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ABSTRACT

We present a theory of stochastic processes that are finite size scale invariant. Such processes are invariant
under generalized dilations that operate on bounded ranges of scales and amplitudes. We recall here the theory
of deterministic finite size scale invariance, and intoduce an operator called Lamperti transform that makes
equivalent genralized dilations and translations. This operator is then used to defined finite size scale invariant
processes as image of stationary processes. The example of the Brownian motion is presented in some details to
illustrate the definitions. We further extend the theory to the case of finite size scale invariant processes with
stationary increments.
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1. MOTIVATIONS AND AIMS

The property of scale invariance (also known as self-similarity) is a property shared by many natural or man-
made nonlinear systems, as different as turbulent fluids, complex networks, Diffusion-Limited Agregation clus-
ters. . . Scale invariance is reminiscent of the concept of fractals, and is thus more and more recognized as a
fundamental symmetry of Nature. However, this symmetry, like any, can be broken in different manners, and
the breaking of scale invariance can lead to weaker forms of scale invariance, such as for example discrete scale
invariance.1, 2 Another fundamental breaking of scale invariance is provided by the physical fact that scale
invariance cannot exist for scale ranging from 0 to ∞: the invariance has to broken by infra-red and ultra-violet
cut-offs. Many examples of this breaking are known. One of the most famous is the Kolmogorov k−5/3 law, wich
states that the power spectrum of the longitudinal increments of the velocity of a turbulent fluid scales as k−5/3

in the limit of infinite Reynolds number.3 However, the scaling is broken at finite Reynolds number, and the
scaling is restricted to the inertial range, roughly defined as the range of scale going form the integral scale (the
larger scale of the experiment) to a small scale where energy is dissipated in heat.

These cut-offs are physically unavoidable, but generally difficult to be theoretically (and practically) taken
into account. Usual approaches consider these limits in some sense like boundary conditions, therefore external
to the physical laws. Another point of view, pionneered by L. Nottale,4 is to incorporate the limits in the laws
of physics, considering that scale, like time, is a physical quantity. Nottale’s work, and later Dubrulle’s and
Graner’s work5, 6 lead to the generalization of scale invariance to finite size scale invariance for which the cutoffs
are part of the scaling laws. In the following, as performed by Dubrulle and Graner, we will consider physical
fields that depend on physical variables, each quantity living in worlds limited by cut-offs. The difference with
their work lies in the way we apply scale invariance: They work on the statistics of some random fields, whereas
we directly work on the random fields themselves.

The paper is organized as follows. In the next section, we recall the necessary material on finite size scale
invariance. This includes the definition of the laws, of the generalized dilation operators, and of deterministic
scale invariance. In section 3, we show that finite size dilations are equivalent to translations thanks to an
operator called Lamperti transform. In section 4, we define the class of finite size scale invariant processes
and examine some of their properties. To illustrate the definition, we introduce the finite size scale invariant
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Brownian motion. In section 5, we go a litlle bit further by defining finite size scale invariant processes that
have stationary increments: here, the finite size character in on the size of the increments. Finally, a discussion
concludes the paper and give some direction of our future work.

2. FINITE SIZE SCALE INVARIANCE

Let X(t) be a field or a signal defined for t ∈ T =]T−, T+[ with values in X =]X−, X+[. We restrict here to one
dimensional sets, we suppose that T ⊂ R+, and therefore t is assumed positive; however, X ⊂ R and the field
under consideration can take positive and negative values. The bounds T±, X± are the cut-offs that we want to
take into account. Note that cut-offs are imposed both on the variable and the field.

Since we are going to generalize scale invariance, we obviously use multiplicative laws. Indeed, usual scale
invariance writes X(λt) = λHX(t), ∀λ. But to go back to better known worlds, we introduce additive rep-
resentations of the variable and the field, in order to work with additive laws. Thus we consider variable
log t = a ∈ A =]a− = log T−; a+ = logT+[. For the field, we will distinguish signed fields from non signed fields.
In the latter case, we restrict our attention to positive fields, and introduce U(a) = logX(expa) : A −→ U =
]U− = logX−, U+ = logX+[. For signed fields, the bridge between multiplicative to additive representation is
somewhat more difficult to build since the logarithm (in the field of real numbers) cannot be defined for negative
values. Therefore, the introduction of a two-parameter representation is necessary. Using Sign(x) = 0 if x ≤ 0
and Sign(x) = 1 otherwise, we define

(U(a) = log |X(expa)|; θ(a) = Sign(X(exp a))) : A →

{

]−∞, U+ = logX+[ if θ(a) = 0
]−∞, U− = log−X−[ if θ(a) = 1

}

4
= U×Z/2Z (1)

If we want to generalize dilations to incorporate the cut-offs into the laws, we must insure that the interval on
which we work (T,X in the multiplicative representation, A,U in the additive representation) are closed under
dilations. In other words, the new dilation laws have to give to these intervals a group structure: existence of a
unique identity element, existence of the inverse of a number, associativity of the law. If the law is commutative,
the group is said to be Abelian.

The laws we consider here are generalisations of the transformation law for velocities in special relativity.5, 6

Let a1, a2 ∈ A× A, the new addition � is defined as

a1 � a2 =
a1 + a2 − a1a2(1/a− + 1/a+)

1− a1a2/a−a+

This law gives to A a group structure: � is associative, the identity element is 0, the inverse of a is −a/(1 −
a(1/a− + 1/a+)). Furthermore, since the identity element 0 is in A, then necessarily a− < 0 and a+ > 0.
Let S� be the morphism associated to �, i.e. the bijection S�:(]a−, a+[,�) −→ (R,+) such that a1 � a2 =
S−1
� (S�(a1) + S�(a2)). To obtain the explicit form of the morphism, we perform as follows. We explicitly write

the morphism equation,

S�

(

a1 + a2 − a1a2(1/a− + 1/a+)

1− a1a2/a−a+

)

= S�(a1) + S�(a2)

derivate this expression with respect to a2, and then set a2 = 0. This leads to the following differential equation

S�(0)′ = S�(a)′
(

1− a(1/a− + 1/a+) + a2/a−a+

)

where the prime stand for the derivative. The solutions are easily shown to be

S�(a) =
a−a+

a− − a+
log

(1− a/a−
1− a/a+

)

= −a± log
(

1− a/a±

)

if a∓ −→ +∞ (2)

= a if furthermore a± −→ −∞

We hence recover the usual addition when the cut-offs go to infinity.



2.1. Law for positive fields

This case is the same as the case of the variable. To set notations, let ⊗ be the new addition of fields defined on
the interval U. The law reads

U1 ⊗ U2 =
U1 + U2 − U1U2(1/U− + 1/U+)

1− U1U2/U−U+

and its associated morphism is S⊗ : (]U−, U+[,⊗) −→ (R,+). The morphism take the same form as S� (see eq.
2), replacing as by Us.

2.2. Law for signed fields

This case is a little bit more tricky, since as mentionned above, the additive representation of the field needs two
parameters (U, θ) ∈ U×Z/2Z. The new addition of fields ⊗ must give to (U×Z/2Z,⊗) a group structure. The
generalization of the finite size addition to the case of this group is7

(U1, θ1)⊗ (U2, θ2) =

(

U1 + U2 − aU1U2 − b(θ1U2 + θ2U1)− cθ1θ2
1− dU1U2 − eθ1θ2

, θ1 + θ2

)

Of course, the definition (1) of the group constrains the previous law. Indeed, (0, 0) is the identity element
for ⊗; 0 in R is absorbing, and therefore its additive representation (−∞, 0) should also be absorbing : this
implies d = 0; if X+ = X−, U and θ should be uncoupled: this implies e = 0; (U+, 0) ⊗ (U+, 0) = (U+, 0),
(U+, 0)⊗ (U−, 1) = (U−, 1) and (U−, 1)⊗ (U−, 1) = (U+, 0). All these constraints lead to some equations linking
parameters a, b, c, . . .; solving these equations leads to

(U1, θ1)⊗ (U2, θ2) =

(

U1(1− θ2 +
U−
U+

θ2)−
U1U2

U+
+ U2(1− θ1 +

U−
U+

θ1) + θ1θ2(U+ −
U2
−

U+
), θ1 + θ2

)

The morphism S⊗ : (U × Z/2Z,⊗) → (R,+) is defined as S+ and S− depending wether θ = 0 or 1. Performing
the same way as for � allows to show that

S⊗ [(U, θ)] =

{

S+(U) = −U+ log(1− U
U+

) if θ = 0

S−(U) = −U+ log(U−−U
U+

) if θ = 1

2.3. Dilation operator

The usual dilation operator Dmul
H,log µ in the multiplicative representation is defined as

(Dmul
H,λX)(t) = λ−HX(λt)

which is written in the additive representation, if µ = logλ, as (Dadd
H,µU)(a) = U(µ + a) − Hµ. In terms of

composition laws, the dilation operator thus performs a dilation of the variable and a dilation (renormalization)
of the field. Likewise, the dilation operator with the new dilation laws �,⊗ is defined as

(Dadd
g,µ U)(a) = g(µ)⊗ U(µ� a)

where the renormalization function g has to be specified (see below). This operator is thus a finite size dilation
operator. We are now ready to study the invariance of a field under the action of such an operator.

2.4. Scale invariance

A field is scale invariant∗ if it is equal to its dilated version. In terms of the additive representation, this reads

(Dadd
g,µ U)(a) = U(a) = g(µ)⊗ U(µ� a)

∗In this section, the discussion is implicitly restricted to the case of positive signal. The dilation operator in the case
of signed signals will be presented in section 3.2.



This invariance principle has several consequences that we recall here. Applying two successive dilations by
factors µ1 and µ2 to an invariant field allows to show that function g satisfies

g(µ1 � µ2) = g(µ1)⊗ g(µ2)

Using the morphism S⊗, this equation implies

S⊗(g(µ1 � µ2)) = S⊗(g(µ1)) + S⊗(g(µ2))

meaning that function S⊗◦g is proportional to the morphism S� of �. For reasons that will become clear in a few
lines, we set (S⊗◦g)(µ) = −HS�(µ) and therefore, the normalization function is given by g(µ) = S−1

⊗ (−HS�(µ)).

Finally, the deterministic field that satisfy the scale invariance can be obtained by solving U(a) = g(µ) ⊗
U(µ� a). This is done by setting a = 0 to obtain

U(a) = U(0)⊗ g−1(a) =
−g(a)

1− g(a)(1/U+ + 1/U−)

where g−1 is the inverse of g for ⊗ and where we have arbitrarily set U(0) = 0 on the r.h.s. of the last equation
(this can be done by an appropriate choice of the origin in the additive representation, or the correct choice of
units in the multiplicative representation). Figure 1 depicts these invariant fields for the nine generic cases that
we can encounter, depending on wether a−, a+, U−, U+ are finite or not. In the case of no cut-off, we of course
recover the usual power law or straight line in the additive representation U(µ) = Hµ. This straight line is
added in the eight other cases to illustrate the departure from usual scale invariance. Further, we can define the
similarity exponent as the derivative of the invariance field to obtain

dU

da
=

−g′(a)

(1− g(a)(1/U+ + 1/U−))2

which can be shown to be equal to H for a = 0. This self-similarity exponent could be interprated wrongly in
some experiment where the field is observed on a small range of scale. To illustrate that point, suppose that the
finite interval ]a−, a+[ contains the observation interval . Then the finite size scale invariant field is close to a
straight line. This is illustrated for some cases in figure 2 where the range of scale on which the field is defined
is either R, ]− 6,+∞[ or ]− 6, 6[, all of these intervals containing the interval of scale ]− 5, 5[ where the field is
measured. It is clear in these figures that the field is close to the usual self-similar field; the effect could be even
more dramatic in case of experimental measurements.

This theory has been used with some success6 to study avalanches in spin systems, cascades in turbulence.
The theory is directly applied on deterministic functions, which in those applications are statistics of some
random fields. The approach we adopt now is different in that we are going to work directly on the random
fields, imposing them to be invariant under finite size dilation operator. But before doing that job, we need to
introduce a transform which will put into correspondence the stochastic processes we will define and stationary
processes.

3. GENERALIZED LAMPERTI TRANSFORMATION

A well-known result due to J. Lamperti and dating back to 19628 says that the stochastic process X(t) =

(LHY )(t) = tHY (log t) is self-similar of index H , i.e. (DH,λX)(t) = λ−HX(λt)
d
= X(t), if Y is stationary (

d
=

stands for the equality in the sense of all finite dimensional distribution functions of the process.) The converse
states that if X is self-similar with index H then (L−1

H X)(t) = exp(−Ht)X(exp t) is stationary. Recalling that

stationary means invariance under translation, i.e. (TτY )(t) = Y (t + τ)
d
= Y (t), ∀τ , Lamperti’s result states

nothing but the equivalence of the translation operator and the dilation operator via the operator LH , or

L−1
H DH,λLH = Tlog λ

Using this equivalence offers a new reading of Lamperti’s transform LH . It can be used to perform an operation
on a self-similar process by working on its stationary equivalent process,9 but it allows also to study some
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Figure 1. Scale invariant fields for the nine generic cases of finite or infinite cut-offs for the variable and the field. In the
fisrt row, the variable has now cut-off, in the second row, the variable is bounded from below and in the third row the
variable has a low and a high cut-off. In the first column, the field is unbounded, whereas it is bounded from below in
the second column and has two cut-offs in the third columns. The bold lines indicate the cut-offs.

breaking of scale invariance by studying the equivalent breaking of stationarity. For example, discrete scale
invariant processes has been defined as Lamperti transform of cyclostationary processes.10, 11

To define finite size scale invariant processes, we would like to keep the operator equivalence between trans-
lation and generalized dilation operators defined in the first section. Once again, we separate the case of positive
fields and that of signed fields.

3.1. Positive signals

Recall that the finite size scale dilation operator writes, in the additive representation,

(Dadd
H,µU)(a) = S−1

⊗ (−HS�(µ))⊗ U(µ� a)

The operators

(Ladd
H Y )(a) = S−1

⊗ (Y (S�(a))) ⊗ S−1
⊗ (HS�(a))

(L−1,add
H U)(t) = S⊗

(

U(S−1
� (t))

)

−Ht

satisfy Dadd
H,µL

add
H = Ladd

H TS�(µ). This result can be verified by direct calculation and essentially makes use of the
morphism definition S�(a� b) = S�(a) + S�(b).



-5 0 5
-3

-2

-1

0

1

2

3

U
-
 and U

+
 infinite

a - an
d a

+ in
fin

ite

-5 0 5
-4

-3

-2

-1

0

1

2

3

U
-
=-5 and U

+
 infinite

a -=-6
 an

d a
+ in

fin
ite

-5 0 5
-4

-3

-2

-1

0

1

2

3

4

U
-
=-5 and U

+
=5

a -=-6
 an

d a
+=6

Figure 2. Illustration of the apparent usual self-similarity in the finite size scale invariant fields. For these pictures,
the cut-offs on the variable are larger than the ends of the observation interval. The figures from the left to the right
correspond to the diagonal of the precedent figure.

By analogy with the usual situation, we call Ladd
H the Lamperti transform associated to the dilation Dadd

H,µ.
The last thing to do is to write these operators in terms of the original variables X and t, it is to say to come
back in the multiplicative representation. This is easy since U(a) = logX(exp(a)) and the results are

(Dmul
H,µX)(t) = exp

{

S−1
⊗ (−HS�(µ)) ⊗ logX [exp(µ� log(t))]

}

(Lmul
H Y )(t) = exp

{

S−1
⊗ (logY (S�(log t)))⊗ S−1

⊗ (HS�(log t))
}

= exp
{

S−1
⊗ {logY (S�(log t)) +HS�(log t))}

}

(L−1,mul
H X)(t) = exp

{

S⊗

(

logX(eS−1

� (t))
)

−Ht
}

3.2. Signed signals

For signed signals, we have to discuss the definition of the dilation operator. Since the additive representation
of signed signal is a two-parameter field (U, θ), the dilation operator reads

(Dadd
g,µ U)(a) = (g(µ), γ(µ))⊗ (U(µ� a), θ(µ� a))

In the following, the renormalization function g is assumed to be of constant sign, and we choose arbitrarily
γ(µ) = 0, i.e., the influence of g is the same whatever the sign of the field. This is in accordance with the usual
renormalization λ−H , and avoid strange behavior for which the sign of the renormalization fluctuates constantly.
Function g can then be specified as in paragraph 2.4. We find g(µ) = S−1

+ (−HS�(µ)), and the dilation operator
explicitly writes

(Dadd
H,µU)(a) =

{

S−1
+ [−HS�(µ) + S+ (U(a� µ))] if θ(a) = 0
S−1
−

[

S−(S−1
+ (−HS�(µ))) + S− (U(a� µ))

]

if θ(a) = 1

Lamperti transform and its inverse then write

(Ladd
H Y )(a) =







S−1
+

(

Y (S�(a)) +HS�(a)
)

if Y ≥ 0

S−1
−

(

− Y (S�(a))− S−(S−1
+ (−HS�(a)))

)

if Y < 0

(L−1,add
H U)(t) =







S+

(

U(S−1
� (t))

)

−Ht if θ(a) = 0

−S−

(

U(S−1
� (t))

)

− S−(S−1
+ (−Ht)) if θ(a) = 1



For the multiplicative representation, Lamperti transform and its inverse are then given by

(Lmul
H Y )(t) =







exp
{

S−1
+ [logY (S�(log t)) +HS�(log t)]

}

if Y ≥ 0

− exp
{

S−1
−

[

log−Y (S�(log t))− S−(S−1
+ (−HS�(log t)))

]

}

if Y < 0

(L−1,mul
H X)(t) =







exp
{

S+

(

logX(eS−1

� (t))
)

−Ht
}

if X ≥ 0

− exp
{

S−

(

log−X(eS−1

� (t))
)

+ S−(S−1
+ (−Ht))

}

if X < 0

Note that this expression simplifies if U− = U+ since then S− = S+, and Lamperti transform writes in that case

Sign(Y (S�(log t))) exp
{

S−1
+ [log |Y (S�(log t))|+HS�(log t)]

}

(in this expression, Sign(x) = −1 if x < 0, and

+1 otherwise).

3.3. Lamperti in action

In the case of positive signals, Lamperti transform can be written

(Lmul
H Y )(t) = exp

{

S−1
⊗

{

log
[

eHS�(log t)Y (S�(log t))
]} }

and the effect of the transformation can be decomposed into two parts. The first step consists essentially in a
time warping of the field Y . Precisely, this first step is the Lamperti transform associated with the case U± →∞,
since indeed in that case the Lamperti transform writes (Lmul

H Y )(t) = eHS�(log t)Y (S�(log t)). The second step
consists then in bounding properly the time warped signal. In a way, the two actions are uncoupled. This will
be of great use when studying stochastic processes. This interpretation remains in the general case of signed
signals, but the writing is less elegant when U− 6= U+ because the symmetry between negative and positive parts
is lost.

We are now ready to introduce stochastic processes with finite size scale invariance.

4. FINITE SIZE SCALE INVARIANT PROCESSES

Let X(t) a stochastic process indexed by t ∈ T with values in X ⊂ R. X is finite size scale invariant if

(Dmul
H,λX)(t)

d
= X(t)

where once again
d
= stands for equality of all the finite dimensional distributions of the processes (i.e., the

distributions of multidimensional random variables (X(t1), . . . , X(tn))). Before examining implications of the
definition and developping examples, the previous paragraph allows to state the following
Theorem: if the stochastic process X(t) indexed by t ∈ T with values in X ⊂ R is finite size scale invariant,

then its inverse Lamperti transform Y (t) = (L−1,mul
H X)(t) is a stationary process indexed by R with values in

R. The converse is true when Lamperti transforming stationary process Y .

The proof of the theorem is easy and relies on the equivalence between finite size dilation operator and
translation operator provided by the Lamperti transform. Furthermore, as for stationarity, we can define weaker
forms of finite size scale invariance. For example, a process is finite size scale invariant at the second order if it
is the Lamperti transform of a second order stationary process. In the sequel, the inverse Lamperti transform of
signal X will be called the stationary generator of X .

4.1. Some consequences

Let X(t), t ∈ T with values in X be a finite size scale invariant process with stationary generator Y (t). We have
seen that the Lamperti transform essentially begins by warping the time index (with a correct renormalization
of the amplitude) and then warps the amplitude of the field.

The first step, time warping, then plays essentially on the correlation structure of the process. The second
step, amplitude warping, acts on the distribution of probability of the process as a instantaneous nonlinearity.



One point probability description of the process. Suppose that the stationary process Y (t) has a one
point probability density function denoted as PY (y), a function which is independent of t, otherwise Y would
not be stationary. The Lamperti transform of Y can be written

X(t) = ± exp
{

S−1
±

(

log g±(ω(t))Y (ω(t))
)

}

where

g−(x) = − exp
(

− S−
(

S−1
+ (−Hx)

)

)

g+(x) = expHx

and where the subscript ± denotes the sign of the input Y (ω(t)). We see here the warping ω(t) = S�(log(t))
in time followed by the renormalization g±. Let Z±(t) = g±(ω(t))Y (ω(t)) . The one point probability density
function of Z± is easily obtained and writes

PZ±(t)(z) =
1

∣

∣

∣
g±(ω(t))

∣

∣

∣

PY

( z

g±(ω(t))

)

Then we have X(t) = ± expS−1
±

(

logZ±(t)
)

and the one point point density function of X follows

PX(x) = PZ±(t)

(

expS±(log |x|)
)exp

(

S±(log |x|)
)∣

∣S′±(log |x|)
∣

∣

|x|

=
exp

(

S±(log |x|)
)
∣

∣S′±(log |x|)
∣

∣

∣

∣xg±(ω(t))
∣

∣

PY

(expS±(log |x|)

g±(ω(t))

)

(3)

where once again the + subscript has to be selected when x ≥ 0 and − has to be selected if x < 0. We find
again the two distincts effects of the time warping and the modulation warping : the first one plays linearly on
the ampitude, whereas the second acts as a nonlinear transformation.

The two, three,. . . points probability density functions could be found in the same manner, but evidently
calculations are more and more tricky since the distinction between negative and positive parts of the variables
induces an exponential growth in the number of cases.

Covariance function. The covariance function of X(t) is difficult to obtain in the general case. However,
the unbounded amplitude case is simple, since the effect of Lamperti transformation is only a time warping and
a renormalization. Hence, Thus, if S+(U) = S−(U) = U , Lamperti transform reads

(Lmul
H Y )(t) = exp(Hω(t))Y (ω(t))

and we have

CX (t, s) = Cov[X(t), X(s)]

= exp(H(ω(t) + ω(s)))Cov[Y (ω(t)), Y (ω(s))]

= exp(HS�(log t� log s))ΓY

(

S�(log t�−1 log s)
)

where ΓY (τ) is the covariance function of process Y , and as such, a non-negative definite function. Note that
this expression generalizes easily to the case of multiple point correlation (so-called multicorrelations).

4.2. Finite size scale invariant Brownian motion

The well-known Brownian motion is a Gaussian process, with zero mean and variance equal to σ2t, and co-
variance Cov[B(t1), B(t2)] = σ2 min(t1, t2). It is also known that Brownian motion is self-similar with index
1/2, i.e., B(λt) = λ1/2B(t). Since it is scale invariant in the usual sense, it admits a stationary generator via
B(t) = (L1/2Y )(t) = t1/2Y (log(t)). Process Y is nothing but the Ornstein-Uhlenbeck process with covariance
Cov[Y (t), Y (t+τ)] = σ2 exp−|τ |/2. In this section, we are going to use the Ornstein-Uhlenbeck process to define



a finite size scale invariant Brownian motion. To do so, we simply use the generalized Lamperti transform, and
write

Bfs(t) = (Lmul
1/2 Y )(t)

for t ∈ T =]ea− , ea+ [∈ R+, and B takes its values in X =] − eU− , eU+ [. By construction, we recover the usual
Brownian motion as the limit of Bfs(t) when the cut-offs go to infinity. We now present some features of the
finite size scale invariant Brownian motion, by studying it for some values of the different cut-offs.

Brownian motion on the interval. Let U± go to infinity. We end up with a Brownian motion on the
interval since the only finite size effect is the time warping. We can easily here study the correlation structure
of the Brownian motion. As seen before, the correlation structure of the Lamperti transform is dierctly related
to that of the stationary generator; in the case of interest in this example, we introduce the correlation function
RX(t, s) = CX (t, s)/

√

CX (t, t)CX (s, s), and we end up with

RBfs
(t, s) = exp

{

−
|a−a+|

2|a− − a+|

∣

∣

∣

∣

∣

log
1− logT−(t)

1− logT+
(t)

×
1− logT+

(s)

1− logT−(s)

∣

∣

∣

∣

∣

}

(4)

where recall that T± = exp a±, and where logq stands for the logarithm in base q. The correlation function
for the three case no cut-off, one and two cut-offs are ploted in figure 3. We can observe that the cut-offs do
not modify that much the correlation structure of the Brownian motion (same decay), except for the case of a
bounded interval for which the decay to zero is indeed observed. In the right of figure 3, we plot from top to
bottom snapshots of the Brownian motion, Brownian motion with one cut-off and Brownian motion with two
cut-offs. To obtain these plots, we use another interesting relation in the case U± → ∞, relation that links
the usual scale invariant world with the finite size scale invariant world. Indeed, let Y (t) be a stationary signal
defined on R with values in R. It can then be written Y (t) = e−HtZ(et), where signal Z is a self-similar signal
with parameter H . If we now make use of the generalized Lamperti transform, we define a finite size scale
invariant process X(t) with no cut-off in amplitude by

X(t) = exp(Hω(t))Y (ω(t)) = Z(expω(t))

This allows to link easily usual self-similar signals to self-similar signals on the interval (in the sense of finite
size scale invariance). The plots of figure 3 were obtained by performing the warping numerically on very long
Brownian motions. Note that the Brownian motion with two cut-offs explodes when approaching T+: this effect
corresponds to the fact that the usual Brownian motion goes to infinity when time goes to infinity. This explosion
at a finite time could modeled critical phenomena where some fields exhibit such an explosion. Furthermore this
expression allows another reading of the correlation function of the Brownian motion. Indeed, since X(t) =
Z(expω(t)) , we have RX(t, s) = RZ(expω(t), expω(s)) = exp(−ω(t)/2 − ω(s)/2) min(expω(t), expω(s)), an
expression simpler than (4).

Bounded Brownian motion. We suppose now that there is no time warping and that the only finite
size effect is due to the amplitude warping. This allows us to study the probabilistic nature of the motion. To
illustrate this, we neglect the effect of the warping of time since as can be seen in equation (3), the warping
appears through function g± which acts only as a multiplicative constant (with respect to the variable X). Since
the Brownian motion is the Lamperti transform of the Ornstein-Uhlenbeck process, its one point probability
density function can be obtain via equation (3) where PY (.) is a Gaussian probability density. We draw two
cases in figure 4. In the first case, we choose −X− 6= X+, implying that the nonlinear distorsion is asymmetric.
The nonlinear function is depicted in the top left figure, whereas the Gaussian and the density of the transformed
process are plotted in the top right figure.

In the case of a symmetric bounding −X− = X+ and no time warping, S�(x) = x , the Lamperti transform
is particularly simple,

(Lmul
H Y )(t) = Sign(Y (log t)) exp

{

S−1
+

[

log tH |Y (log t)|
]

}

= Sign(Z(t)) exp
{

S−1
+ [log |Z(t)|]

}

where as before, Z(t) = tHY (log(t)) is the usual Lamperti transform of Y (t). If Y (t) is the Ornstein-Uhlenbeck
process, then as we see before, Z(t) is the usual Brownian motion, and we can easily simulate the bounded
Brownian motion as a nonlinear transform of the usual Brownian motion. This is illustrated in figure 5.
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line), one cut-off in time (dashed line) and two cut-offs (continuous line). The figures on the right are snapshots of the
Brownian motions (usual in the top, one cut-off in time in the middle, two cut-offs in the bottom).
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Figure 4. The figure on the left depicts the static nonlinearity used to warp the amplitude of the signals, for two cases.
The figure on the right gives the corresponding probability density functions obtained, when the initial signal is Gaussian.

5. FINITE SIZE SCALE INVARIANT PROCESSES WITH STATIONARY
INCREMENTS

In the introduction, one of the physical motivations for defining stochastic processes with finite size scale in-
variance was turbulent velocity signals which seem to be scale invariant in a finite size range of scales. Scale in
turbulent fluids measurements is usually defined as a length between two points in space (or in time when dealing
with one measurement). Such a definition makes a scale defined as the inverse of a wavenumber (or a frequency).
The notion of scale we have worked with in the paper is a little bit different, since it relies on the ratio between
two different times. This implies that the theory of finite size scale invariant deals with the study of processes
defined on bounded range of times. The theory developed so far cannot handle the more usual notion of scale;
to deal with this more usual notion, we have to go further in the development of the theory by considering finite
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Figure 5. Snaphot of a Brownian motion and its finite size scale invariant counterpart.

size scale invariant processes with stationary increments.12

To define such processes, we need a two dimensional representation of a signal Y (t) : R → R, such as the
increments Z(a, t) = Y (t+a)−Y (t), the wavelet transform,13, 14 Z(a, t) =

∫

Y (u)ψ((u− t)/a)du/a, or any other
convenient forms. A well known notion is that of a self-similar process (of index H) with stationary increments, or

Hss-si, defined for process Y as λ−HZ(λa, λt+ τ)
d
= Z(a, t). A famous H-sssi process is the fractional Brownian

motion popularized by Mandelbrot & Van Ness.15 The definition puts in light a fundamental fact: the need of a
two-parameter group of operators under the action of which the stochastic process is invariant. In the well known
case of H-sssi, this goup of operators is the group of time-scale displacements (DH

λ,τZ)(a, t) = λ−HZ(λa, λt+ τ),
where the parameters (a, t), (λ, tau) live themselves in the group called the affine group. The affine group is
the set (R+∗ × R) equipped with the law × defined by (a1, t1) × (a2, t2) = (a1a2, t1 + a1t2). This law is not
communtative and the affine group is not Abelian.

We now generalize the concept ofH-sssi to that of finite size scale invariant process with stationary increments.
To do so, we have to modify the affine group to take into account the finite size effect (for a general discussion
on genralized affine groups, see the work of Hlawatsch.16 Let the law ⊕ be defined as

(a1, t1)⊗ (a2, t2) =
(

exp(log a1 � log a2), t1 + exp(S�(a1))t2
)

(5)

where � is the generalized addition of the previous sections. It can then be easily verified that (X × R,⊗) is a
group. The displacement operator in the time-scale plane (bounded in scale) is then defined as

(DH
λ,τZ)(a, t) = g(λ, τ) ⊗ Z

(

(λ, τ) ⊕ (a, t)
)

(6)

where ⊗ is the finite size multiplication of fields of the previous section. Note that we are implicitly in the
additive representation for the amplitude. We can show, in the same manner as in the previous sections, that g
does not depend on τ and writes g(λ, τ) = S⊗(−HS�(logλ)).

A process Y (t) is finite size scale invariant with stationary increments if its increments (or its wavelet trans-

form) satisfy the stochastic equality (DH
λ,τZ)(a, t)

d
= Z(a, t). The consequences of this definitions will not be

presented in this paper since they are still under development.

6. DISCUSSION

The theory of finite size scale invariance stochastic processes developped in this paper has now to be confronted
to physical situations. As presented here two classes of situations can be studied, depending on the definition of
scale.



When scale is understood as the ratio between two different times, the theory amounts to work with signals
defined on bounded intervals with values in bounded intervals. The laws of dilations are then finite size laws
of dilations. Stochastic processes invariant under such generalized dilations could be used to model physical
situations where critical times exist, such as for example fracture for which the time at which a material under
some stress break up is a natural cut-off. In such an example, the cut-off is one of the parameters of physical
system and is naturally considered by the approach developped here. Furthermore, an interesting extension of
our theory would be the study of dynamical systems subject to the finite size scale invariance symmetry.

If scale is understood in a more usual way as the inverse of a frequency or the difference between two times,
we sketch a construction of stochastic processes that are not only finite size scale invariant, but also do possess
staionary increments. In this case, the descritpion relies on two parameter group of operators that jointly and
respectively dilate and translate signals in scale and time. Developments for this class of signals are under study
and concern the possibility of defining such signals as some Lamperti transform, the implications of finite size
scale invariance on the statistics of the signals. Furthermore, we have the same ideas concerning the development
of dynamical systems in scale for these processes.
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