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ABSTRACT and bilinear transformation. Section 5 proposes a new scheme

We study a class of self-similar processes that are not statioRased on fractional B-splines that were defined in [11]. The
ary, nor have stationary increments. They are called Eulefesults are discussed in each section.
Cauchy (EC) processes and are built as output of linear scale-
invariant parametric systems. This article study several dis-2. CONTINOUS-TIME EULER-CAUCHY MODELS
cretization methods of EC processes which are not bandlim-
ited processes: direct sampling, bilinear transformation antlet us recall that self-similarity, for a Hurst exponeft is
approximation on fractional B-splines. For the three differentlefined as the statistical identity under dilations. The dilation
methods, we obtain theoretical formulae and compute numeoperatoiS ; , acts on aprocess &Sy, X)(t) = A7 X (\t).
ical realizations and properties. The covarianceR x (t, s) of a self-similar process has to sat-
isfy: Rx (M, \s) = A2 Rx(t,s) forany\ € R.
1. SCALE-INVARIANT PROCESSES Continuous-time EGY, ¢) processes are solutions of
P q

Scale invariance, or self-similarity for random processes, is Z ant"D"X (1) = Z Bt D™V (), @)
now a classical property of signals acknowledged as useful to n=0 m=0
describe classes of real signals wiify” spectrum. Apromi-  for ¢ > 0 and withV(t) a non-stationnary Gaussian white
nent class rely on stationarity of the signals or their increngise of varianc&{Vy (t)Vg (s)} = o2t2H+15(t — s). Here
ments. Such is the case for fractional Gaussian noise, incrgye write D the continuous-time derivative. Note that if one
ments of the celebrated fractional Brownian motions [1], sonsiders the time deformation reducing self-similarity to sta-
that sampling and synthesis is straigthforward. Euler-Cauchyonary, called the Lamperti transformation [6], it follows im-
(EC) processes [2, 3] are output of linear scale-invariant paranediately that EC models are, for self-similarity and scale co-
metric systems, in the same way as stationary processes Ggdriance, the counterpart of what are usual ARMA models for
be seen as as outputs of linear time-shift invariant filters. EGtationarity and time-shift covariance. The correspondence is
processes are self-similar but not stationary, nor do they hawshtained by mapping'~# D (operator for self-similarity) to
stationary increments. HI + D under the Lamperti transformation. Our objective is

This road to scale invariance was followed for continuous+g study the discrete-time equivalent + ol.
time processes in several works [2, 3, 4, 5, 6], but less atten- Explicitely, the first order EC model is parametrized as
tion has been devoted to their discrete-time formulations. For
such non-stationary self-similar processes, it was proposed to {tD + (a — H)I}X(t) = Vi (1) @)
work with geometric sampling, for synthesis [2, 5], or analy-Let us introduce the Green functia®(¢,«) of the model,
sis [7, 8] but this is not convenient for practical and numericaldefined with initial conditionG(u,u) = 1 and satisfying:
applications. Another way is to study these systems by mean®G/(t,u) + (a — H)G(t,u) = 6(t — u). Its expression is,
of the Mellin spectral representation [6]. For all those techfor ¢ > v,
niques, a step of interpolation is required and it was never G(t,u) = (t/u)H—ﬂ (3)
checked that the methods were stable through interpolatior&nd an expression of the process follows:
Moreover, because those processes are generically not ban- \ .
dlimited, usual Shannon’s sampling is not the best way to for- - U
mulate the corresponding discrete-time system [9, 10]. X(t) = Gt 1o)X (to) + t Gt w)Va(w)== (4)

This article is dgvoteq to_ the synthesis of EC ProcesseSet ys check explicitely that the process is self-similar. The
and study several discretizations of EC systems. The paper i$,.,ius of the covariance gives
organized as follows. Section 2 recalls basic facts about EC
models. Section 3 and 4 derives discrete EC model by clas- Rx(t,s) = G(min(t,s),t0)E {X(to)Q}

. P . . . min 5 — 5
sical analog-to-digital correspondences: impulse invariance + [ (t:5) (ts/uz)H * o2u2—1du. ©)




If the initial condition X (¢y) shares the equilibrium distri- not entirely satisfactory, because we would like to have a sys-

bution of the process (a normal law with variane&?)  tem modeling non-stationarity. This will be achieved with a

or asymptotically if the system is stablé/(¢,tg) — 0 if  different A-to-D correspondence.

(t — to) — +00), then the covariance is not affected by the  Note that for higher order, the same calculation is for-

initial condition and the process is self-similar. Let- 1 and  mally possible. For instance, a general expression of a sam-

s = Xt, its covariance reads theRix (¢,s) = o?(st)? A~ pled ECp,0) is (P,_» is a polynomial of order up tp — 2

The process is self-similar with indgX. Its variance growths with time-varying coefficients):

ast?! as it is characteristic for self-similarity, and the covari-

ance decreases in a algebraic decorrelatioxr (1-B)Pxy, + ﬁ(l — B)pflxk_l + %
Generally, EC processes are parametric models of the gen- k k

eral linear scale-invariant models. They act by means of &hese discrete models share essentially the same behaviour

multiplicative convolution [2, 3]. Higher orders models may a5 the EC(1): the coefficients are slowly varying with time

be obtained by (multiplicatively) convolving first order ECfil- and the self-similarity is mainly driven by the input noise.

ters. We thus mainly study this order in the rest of the articlepnother developement is to break the self-similarity by sup-

posing discrete scale invariance (DSI), as in [13]. This is

achieved by taking coefficientst) ando(t) (variance of the

input noise) as periodic functions Ing¢. The same proce-

In classical textbook on signal processing one learns about tifié!"® 1€ads to DSI with a log-periodic function multiplying the

impulse-invariant method as a traditionnal Analog-to-DigitalCONtinOus Green function that was used before. Hence the dis-

conversion techniques that relies on Shannon’s sampling [9] rete coefficient; will be multiplied by a periodic function

A direct time-sampling of the continuous-time soluti&ty,) n log k’, wh'ereaSek IS mpstly unaffe(':ted.. But such k.m.d of .
attimet,, = k7 is used. Let us find the statistics of the quanti_gener<';1I|zat|on beyond simple scale invariance are minimal in

ties obtained for this discrete-time equation that has the forr{?Ct for t_h's discretization schgm_e: _'t comes as a small o_rder
of a non-stationnary AR(L)x = axax_1 + ex. Using eq pertubation of the mean self-similatity imposed by the noise.

(4), one has

Pp—Q(B) = €k. (8)

3. DIRECT SAMPLING OF EC SYSTEMS

EC(1) by impulse invariance

kT
ar = G(kr,(k —1)1); e, = / G(kr, u)VH(u)d—u ) Lo
(k—1)7 u .
© L
The firstterm is given by eq. (3), so that = [k/(k—1)]7 2. P
As Vi (t) is Gaussian with zero mean, so is also the inrut
asVx(t) is a white noise with variance ¥ 1, ¢;, is also a
white noise and its variance is:

Fig. 1. Left: snapshot of a discrete EC(1Right: covariance
B 02(k7)2H rz[n, no] of the EC(1) for several times, (marked by vertical bars)
E{erex} = m(l —[(k - 1)/k]2a+2H)- (7 and variance:; [n, n] (log-log). Averages of 1024 realizations.

For this uniformely sampled process, are equivalent, when

kis high enough, td — (a — H)/k which varies slowly. Note  , g} INEAR TRANSEORMATION OF EC SYSTEMS

that this would be the coefficient for a backward-difference

approximation of eqg. (2), by changild in 1 — B (B is A second classical technique of A-to-D conversion is the bi-
the backward operator defined so that, = zr-1). O jinear transform that is defined via an invertible rule of cor-

the whole, it is the non-stationary inpe which drives the  egpondence between the Laplace transforia the Laplace
self-similarity of the process, with a variance equivalent tovariable) and the transform.
E {exer} ~ o?72H E2H=1 By combination of the recurrence
equation, the covariance is given (if the system is stable so 21— 41 . 1—pr/2
that the initial condition is forgotten), if > k, asr, [m, k] = P gt ande e T+ pr/2 ©)
(m/k)~°Elex|?. Consequently, fof € Z, the covariance
satisfies .. (Im, n) = 1?7, (m,n) and the process is wide- In the frequency domain, witR € R the frequency associ-
sense self-similar. The behaviour of the random sequence aated to continuous time and= 2™ w € [-0.5 0.5], the
its covariance is illustrated on fig. 1. correspondence reafls= f(w) = 2 tan(wr/2). It was pro-

Let us stress that the input, and not the system, drives th@osed in [12] to use this transform to define discrete-time di-
self-similarity of this signal. The discrete-time system is ac-ation, then discrete-time scale invariant stationary processes

counts for the algebraic decorrelation of the process. This ighich are stationary processes. Here we use the transform



only for A-to-D conversion of the operator; this leads to self-
similar but non-stationary sequences. A kernel representatic: ..
of the transform is £
X(t) = Ran)(t) = 302 P(t,n)zn
“+o0o

P(t.n) = % [ exp {i(Q — 171 (Q)nr)} d,
2 = (RTX())[n] = [, s(n,t)X (1)t (10)

+1/2
s(n,t) = %/ exp {i(wnt — f(w)t)} dw.

—1/2

Using a stationary phase approximation, it is straightforwarc *_* S
to establish an approximation of the kern®lsinds, that are -
given as chirps with instantaneous frequerggn/t — 1) /x:

P(t,n) t<n ﬁ % cos (p(n,t)) . Fig._ 2._Bilinear transformationLeft: a —approximation of eq. (11)
t<n o /4 (solid lines) and exact value (dots) fef50,t) (top) andP(¢,30)
s(n,t) = 7= o 08 (#(n,1)), (11)  (bottom). b —a[k, m] as function ofm for k = 30,40, ...,200
oln,t) = Qnacos( /t/n) —2\/t(n—1t) — /4. for an EC(1) (top) and a time-varying EC (see text) (bottom).
Right: snapshots (blue dots), variance (red crosses) and covariance

: . : r2[100, n] (solid line in magenta) of random sequences, ¢ — EC(1),
Whenr is neart, a cut-off by an erf function (that we do not d — EC with DSI kernel. Averages on 1024 realizations.

report here for the sake of simplicity) puts the chirp to zero.
The kernels are drawn on fig 2-a. Any (non necessarily shift-

invariant) linear operator is mapped from continuous timeto 5., DISCRETE EC MODEL BY FRACTIONAL

discrete time using those kernels. For a linear operator B-SPLINE REPRESENTATION

with integral representatiofA - Y)(¢t) = [ A(t,w)Y (¢)dt,

the discrete-time representatior(is y)[k] = >, alk, m]y,, ~ Due to the non-bandlimited property of the continuous scale

such thatA = RaR~!. Then it comes invariant signals, generalized sampling, as reviewed in [10],
X min(t,m) is an a_lternative solution for_the problem of represen';ation_of

alk, m] = / dts(k,t)/ A(t, u)P(u, m)du. a continuous model by a discrete sequence. For discretiza-

0 0 tion, cardinal basis defined on a uniform grid are adapted. As

_ ) (12)  the Green function of EC systems are usually power-laws, a
The linear kernel for an EC(1), eq. (3), is equald@f, u) = ¢jass of B-splines recently introduced in [11] is relevant to the
(t/u)"~* /u. The discretized EC(1) is obtained here as a nongoplem: the fractional B-splines. After a brief recall of their
stationary mean-averaged representatign.is a Gaussian, nroperties, a discrete EC model is developped on this basis.

nonstationary iid noise th2at is giVIeDQ%b’: Js(k, )V (t)dt. Define the one-sided power functions @ = t* if
Its variance scales d{y; } o k', Thg'fsr”fkllj[{]i’(f”] t > 0, else 0. A fractional causal B-spling (¢) is defined
is correctly approximated, ik > m, by k7 ~“m " by taking the fractional difference operator of the one-sided

and 0 else; this is represented on fig. 2-b (top). The COpower functions. Recalling thait(u) = f[)oo 2% le=?ds and

variance follows immeadiately and it scalesra$m,n| ~ ay D/T(k + DT (c — k +1). we have
(mn)H (m/n)~2. This scheme gives a process that shareé’“) (a+1)/T(k+ Dl (o +1),

the properties of the previous one and the realizations of the N 1 pfa+1
process look the same; see fig. 2-c for an illustration. BEt) = A+H(t)+ = m Z(—l) ( L )(t—k)+~
A main interest of this method of discretization is that one k=0 (13)

can use, instead d@f(t, u), any multiplicative kernel that is

a function of f(¢t/u). The method is not restricted to usual . Lo Lo
gre so good candidates for approximation of self-similar sig-

EC systems this allows us to study in the same framewor ) . . .
discrete-time EC sequences of any order, or EC with nonr-]als' Any signalX (¢) can be approximated in the fractional

stationary coefficients. For instance, the sequence shown ﬁplme space of order as:

fig. 2-d hasf(t) = t~%(1 + bcos(mlog(t)) and its kernel _ afy

is shown on 2-b (bottom). This function to Discrete Scale Xsalt) = chﬂ+(t k). (14)
. . L . keZ

Invariance. Thus this model offers a versatile discrete-time

framework. The price to pay is that an numerical intregrationt is known that the reproduction is exact for polynomials up

of eq. (12) is then usually necessary to obtain the kernel. Thi® order[a]. More generally, the approximation order was

is not very efficient for computations of large sequences.  established in [11]. Here the sequereg}cz IS used as a

Fractional B-splines have a Fourier transformJn®—! and



discrete-time representation of the signal. Because of the in-
terpolation property, at knofs the signal satisfieX; . (k) =
X (t)|t=x = . EQ.(14) is a convolution; it can be solved
in the Fourier domain, using the inverse filtdr/ 3¢ (iw) =
{iw/(1 — e7w)}otl,

Let the process be approximated as in eq. (14) with order
o — 1. Fractional B-splines satisfy the induction equationFig. 3. Ec model on fractional B-spline. A snapshot of the pro-
(Prop. 2.2 in [11]): cess withH = 0.8 anda = 0.3, superimposed with its standard

deviation (dots on dashed line, estimated on 1024 realizations; ).

aBt(t) =837 t) + (a+1—-1)B3 (¢ —1). (15)

Using the backward operator, this reads as: useful to test their scale invariance, because the wavelet coef-
ficients at one scale are nonstationary. That is why we have
t(1-B)BY () + (a+ )BT () =aBf(t+1). (16) preferred here to show scale invariance directly from the co-

variances.
Combined with eq. (14) for order — 1, this leads to

{t(1 = B) + (@ + 1)} X (a1 (8) 6. REFERENCES

_ « a—1 (17)
= Lrez r(aBs(t =k + 1) = kFET(t + k). [1] B. Mandelbrot and J. W. Van Ness, “Fractional Brownian mo-

The I.h.s. is taken as the discretized first order EC operator in ~ tions, fractional Brownian noises and applicationSfAM re-
the space of representation. Note that for EC systems, one is  View vol. 10, pp. 422-437, 1968.

interested intD operator and not iD<; hence there would ~ [2] H. L. Gray and N. F. Zhang, “On a class of nonstationary
no reason to use the fractional different& and our choice processes, Journal of Time Series Analysigol. 9, no. 2, pp.
appears natural. Comparing with eq. (2), the sequepde 133-154, 198.8' . .

obtained by the decomposition of the input white ndigt) [3] G. Wornell, Signal processing with fractals: a wavelet-based

on fractional B-spline. Specifically: approach Prentice Hall, 1996.
[4] B. Yaziciand R. L. Kashyap, “A class of second-order station-
Vit (8)]e=k = cm @ {aB(m + 1) —mpBs " (m)} k], (18) ary self-similar processes fdy/ f phenomena,’|EEE Trans.
) _ ) on Signal Proc.vol. 45, no. 2, pp. 396-410, 1997.
where® stands for the convolution. Numerically, this equa- 51 £ Noret and M. Guglielmi, “Modlisation et syntase d'une

tion is solved in the discrete Fourier domain with a stationary = * ¢jasse de signaux auto-similairesztrémoire longue,” in

white random sequencg becausd/y ()i, = k" +1/2e;. Proc. Conf. Delft (NL) : Fractals in Engineerindl999, pp.
The process is then constructed by interpolat®n, 1) (t) = 301-315, INRIA.

D okez Bt — k). Fig. 3 shows a sample realization, its [6] P. Flandrin, P. Borgnat, and P.-O. Amblard, “From station-
variance. The process has a variance that grow$fn and arity to self-similarity, and back : Variations on the Lamperti
decorrelates algebraically with exponeats- H + 1. transformation,” inProcesses with Long-Range Correlations:

An advantage of this discretization is that the sequence  Theory and ApplicationsG. Raganjaran and M. Ding, Eds.
is synthetised from digital signal processing, with its natu- ~ June 2003, vol. 621 dfectures Notes in Physicpp. 88-117,
ral interpolating function if needed. The procedure is more ~ SPringer-Verlag.
quicker than the one from the bilinear transformation. More- [7] A.Vidacs and J. Virtamo, “ML estimation of the parameters of
over general tools of signal processing are easily applied to ~ fBM traffic with geometrical sampling,” ifFIP TC8, Int. Conf.
the sequence by working eq, according to the rules of gen- on Broadband communications '98ov. 1999, Hong-Kong.
eral sampling. The sequence is obtained by the scheme withl V- Girardin and_M. Rachdi, “S_,pectral density estimation from
a given time resolution. A perspective would be to use the random sa_mpllng for m-stationary processesComput. &
two-scale relation satisfied by fractional B-splines [11] could Math. Appli, _V(_)I' 4?’ no. 7, pp_' 1009_1021j 2003.
offer the possibility to refine the details at smaller time-scales, [9) L-JacksonDigital filters and signal processingluwer, 1989.
but this was not studied here. Another development would bE-0] M. Unser, “Sampling — 50 years after ShannoRrbce. of the
to find a way to include in those models time-varying coeffi- ~ 'EEE vol. 88, no. 4, pp. 569-587, Apr. 2000.
cients (in order to have DSI for instance) in the framework. [11] M. Unserand T Blu, “Fractional splines and waveletS|AM
The three means to build discrete-time models for scale ~ Réviewvol. 42, no. 1, pp. 43-67, 2000.
invariant Euler-Cauchy systems studied here are by now contl2] S. Lee, W. Zhao, R. Narasimha, and R. Rao, “Discrete-time
plementary depending on the refinements needed. As a final models for statistically self-similar signalsJEEE Trans. on
word, let us remark that an intricate property of these models  '9nal Proce.vol. 51, no. 5, pp. 1221-1230, May 2003.
is that they have no kind of stationarity. As such the wavelet!3] P Borgnat, P. Flandrin, and P.-O. Amblard, “Stochastic dis-
methods, that transform H-ss process with stationary in- crete scale invariance,Signal Processing Lettvol. 9, no. 6,
crements in a stationary decomposition at each scale, is not Pp. 181-184, June 2002.



