > 0}
is defined by
+00

S
My X)(B) := / X(t)enp(t) 2L (10)
0
with the corresponding reconstruction formula

+oo
X(1) = / (M X)(B)cis (1) dB. (11)

2.3. Chirp decomposition of the GWMF

Based on the different tools that have been introduced, we can now enounce the following proposition,
which is the central result of this section:
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Fig. 2. Tones and chirps—the Lamperti transformation puts in a one-to-one correspondence a tone with a constant amplitude
(left column) and a logarithmic chirp with a power-law amplitude (right column). The top row displays examples of such
waveforms, and the bottom row the corresponding time—frequency images which evidence and contrast their “instantaneous
frequency” structures (constant for the tone and hyperbolic for the chirp).

Proposition 1. The scale-invariant generalized Weierstrass—Mandelbrot fund¢yradmits the chirp
decomposition

=, (MG log A
We(t) = Z My I)O(Z){ o9 )CH,m/logA(l‘), (12)

m=—00

with (M 5 G)(-) the Mellin transform ofG (z) := g(0) — g(¢).
Proof. “Delampertizing” the GWMF (5) withp, = 0, we readily get that

(L5 W) (@) = (L' W,) (¢ + klogh) (13)

for anyk € Z, thus proving (as expected) that the inverse Lamperti transform of a scale-invariant GWMF
is periodic of period log.. As a periodic function, it can thus be expanded in a Fourier series

(‘CZIle)(t): Z wmem/log)»(t)v (14)

m=—0oQ
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with

logx

[ (w0 mma.
0

Inverting (14) and using the fact that the Lamperti transform of a Fourier tone is a chirp (see Eq. (9)),
we get

Win

- logA

00
Wg(t): Z meH,m/IogA(t),

with
1 loga .
i | [ £ et [

0
antl

—1 3 —n —n, \—H du
:Iogxn;oo)‘ H/G(u)()‘ u) enl/logk(logu—nlogk)7

A

)L)l+1

. 3 P——n 1 ——— du
= ogn Z / G(M)C_H,m/logk(u)7 =@/G(M)CH,,,,/|OQA(M)W
n=—oo o O
_ (MyG)(m/logi)
B log A :

whence the claimed result.0

One can deduce from this chirp decomposition that the Mellin transform of the GWMF takes on a
very simple form, since it reads

= (MyG)(m/logr
Maw = 30 SRR (5 )

m=—00

and thus consists in an infinite series of equispaced peaks. This is the Mellin counterpart of the
geometrical comb structure that holds for the Fourier spectrum of the WMF.

Example. As a special case, let us consider the standard WMF (2) itk 0. We have in this case
g(t)=¢€"and

9]

1

—_ _ auy,,—s—1
Wy, = 097 /(1 € )u du,
0

with s = H + i2nm/logA. An integration by parts leads to

o0
e—in/Z
Wy, = / e'u=9"1dy

S
0
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Fig. 3. Tone and chirp models for the WMF—the top row displays 1000 points of a WMF over the int@rtl with
parameters = 1.1, H = 0.4, andyg,, = 0. The synthesis has been obtained either from the “tone model” (2) with 185 terms (left
column) or from the “chirp model” (12) with 20 terms (right column). The bottom row displays the corresponding detrended
waveforms.

with Re{1 — s} = 1 — H > 0, thus guaranteeing the convergence of the integral. Making the change of
variablev = u e7"/2, we finally end up with the result given in [3]

L L PRt | P P i (15)
Wm = log Pl ™2 log A logx /)’

whereI'(-) stands for the Gamma function.

Time—frequency interpretation.The so-obtained decomposition can be given a nice interpretation on
the time—frequency plane. If we focus, for instance, on the real part of the WMF, the chirp expansion
deduced from (12) is comprised of oscillating contributions associated to indexe8, superimposed
to a slowly-varying trend’yy (¢) which is captured by the index =0
T () = ['(1— H)coswH/2) -
HlogA

An example of the real part of a WMF and its associated detrended graph, obtained from either the
standard frequency representation (2) or its chirp counterpart (12), are plotted in Fig. 3, whereas Fig. 4
displays the corresponding time—frequency representations.

Without entering into algorithmic details, one can remark that, depending on which expansion is used,
discrete-time synthesis of WMF's is faced with different advantages and drawbacks. In both cases, only a
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Fig. 4. Time—frequency interpretation of WMF models—idealized time—frequency structures of the WMF models of Fig. 3 are
displayed in the left column, together with actual time—frequency distributions in the right column. For a sake of interpretation,
one has also superimposed to the left diagrams an ellipse whose dimensions give an indication of the time—frequency window
involved in the computation of the (reassigned) spectrograms used for producing the diagrams of the right column. Given a
fixed window, it clearly appears that model components (either tones or chirps) are “seen” as such when they enter individually
the window. On the contrary, when more than one component is simultaneously “seen” within the window, what the analysis
reveals is the result of their superposition: chirps emerge as superimposed tones (top right diagram, lower frequencies), and
tones emerge as superimposed chirps (bottom right diagram, higher frequencies).

finite number of terms can be summed up in practice, and frequency limitations occur due to sampling and
finite duration effects. If we first think of the lower frequencies, the chirp expansion is clearly favored
since the trend is fully taken into account by only one tern=t 0), whereas the Fourier expansion
would necessitate an infinite number of them (all negatii®). On the contrary, if we think of the higher
frequencies, sampling conditions are easily dealt with in the Fourier expansion, whereas all chirps have
a priori no built-in frequency limitation. This explains why the two waveforms of Fig. 3 are not fully
identical.

For a sake of improved localization on chirps, we used as time—frequency representations reassigned
spectrograms [1,2] which basically perform a Fourier analysis on a short-time basis. As is well known,
a spectrogram and its reassigned version are naturally equipped with a “time—frequency window” whose
dimensions are determined by the equivalent duration and spectral width of some a priori chosen short-
time window. Therefore, if we superimpose the occupation area of this time—frequency window to the
idealized WMF models of Eq. (2) (which consists of geometrically spaced spectral lines) and Eq. (12)
(which consists of chirps), we clearly see that different regimes may be observed, depending on the way
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spectral lines and chirps are “seen” through the window. Given a fixed spectral width for the window,
spectral lines will be considered as natural individual components as long as their spacing will be large
enough to not allow more than one line to enter the window at the same time: this is what we observe for
sufficiently high frequencies. On the contrary, when many spectral lines are simultaneously present in the
window, what time—frequency analysis reveals in the result of the superposition, i.e., chirps: this is what
we observe at lower frequencies. Reasoning along the same lines leads to the same result if we replace
the “tone model” (2) by the “chirp model” (12). In this case, the perspective is reversed and spectral lines
appear at high frequencies as the result of the co-existence of multiple chirps within the time—frequency
window, whereas the emergence of chirps is privileged at lower frequencies, where they are dealt with
individually.

2.4. The case of randomized WMF's

The underlying chirp structure that has been evidenced for deterministic GWMF'’s can be viewed as
a result of the fixed phase relationships which exist between the constitutive tones. In particular, in the
simplest case wherg, = 0 for all n’s, all tones are in phase at time= 0, with the consequence that
the time origin plays a very specific role. In the case where the plasa® i.i.d. random variables, the
picture is drastically changed, and no coherent phase organization can be expected to occur in individual
realizations of randomized GWMF’s. However, this limitation does not prevent from still identifying
chirps in quantities related to ensemble averages, and the task proves to be made easy by the fact that,
while being nonstationary processes, randomized GWMF’s (in particular, WMF’s) may turn out to have
stationary increments.

More precisely, gived > 0, we will introduce &-increment operator by its action on a functi&irir)
according to

(Do X) (1) := X (1 +6) — X(2).

Assuming that the phaseg, are i.i.d. random variables uniformly distributed @8, 2], it
follows immediately from (5) that the correspondimgincrement process is zero-mean, i.e., that
E(AgW,)(t) = 0. Second-order properties @k, W,)(¢) can be evaluated as well, leading to

9]

E(AgWy)(1)(Ag W) (s) = Z AT H (A G) (A1) (A G) (A1), (16)

n=—oo

with G (¢r) = g(0) — g(¢) as previously. In particular, the variance can be simply expressed as

E[(AW) O = Y 272 |(80sG) (A1) . (17)

n=—oo

Further simplications can be obtained in the specific case of the WNifor which g(r) = €, since
we then have(A;.,G)(A"1)|? = |1 — €*"?|2 for all ¢’s, from which it follows that:

o
E[(AsW)0)|*=2 Y a2 (1~ cosrg). (18)
n=—o0o
As a function of time, the variance of thé-increments of randomized WMF’s is therefore a quantity
which is constant. As a function of the increment stgphe same quantity (which can also be referred



P. Borgnat, P. Flandrin / Appl. Comput. Harmon. Anal. 15 (2003) 134-146 143

WMF process variogram
time time (lag)
detrended variogram reassigned spectrogram
>
o
c
()
=
O] X
[¢b] AN %
e p -~
S |
time (lag) time (lag)

Fig. 5. Variogram of randomized WMF—in the case of a randomized WMF, the ensemble averaged variogram is expected to be
itself a WMF. When dealing with one realization (top left diagram, in this éasel.07, H = 0.3, andy i.i.d. over[0, 27 ]), one

can estimate an empirical variogram from the 1000 observed data points (top right). Detrending this estimate by a first-order
differencing operator (bottom left) gives a function whose time—frequency analysis (bottom right) reveals the mixed structure
of tones and chirps observed in deterministic WMF's (see Fig. 4).

to as avariogram or asecond-order structure functipns nothing but (twice) the real part of the
deterministic WMF (2), with exponent2 and phaseg, = 0. Since the variogram is itself a WMF,

it can be expanded on chirps and the results given previously for deterministic WMF’s apply. Figure 5
gives an example of a randomized WMF, together with an empirical estimate of its variogram. The
simulation consisting of a discrete-time approximat{d¥,[n], n =1, ..., N}, the variogram estimate

is simply given by

’ k=0,...,K, (19)

R 1 N—k
wmzﬁtzgywm+m—wm]

with K < N so as to guarantee a statistical significance to the estimation. In theory, i.e., if the variogram
was indeed evaluated via an ensemble average in place of the time average (19), a trend removal
could be applied in closed form, as in the deterministic case. When dealing with only one realization,
this is unfortunately no more possible but, based upon the reasonable assumption that the trend, yet
different from one realization to the other, has a significantly slower evolution than the oscillating chirp
components, a poorman’s substitute can be proposed by simply compating[k]. The outcome of
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Fig. 6. WMF and increments—the top graph displays 1000 points of a WMF over the ini@réglwith parameters = 1.07,
H = 0.3, andg, i.i.d. over [0, 27]. The two graphs below display the corresponding increment processes obtained with
increment steps 1 and 4, respectively. Both are stationary processes.

this crude simplification is plotted in Fig. 5, together with the corresponding time—frequency analysis,
which can be compared with profit to those of Fig. 4.

Still restricting to the WMF case, the companion specification of the two-point correlation
function (16) gives

E(AW)(O)(BgW)(s) =2 Y 72" (1 - cosr"0) &=, (20)

n=—oo

a function which only depends on the differerce s, thus guaranteeing that tieincrements process
(AgW)(2) is second-order stationary for afy

Denoting byR, (1) the real part of the corresponding stationary autocorrelation funEtiog W) (¢) x
(AgW)(t + 1), we do not get (for a fixed) a quantity which would be exactly scale-invariant as a
function of r. However, comparing the real part of (20) with (1), we observe that it corresponds to a
WEF of a similar type, properly extended to negative by weighting each Fourier mode co& of
amplituder=2"# by a regularizing tern{1 — cosA”6): we get therefore an approximate form of scale
invariance which depends on the increment stepor a fixed), a largerd tends to increase the relative
contribution of negative:’s in the sum, i.e., to enhance lower frequencies. An illustration of this fact is
given in Figs. 6 and 7 where, proceeding as for the variance and noting that the autocorrelation function
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Fig. 7. Autocorrelation of WMF increment processes—the left column displays the empirical autocorrelation estimates for
the (stationary) WMF increment processes considered in Fig. 6. The right column displays the corresponding time—frequency
images, supporting the expectation that such quantities undergo an approximate self-similar behavior, close to that of a WMF,
with a relative contribution of lower frequencies which is reinforced when the increment step is made larger.

of Re[(AgW)(¢)} and Im{(AyW)(¢)} are identical and both equal ®,(r)/2, we used the empirical
estimate

_ 2 &
Rulkl= = D _Re{Wln +m] = Winl} Re{Wln +m + k] = Win +k]}.
n=1

3. Concluding remarks

The results presented here were intended to shed a new light on alternative chirp decompositions
that may be used for representing (generalized) Weierstrass—Mandelbrot functions. Special emphasis has
been put on a time—frequency interpretation according to which both tones and chirps equally exist as
constitutive building blocks of GWMF’s, and can be revealed by an adapted analysis. As such, time—
frequency analysis appears as a powerful tool which can be applied to other types of functions in order
to evidence in a simplified way the existence of a rich inner structure in a waveform (one can, e.g.,
report to [10] for an application of the same technique to Riemann’s function). One can also think of
further extensions related directly to the basic formulation (2) (e.g., the “non-chiral” extensions pushed
forward in [17]), or to the chirp expansion (12) (for which it is worth stressing the fact that a number
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of results have already been obtained about different behaviors and their classification, depending on the
structure of amplitude and phase terms [12]). In the classical formulation (5), GWMF's appear as an
extension of (2) in which tones are replaced by offueictionswhereas, in the chirp formulation (12),

the same extension relies in a simpler way on a modificatioroefficientsleaving room to additional
manipulations on the chirps themselves (e.g., by making use of a collection of difféi®nfrhis may

pave the road to newly controlled variations on the WMF and its (old and new) generalizations.
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