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Abstract

We design Distributed Denial of Service (DDoS) de-
tection procedures based on a non Gaussian model-
ing of the marginal distributions of aggregated Inter-
net traffic. The theoretical and practical relevances
of this modeling is illustrated and discussed. From
this modeling, various statistical distances (Mean
Quadratic Distance of Kullback Divergence) between
an observation and a reference time window are com-
puted. We show and illustrate that anomalously
large values observed on these distances betray major
changes in the statistics of Internet times series and
correspond to the occurrences of illegitimate anoma-
lies such as DDoS attacks. Hence, thresholding these
distances enables the design of attack detection pro-
cedures. Their central feature lies in their being mul-
tiresolution in nature: time series aggregated at sev-
eral levels are jointly analyzed. The assessment of the
statistical performance of detection procedures in In-
ternet is a difficult issue as no repository of traffic
containing well-documented attacks is available. To
overcome this, we decided and chose to perform our
own collection of DDoS attacks (with precisely con-
trolled characteristics) and collected the correspond-
ing traffic. This enables us to evaluate the perfor-
mance (detection versus false alarm probabilities) of
the proposed detection procedures and to show that
they present satisfactory performance with a 1 min
reaction time, even for attacks whose intensity is low.
Key Words: Attacks, Denial of Service, non Gaus-
sian modelling, detection, Kullback divergence

1 Motivation

Because of its becoming the major universal com-
munication infrastructure, Internet is also subject to
attacks in growing numbers and varieties. Moreover,
its aiming at providing multiple guaranteed services
increases its vulnerability to their impacts. Notably,
Denial of Service (DoS) have been widely used in a
recent past [11]. They consist of highly damageable
attacks able to degrade the network quality of ser-
vice (QoS) in an hardly predictible manner. Often,
this implies significant financial losses as applications
requiring stable and guaranteed QoS (such as voice
over IP) are increasingly used in Internet. Therefore,
detecting such attacks constitute a major and chal-
lenging issue. Moreover, DoS attacks are nowadays
distributed so that one cannot easily detect them.
Distributed DoS (DDoS) attacks are usually gener-
ated using botnets (i.e., machines that are controlled
by hackers) that collaborate together so that each of
them send only a small part of the attacking traf-
fic, which is difficult to detect close to the generat-
ing sources. Conversely, close to the target, traffic
changes become huge and IDSs (Intrusion Detection
System) easily detect the attack... But it is too late:
network QoS is degraded and, therefore, the attack
a success. Defense against DDoS in a realistic world
can be based on detecting machines hacked by pirates
and on applying drastic security policies to the spe-
cific traffics issued from these identified botnets. De-
tecting botnets can, for example, be performed using
high interaction honeypots, as Nepenthes [4]. Such
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a priori detections may help to tune IDSs security
parameters in a context dependent manner: thresh-
olds for attack detection procedures (such as those
proposed here) can be set very low for potentially
aggressive traffic (such as the one produced by bot-
net identified machines) so as to make sure that no
attack is missed (low false negative rate). Conversely,
in a peaceful context, thresholds can be set at higher
levels, as attack are less probable, so has to decrease
the false alarm (false positive) rate. Botnet iden-
tification complements IDSs development. Current
IDSs have poor performance against DDoS, specially
against those of low intensity, mostly because they
are based on the use of attack signatures [13] or traf-
fic profiles built on too elementary statistics (such as
sample mean or standard deviation). The naturally
large variability commonly observed on Internet traf-
fic [12] is responsible for wide fluctuations of these
statistics, producing untimely threshold exceeds and
hence high rates of false positives, or, even worse,
false negatives (cf., for instance, [11, 3, 5, 8, 16]).

A more recent set of works proposed to take into
account richer forms (such as correlations or spec-
trum,...) of the statistical structure of the traffic to
improve IDS performance (cf. e.g., [17, 10, 6, 1, 9]).
The contribution proposed here follows the same
line. Indeed, it is based on a modeling of the traffic
marginal distributions using non Gaussian laws: the
gamma laws, Γα,β . The originality of this approach
lies in its multiresolution nature (several aggregation
levels ∆ are jointly analyzed), which provides us with
robust statistics (the evolution of the parameters α
and β with respect to ∆), accurately taking into ac-
count the (short time) correlation structure of the
aggregated traffic. This modeling is described in Sec-
tion 3. The principle of the proposed detections con-
sists of tracking changes along time in the dependen-
cies of α or β with respect to ∆. This is achieved by
computing distances [2] between the statistics esti-
mated on a current time window and those obtained
from an a priori chosen reference. Then, distances are
thresholded to yield detections. These procedures are
detailed in Section 4. A central difficulty in validat-
ing anomaly detection procedure lies in the assess-
ment of their statistical performance. Indeed, hack-
ers, when generating attacks, barely inform a priori

their victims. Therefore, it is difficult to have at dis-
posal traces containing attacks of a labeled and doc-
umented set of attacks that could be used to bench-
mark detection procedures. Therefore, we chose and
decided to perform ourselves a set of DDoS attacks,
whose characteristics and parameters can be varied
in a controlled and reproducible manner. Attacks
are described in section 2. From this database, we
have been able to analyze the statistical performance
(detection vs. false alarm probabilities) of the pro-
posed detection procedures (cf. Section 4). Though
artificial or over-simplified it may look, this reference
database production methodology appears to us as
a mandatory step for reliable developments and val-
idation of attack detection mechanisms. Aggregated
time series of our documented attack database are
available upon request to other research groups will-
ing to benchmark their own procedures, and could
enter a large research-oriented data repository.

2 Experimental DDoS Attacks

Experimental Setting. We performed UDP flood-
ing DDoS attacks using either IPERF [7] or Trinoo
[15] (on computers with Linux distribution) to gen-
erate UDP flows with different throughputs. Tri-
noo, using a “daemon” installed on each attacking
site (4 French laboratories: Mont-de-Marsan, Lyon,
Nice, Paris – all partners with the LAAS of the Met-
roSec project, http://www.laas.fr/METROSEC), en-
abled us to create more complex and realistic attack
profiles. The single computer target was located at
LAAS in Toulouse. The traffic related to these at-
tacks was transported via the French national net-
work for education and research (RENATER). LAAS
is connected to RENATER with an 100 Mbps Ether-
net link that has not been overflowed during attacks.
The Database. The attacks were performed in a
controlled way to be able to modify their characteris-
tics (duration, DoS flow intensity, packets length and
sending rate) so as to test our detection procedures
on different scenarii. The configuration set is de-
scribed in Table 1. In each case, traffic was collected
by ourselves (for a duration from 60 to 90 minutes,
the attack mostly occurring during the second-third)
before, during and after the DDoS, so that regular
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ti T (s) ta TA(s) D V I (%)

I 09:54 5400 10:22 1800 0.25 1500 17.06
II 14:00 5400 14:29 1800 0.5 1500 14.83
III 16:00 5400 16:29 1800 0.75 1500 21.51
IV 10:09 5400 10:16 2500 1.0 1500 33.29
V 10:00 5400 10:28 1800 1.25 1500 39.26
A 14:00 5400 14:28 1800 1 1000 34.94
B 16:00 5400 16:28 1800 1 500 40.39
C 10:03 5400 10:28 1800 1 250 36.93
X 14:00 5400 14:28 1800 5 1500 58.02

tM 18:21 5400 18:58 601 0.1 300 4.64
tN 18:22 3600 18:51 601 0.1 300 15.18
tT 18:22 3600 18:51 601 8 300 82.85

Table 1: DoS Attacks. Upper part performed with
IPERF in 2005. Lower part with Trinoo in 2006.
ti, ta, T, TA stand respectively for the start time of
the Trace and Attack and their durations (in sec-
onds). D, V and I refer respectively to the controlled
throughput of each attacking source (in Mbps), the
length of each attack packet (in bytes), and the at-
tack relative intensity (i.e., the ratio between the sum
of all attack flows and the average throughput on the
LAAS link during attack).

traffic can be analyzed before and after each attack.
The impact of the attacks on the global throughput
of the monitored link is highly variable depending on
the attack parameters, going from a major impact on
global traffic profile (III, IV, V and X) to attacks that
are completely hidden in the global traffic. The goal
of the detection procedures is to detect all kind of at-
tacks, including those with lowest intensities, before
they have a negative impact on the network QoS.

3 Traffic marginals modeling

The analyses and detections proposed in the present
contribution are based on the modeling of aggregated
traffic time series X∆(k), k ∈ Z, consisting of the
number of packets observed within bins of size ∆.
Equivalent analyses could be based on bytes aggre-
gated traffic. Representative examples of such traffic
aggregated time series are presented in Fig. 1, both
with and without anomalies.

Non Gaussian Marginals. Experimental evi-
dences reported in [14] lead us to propose to model
the marginals of the aggregated traffic using non
Gaussian distributions: the gamma laws, denoted by
Γα,β . A Γα,β random variable (RV) X is a positive
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Figure 1: Aggregated Traffics. Time Series of ag-
gregated traffic, ∆ = 1 ms, top, containing an attack
(III, from 29.1 min ≤ t ≤ 59.4 min), bottom, with-
out attack but with an artificial anomaly (arbitrary
multiplication: X∆ → λX∆) 30 min ≤ t ≤ 40 min.

RV whose probability density function (pdf) is de-
fined as:

Γα,β(x) =
1

βΓ(α)

(
x

β

)α−1

exp
(
−x

β

)
, (1)

where Γ(u) is the standard Gamma function. It is
fully characterized via its scale β > 0 and shape
α > 0 factors. Its mean and variance are obtained
as: µ = αβ and σ2 = αβ2. This means that varying
β for a given α simply corresponds to multiplicative
increase of X, or that multiplying X only changes
β by the same factor (stability under multiplication).
For a given β, when α is varied from close to 0 to very
large, the Γα,β law evolves from a strongly skewed ex-
ponential shaped-like (α = 1) distribution to a Gaus-
sian one (α → +∞). In that respect, the quantity
1/α can be read as an index of the distance between
Γα,β and N (αβ, αβ2) laws.

Another relevant property is the stability of Γα,β

RVs under addition. Let X and X ′ be two indepen-
dent Γα,β and Γα′,β RVs, then X + X ′ is Γα+α′,β .
This is particularly interesting when related to the
aggregation procedure, because traffic aggregated at
a level 2∆ is X2∆(k) = X∆(2k)+X∆(2k+1). Assume
that X∆(k) is relevantly described by a Γα∆,β∆ dis-
tribution, it is expected that X2∆ follows a Γα2∆,β2∆

law. This is a theoretical argument in favor of the rel-
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Figure 2: Gamma modeling for traffic
marginals. Marginal distributions for aggre-
gated traffic at three different levels ∆ = 22, 24, 27

ms (left to right) with their corresponding best fit
using Γα,β laws. Top: regular traffic. Bottom: traffic
during attack (Attack III).

evance of the Γα,β distribution. They are powerful to
model the marginals of aggregated traffic for a very
large range of aggregation levels, enabling a smooth
and continuous evolution from stretched exponentials
to Gaussians. Moreover, if the {X∆(k), k ∈ Z} were
independent RVs, one would have: α∆ = α0∆ and
β∆ = β0 (where α0 and β0 are constants characteriz-
ing the packet arrival process). Any departure from
these simple behaviors results from the existence of
correlations amongst the X∆(k), and hence provide
a multiresolution description of those correlations. A
more elaborated version of this model [14] proposes
to describe jointly the first (marginals) and second
(covariances or spectra) orders of aggregated traffic:
the marginals are Γα,β distributions while the covari-
ances follows that of a FARIMA process, accounting
jointly for short range and long range dependencies.

Goodness-of-fit. The relevance of the use of Γα,β

distributions to model aggregated traffic marginals
has been assessed by means of χ2 goodness-of-fit tests
(not reported here for sake of simplicity). We ob-
served that the modeling is valid for ∆ ranging from
the millisecond up to the second (that is over three
orders of magnitude). Also, we found that this mod-
eling not only works for a regular traffic (that is for a
traffic that undergoes no(-known) anomaly), but also
for traffic under attack. These results hold for win-
dow size ranging from T = 1 min to T = 30 min. This
is illustrated in Fig. 2 for the former choice. These
finding are in agreement with those reported in [14]
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Figure 3: Evolution of α and β with respect to
the aggregation level ∆. Left: α∆, right: β∆, av-
eraged over adjacent non overlapping time windows
(T = 1 min), before (blue circles), during (red aster-
isks ) and after (black squares) the occurrence of the
attack (Attack III). The evolution of α∆ differs sig-
nificantly during the attack compared to those before
and after attack. Detection procedures are based on
exploiting this discrepancy in the dependency with
∆.

over a large variety of Internet traffics available from
the standard major traffic repositories.

Parameter evolution with respect to the ag-
gregation level. Let us now analyze the evolution
as a function of the aggregation level ∆ of the es-
timated shape and scale parameters. Data are split
into adjacent non overlapping time window of du-
ration T . From standard estimation techniques, re-
ferred to as mixture of maximum likelihood and mo-
ment based procedures (cf. [14]), we obtain α̂∆(l) and
β̂∆(l), where l refers to the time position, lT of the
l-th time window. These estimates are reported in
Fig. 3 (with T = 1 min, ∆ = 21, . . . , 210 ms).

To analyze these results, let us use the stability
under addition/aggregation property. Fig. 3, con-
sisting of the averages (over time l and dispersions
of α̂∆(l) and β̂∆(l)) clearly shows that the observed
evolution with respect to ∆ depart from the expected
behavior if there were independence between X∆(k)
and X∆(k+1). This is a strong evidence for the exis-
tence of significant and intricate short time statistical
dependencies with in the {X∆(k), k ∈ Z}.

Furthermore, the key empirical observation lies in
the fact that the evolution of α̂∆(l) and β̂∆(l) func-
tions differ notably for time windows containing reg-
ular traffic (black squares and blue circles) compared
to those containing traffic under DDoS attack (red as-
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terisks). Moreover, one can notice that the increase
of α with ∆ is much faster for traffic under attack
than for regular one indicating that the convergence
towards Gaussian traffic is much faster under attacks.
This cannot be explained by a simple increase of the
average traffic level as α is by nature not sensitive to
a simple level shift (or multiplicative increase) and as
the whole α∆ function is altered. These experimen-
tal findings remarkably show that the whole structure
of the short time correlations in aggregated traffic is
significantly changed by the occurrence of the attack.
These results betray a major change in the dynamical
properties of {X∆(k), k ∈ Z}, not only in its marginal
or static properties. This is the key interest of using
a joint multiresolution (various ∆) analysis scheme.

4 Anomaly Detection

4.1 Detection procedures

Principles. The key ingredient leading the design
of the detection procedures we propose here lies in
taking advantage of the multiresolution nature of the
analyses (performed jointly at different aggregation
levels) and of the fact that the evolution of α and β
with respect to ∆ is altered when an attack occurs.

The time series under analysis are split into adja-
cent non overlapping time windows of length T . Inde-
pendently for each time window and each aggregation
level, one computes a distance between a statistical
characteristic measured on the current time window
and on a reference window. In a second step, one
thresholds this distance to detect unexpectedly large
deviations and hence anomalous traffic behaviors.

The design of such a detection procedure is subject
to three major a priori choices: choice of the reference
time window (position and duration), choice of the
distance and choice of the threshold value. In the
current work, we explored the following possibilities.

The reference window consists of TRef minutes of
traffic collected by ourselves before the occurrence
of the attacks and therefore assumed to be regular
traffic. We used TRef = 1 min and TRef = 10 min.

There exists a very large variety of distances that
could be used (cf. e.g., [2] for an exhaustive re-
view). We explore here three of them chosen because

they better suit the purposes and intuitions devel-
oped here and as they are also known to yield the
most robust results. We compute Mean Quadratic
Distances (MQD) for the functions α∆ and β∆, 1D
Kullback divergences for monodimensional marginal
distributions of X∆ for various ∆s and 2D Kullback
divergences for bidimensional marginal distributions
of (X∆, X∆′) for various pairs (∆,∆′ 6= ∆). Here, we
used ∆ = 21, 22, . . . , 29, 210 ms.

For the threshold, a collection of values is system-
atically explored so as to derive performance curves
for the detection procedures.
Distances. To measure the distance between
two (possibly multi-dimensional) probability density
functions denoted by p1(x) and p2(x), one can use
Kullback divergence (KD) defined as [2] :

KD(p1, p2) =
∫

(p1 − p2)(ln p1 − ln p2)dx. (2)

From this definition, we compute for various ag-
gregation levels, Kullback divergences between the
marginal distribution of X∆ estimated within the
l−th time window, p∆,l, and that obtained from the
reference window p∆,Ref :

K
(1D)
∆ (l) = KD(p∆,l, p∆,Ref ). (3)

The K
(1D)
∆ at various levels are then combined to-

gether to produce multiresolution distances. To ob-
tain directly multiresolution distances, we can also
compute Kullback divergences for various pairs of ag-
gregation levels (∆,∆′ 6= ∆) between the joint two-
dimensional distributions p∆,∆′,l and p∆,∆′,Ref ob-
tained from the l−th and reference time windows,
respectively:

K
(2D)
∆,∆′(l) = KD(p∆,∆′,l, p∆,∆′,Ref ). (4)

Second, we define the Mean Quadratic Distances
(MQD) for α∆ and β∆:

Dα(l) =
1
J

J∑
j=1

(α̂2j (l)− α̂2j (ref))2 , (5)

Dβ(l) =
1
J

J∑
j=1

(
β̂2j (l)− β̂2j (ref)

)2

. (6)

Let us note that both type of distances are used in
a multiresolution way, the KDs are applied directly
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Figure 4: Kulback Divergences. Left, K
(1D)
24 (l)

for regular traffic (top) and traffic under attack (bot-
tom). Right, for traffic under attack, K

(1D)
27 (l) (top)

and K
(2D)
24,27(l) (bottom). Estimations from non over-

lapping 1 min time windows. While top left plot
shows the natural level of the statistical fluctua-
tions for KD, the three other plots show that the
attack is clearly seen. Superimposed on top left plot
K

(1D)
24 (l) for traffic containing an artificial multiplica-

tive anomaly. Points during attacks in (red) asteriks.

to the estimated pdfs and are hence used in a non
parametric way, while MQDs are explicitly applied
to the functions α̂∆(l) and β̂∆(l).

4.2 Distances as a response to attacks

Fig. 4 illustrates Kullback divergences as functions of
the time index l, computed on the time series of reg-
ular traffic and traffic containing an attack (Attack
III). Top left plot computed on regular traffic indi-
cates the natural level of the statistical fluctuations
of the KDs. This information can be used to set the
detection threshold above this fluctuation level. The
three other plots illustrate that both 1D and 2D KDs
perfectly feel the attack and hence enable to detect
it. However, because we use it in a non parametric
way, KDs could be fooled by legitimate multiplica-
tive change in traffic (The KD computed over the
time series containing the multiplicative increase has
been superimposed on the top left plot in Fig. 4). To
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Figure 5: MQD for traffic containing an attack.
Dα(l) (left) and Dβ(l) (right), computed on non over-
lapping 1 min time windows. Time windows con-
taining the attack (Attack III) are shown with (red)
asterisks, regular traffic with (black squares).

increase robustness, we turn to Dα(l) and Dβ(l).
MQDs are plotted in Fig. 5 for traffic containing

an attack. The left plot in Fig. 5 clearly illustrates
that Dα(l) takes large values within time windows l
containing the attack, hence confirming that its oc-
currence significantly alters the dependency of α with
respect to ∆. Therefore, thresholding enables detec-
tions. Conversely, one observes that Dβ(l) remains
mostly stable and is not significantly shifted with the
occurrence of the attack. As β is a scale parameter
mostly sensitive to the intensity of the traffic, this
indicates that attacks do not correspond to traffic in-
crease but rather to significant dynamical changes in
the correlation structure. The large values observed
in the Dβ(l) plot correspond to time windows that do
not satisfy the χ2 goodness-of-fit test because they
contain both regular and under attack traffics, yield-
ing aberrant estimates. Note that these large values
occur at the start and stop times of the attack.

A contrario, Fig. 6 presents Dα(l) and Dβ(l) for
regular traffic. As expected, their fluctuations remain
low compared to those observed on traffic under at-
tack and would hence not lead to false alarm detec-
tions. This enables to calibrate the natural level for
the statistical fluctuations of the distances. On top
of this regular traffic, we have superimposed an arti-
ficial multiplicative anomaly which may account for a
legitimate increase of traffic. By construction, β̂∆(l)
feels that anomaly while α̂∆(l) does not. However,
the MQD Dα(l) and Dβ(l) do not respond to traf-
fic multiplication as the correlation of the X∆ and
hence the dependencies in ∆ of α and ∆ are not al-
tered. Therefore, together, the set of tools α̂∆(l),
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Figure 6: MQD for normal traffic or traffic with
a multiplicative increase. Dα(l) (left) and Dβ(l)
(right). Superimposed (and almost identical): traffic
containing an artificial multiplicative anomaly (red
asterisk). The MQD Dα(l) and Dβ(l) are not sensi-
tive to the multiplicative increase: they stay within
the size of the natural statistical fluctuations.

β̂∆(l), Dα(l) and Dβ(l) enables us to detect anoma-
lies in traffic statistics and classify them in legitimate
ones (traffic intensity increase) and illegitimate ones
(dynamical changes in the correlation structure).

4.3 Statistical performance

ROC Curves. The statistical performance of de-
tection procedures are usually quantified via their re-
ceiver operational characteristics (often referred to as
ROC curves). They consist of the plots of the correct
detection vs. false alarm probabilities, PD = f(PF ),
together with the plots of these two probabilities as
a function of the detection threshold λ, PD = f(λ)
and PF = f(λ).

ROC curves are obtained from our documented
database. From the knowledge of the characteristics
of the attacks, we precisely know which time windows
contain the attacks and which do not. For each detec-
tion level λ, we compute the number of time windows
with attacks for which the chosen distance is above
threshold and derive PD, conversely, we compute the
number of time windows containing no attack and
derive PF . Then, we vary the threshold level λ by
arbitrary shifts to obtain the desired functions.
Experimental results. ROC curves, obtained
with the parameters TRef = 10 min, T = 1 min, ∆ =
21, 22, . . . , 29, 210 ms, for the three different distances
are reported in Fig. 7 for Attack III. These plots
clearly show that the curves PD = f(PF ) are satisfac-
torily close to the optimal left upper corner (the ideal
set point where all attacks would be detected and no
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Figure 7: Statistical performance. Left, Detection
probability vs False Alarm probability, PD = f(PF ),
right, PD = f(λ) and PF = f(λ), for Dα(l) (top),
K

(1D)
24 (l) (middle), K

(2D)
24,27(l) (bottom).

false alarm raised). One sees that K(2D), that explic-
itly involves two different aggregation levels, displays
better performance than a simple K(1D). On this
example, one further notices that MQD has slightly
poorer performance than those of KD. However, the
former distances possess a strong robustness against
legitimate anomalies and a promising ability in classi-
fying between legitimate and illegitimate anomalies.
Table 2 shows for all attacks studied here PD for a PF

set respectively to 10% and 20%. Such tables are ob-
tained by reading on ROC curves PD for the a priori
chosen PF level. They show that in all cases per-
formance are very satisfactory. Notably, for attacks
with very low intensity (such as Attacks A, B, I and
II) and hence little impact on traffic volume profiles,
detection rates, even if low at first sight are encour-
aging as most traditional IDS based on simple mean
and variance statistics would totally miss them.

5 Conclusions and perspectives
In this contribution, we designed DDoS attack de-
tection procedures intrinsically based on a multires-
olution non Gaussian modeling of traffic marginals.
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Dα K
(1D)

24 K
(1D)

27 K
(2D)

24,27

I 51 : 64 25 : 64 35 : 67 25 : 51
II 48 : 54 35 : 58 35 : 61 35 : 61

III 48 : 58 74 : 93 70 : 83 87 : 93
IV 33 : 50 56 : 67 56 : 69 34 : 66
V 18 : 40 87 : 96 34 : 93 90 : 96
A 21 : 50 50 : 78 37 : 59 53 : 81
B 81 : 87 78 : 78 09 : 33 78 : 81
C 52 : 58 91 : 91 91 : 91 91 : 91
X 93 : 96 93 : 93 93 : 93 93 : 93

tM 27 : 55 36 : 91 36 : 91 45 : 91
tN 54 : 54 73 : 91 91 : 91 55 : 73
tT 82 : 82 100 : 100 100 : 100 100 : 100

Table 2: Detection rates. For each distance, for
each attack, Detection probabilities obtained for a
fixed False Alarm probability set at 10% (left) and
20% (right).

Mostly, they consist of computing (and thresholding)
distances between the statistics estimated on a slid-
ing observation time window and on a reference time
window. Also, we performed a collection of DDoS
attacks with controlled characteristics and collected
the corresponding traffic. This enabled us to assess
the statistical performance of the proposed detection
procedures. We showed that results are promising
as the probability detection rate remains satisfactory
even for attacks with very low intensity.

To further develop the results presented here, we
intend first to perform larger attack campaigns in-
volving a larger variety of intensity levels, attack
protocols or mechanisms. Second, we plan to ex-
pand on the design of detection procedures: use of
other distances, detection threshold automatic selec-
tion (based on bootstrap techniques), further use of
the multiresolution nature of our modeling. Also, a
potential development lies in the choices of (peaceful
or aggressive) context dependent thresholds. Third,
we want to monitor the traffic simultaneously at dif-
ferent points in the network so as to perform joint
modeling and hence collaborative detections, also it
would be interesting to track changes in traffic close
to the attack sources. It is expected that these dif-
ferent perspectives should enable to improve the per-
formance of the procedure while decreasing the time
duration of the observation window significantly be-
low the minute.
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