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Abstract. An anomaly detection procedure based on statistical pro-
files of sketches of internet traffic is proposed. To validate its statistical
performance, measurement campaigns were conducted to collect regu-
lar traffic as well as traffic with anomalies, on the Renater network.
Anomalies were produced using real-world DDoS tools (tfn2k, trin00).
The attacks target different services (ICMP, SYN, UDP, etc.) and aim
at occupying the bandwidth. They consists of volume anomalies, how-
ever kept at low intensity levels with no noticeable impact on the global
traffic. This leads to the production of a documented, controlled and re-
producible anomaly database. The traffic traces are analyzed by means
of random projections in a small-dimension space (sketches). Each sketch
is aggregated over a collection of different time-scales and modeled using
non-Gaussian statistics. Anomalies are detected by quantifying the de-
partures of the modeling parameters from those estimated under normal
situations. Such deviations are quantified by means of Mean Quadratic
Distance or of Kullback-Leibler divergences. The labeled database en-
ables us to study the statistical performance (false negative vs. false pos-
itive) of the proposed detection procedures. They are shown to present
satisfactory performance, down to alert times of the order of 1 minute.
Key Words: Anomaly detection, Anomaly database, Performance Eval-
uation, Sketch, non Gaussian statistics, Kullback divergence.

1 Motivations, Contributions and Related Work

Being now the major universal communication infrastructure, Internet experi-
ences a great variability of traffic features, and is especially subject to attacks in
growing numbers and diversity. Therefore, the defense against malicious anoma-
lies through their early detection and mitigation is a major issue in Internet
researches. Numerous works already addressed the question of anomaly detec-
tion from traffic measurements, with two main groups of methods: signature-
based detection (by pattern matching, data mining,...); profile-based detection
of anomalies from their impact on the statistical properties of the traffic. Our
contribution belongs to this second group. Profile-based detection of anoma-
lies from traffic measurement were shown to be possible by monitoring specific
statistical traffic features [1]: spectral density or covariance [2], wavelet coeffi-
cients fluctuations, [3, 4], temporal features from Principal Component Analysis
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(PCA) [5], to list but a few. Notably, a recent set of articles proposed the sub-
space method to detect anomalies by PCA for network-wide anomalies [6, 7].
Our contribution also belongs to the group of profile-based detection explicitly
exploiting multiresolution analysis and non Gaussianity.
Methodology: what are anomalies ? Whereas, for signature-based proce-
dures, an anomaly is clearly defined by the signature that is found in real traces,
for profile-based methods, the situation is far less clear. In most published work,
an anomaly is declared to occur either when a meaningful statistical deviation
from normal is observed or if a network expert says so (usually using his/her
experience, analyzing signatures or well established intrusion detection system
(IDS) outputs). In the latter case, the risk is to design an ad hoc procedure able
to detect only this particular anomaly in this specific context. In the former case,
most procedures consist of 3-steps: i) characterize normal (and notably evaluate
its natural high variability), ii) characterize anomalous, iii) detect anomalies as
significant departures from normal. For instance, the subspace method defines
an anomaly as an emergence of a large residual signal in PCA. A posteriori in-
spections are required to validate the relevance of the alarm and nothing can be
said about missed detections. For both cases, the major drawback lies in the fact
that performance can not be assessed in a comparable and reproducible manner
and within a controlled framework. Most of the known methods, and their per-
formance, were rigorously compared in [8]. However the anomalies are defined
here, as well as in the original article, a posteriori from the detection procedures
and not from the traces. Hence statistical performance may be compared but
not clearly assessed.
This present work proposes to mix both perspectives. We have chosen to con-
duct measurement campaigns to collect both regular traffic as well as traffic with
anomalies. This has been performed on the operational Renater network. While
regular traffic consists of the uncontrolled actual traffic existing on this network,
anomalies were performed by ourselves, in a controlled and reproducible manner,
using real-world DDoS tools (tfn2k, trin00) piloting a botnet. The constitution of
this traffic database containing controlled, reproducible and documented anoma-
lies, which consists of the first major contribution of our work, circumvented the
difficulty of a posteriori blind validation of anomalies and enables us to un-
ambiguously assess the statistical performance of detection procedure proposed
below in a framework allowing for comparisons.
Detection and statistical variability of the traces. To specifically address
the well-observed naturally high variability of traffic, the use of non Gaussian
statistics (possibly heavy tails) have been proposed, this is notably the case with
multifractal models [9]. Other work proposed to describe the marginals with com-
mon positive laws such as log-normal, Weibull or gamma distributions. Due to
the point process nature of the underlying traffic, Poisson or exponential dis-
tributions are expected at small aggregation levels, while for highly aggregated
data, Gaussian distributions are used in many cases as relevant approximations.
However none of them can satisfactorily model traffic marginals both at small
and large time-scales. We have recently proposed to go one step further [10, 11]
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showing that a versatile and relevant traffic analysis can be achieved via the per-
forming of a multiresolution-Gamma modeling: the empirical marginals of traffic
aggregated over a range of different time-scales are modeled with a collection of
Gamma distributions. Anomalies are detected as departures (quantified by rele-
vant information-theory distances) of the parameters measured when anomalies
occur from those estimated under normal situations.
Reduction of dimensionality. Another issue in anomaly detection is to face
the high dimensionality of the data. Inspired from researches on data streaming
(see for instance [12]), and following ideas by [13], we propose to represent the
trace by sketches, an efficient tool to reduce the dimensionality of the data. For
network-wide measurements, various ways to reduce this high dimensionality
were investigated: PCA [6], non-linear manifold learning [14] and more recently
sketches [15]. Sketches are summaries of the real trace, reduced to a few di-
mensions. They are obtained by means of some hash functions that mixes the
data, followed by a projection in a low-dimension subspace. This can be seen
as a random (nevertheless known) sorting and aggregation of the packets, or as
a projection on a random subspace. Variants of this fruitful method have been
used developed, for instance, for change-detection [13], for summarizing what is
new [16], for identifying heavy hitters [17],...

Hence, any anomaly detection method has to cope with both the high inner
variability of network traffic, and its high-dimensionnality. Therefore, the orig-
inality of the second contribution of the present work consists of proposing a
new anomaly detection method combining our previous multiresolution-Gamma
modeling with a sketch based analysis. We show that this enables us to detect
attacks or anomalies even with very low intensities (equivalently at very low
signal to noise ratios). Also, the joint use of several hash functions, chosen in
an quasi-random manner, opens the track for the identification of the flow(s)
responsible for the anomaly and hence for reaction, mitigation and defense.

2 Anomaly Database
We conducted experiments and measurements aiming at producing a docu-
mented, controlled and reproducible anomaly database. This requires collect-
ing traces showing legitimate traffic and traces containing DDoS attack packets.
One objective of profile-based detection is to detect anomalies that do rely on an
illegitimate increase of traffic, or some part of the traffic (SYN packets, ICMP
packets, UDP packets) though this increase remains low. This is especially true
due the distributed nature of the nowadays attacks: close to the target, traffic
changes become huge and the detection is easy, but too late because the tar-
geted resources are already wasted. Therefore, our goal is to detect the onset
of the DDoS close to the generating sources, where the traffic of only a few
bots is aggregated, hidden under normal activity. Our attacks consist of volume
anomalies, however, they are kept in purpose at very low intensity levels with
no noticeable impact on the global traffic (and hence cannot be subsumed to
global mean or variance changes). This situation can be compared to the case of
a router collecting the packets of a couple of bots. None of ours attacks saturated
the access link. We collected traffic both at the target computer (or router) and
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Tool Flooding
attack

#bots #Attack
packets/s

#Total
packets/s

Attack
intensity

Attack
throughput

TRINOO UDP 2 74 1098 7% 200kb/s

UDP 4 148 3640 4% 388kb/s
4 148 2190 7% 388kb/s

TFN2K TCP SYN 2 520 4258 12% 166kb/s
ICMP 4 92 1099 8% 288kb/s

4 179 1820 10% 388kb/s
Mixed 4 760 2781 27% 250kb/s
Smurf 4 95 2501 4% 250kb/s

Table 1. Characteristics of the anomalies performed. The attacks are made during 10
minutes and we collect the traffic for one hour around that period.

at the routers connecting the attacking bots to Renater.
DDoS attacks are performed using Trin00 and Tfn2k, two well-known real

world tools used to attack computer networks. Trin00 daemons allow flood-
ing by sending to the target valid, non sollicitated, UDP packets. Tfn2k is a
much more versatile tool that allows attacks covering a wide range of meth-
ods used for DDoS: UDP flooding, TCP/SYN flooding, ICMP/Echo flooding,
attacks combining those three methods, SMURF (sending Echo packets to a
broadcast adress, replacing the IP of the sender with the one of the victim)
and Targa3 (malformatted packets). Both of those tools use a similar architec-
ture: daemon programs (usually referred to as bots or zombies) are installed and
launched by the attacker on several computers among the internet, using worms
or security holes. Once those bots are up and running, the attacker can use a
master program that sends its orders through the network, commanding them to
attack simultaneously a (set of) IP address(es). Bots use stealth methods such
as changing their names to common services to avoid being discovered. Order
packets between master and bots are even more difficult to detect among regular
traffic, because they consists of anonymous UDP packets, carrying information
encrypted in the payload. Bots obtain their orders by trying to decrypt all re-
ceived packets. For those reasons, it is difficult to identify computers infected
with sleeping zombies before the attack begins, and there is a real interest in
identifying them as quickly as possible when the DDoS begins. Since some of
our routers were rejecting malformatted packets (incorrect CRC or invalid URG
pointers, for examples, detecting them by a signature-based method), some cor-
rections in the Tfn2k daemons source coded were needed for the attack packets
to reach the target without been discarded by the routers.
To perform DDoS attacks, we installed Trin00 and Tfn2k bots on several comput-
ers, linked to the Renater operational network (the French high speed network
used for research and education), hosted in four different sites: IUT Mont de
Marsan, LIP6 Paris, ENS Lyon and ESSI Nice. The target consists of a single
computer located in LAAS, Toulouse, France. All attacks have been conducted
during afternoon hours, and are mixed with real, legitimate, LAAS internet traf-
fic. These campaigns of experiments provide us with a labeled database of real
traffic traces containing low intensity bandwidth controlled and documented
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Fig. 1. Gamma model for a sketch with anomaly. Left: Empirical PDF and model at
2 scales. Right: αj,k vs. log2 ∆, estimated on several 1 minute windows for 3 chosen
entries. The anomaly is in k = 6, and circles corresponds to the anomalous part.

anomalies. The characteristics and descriptions of the obtained anomalies are
summarized in Table 1. This database enables us to assess the performance of
the anomaly detection method proposed below. It could also be used to evaluate
the performance of other methods.

3 Multiresolution-Gamma Sketch-based Detection

3.1 Multiresolution-Gamma Modeling and Sketch Analysis

Sketches. The method is based on a non-Gaussian modeling of the aggregated
time-series of sketches of the traffic. Here, we use H different hash functions
hn, n ∈ {1, ...,H} with K the (identical) size of each hash table. To reduce
the probabilities of collisions, we follow [13] and use 4-universal hash functions.
We construct them using the fast-tabulation method of [18]. Typically, we use
2 ≤ H ≤ 10 different hash functions (conceived from known initial random
seeds), with 5 ≤ K ≤ 50.
Each arriving packet (label i) is assigned in the the k-th entry of sketch, ac-
cording to each hash function hn applied to the destination IP (IPdst) of the
5-tuple of the IP header. The relation is ki = hn(IPdsti) ∈ {1, ...,K}. Sketched
data then consists of the doublets (ti, ki)hn (where ti denotes the time stamp of
the i-th packet). Being interested in bandwidth anomalies against one computer
or one sub-network, we use now only the destination IP as an input of the hash
table. For anomalies of other natures (port-scans, worms, alpha peaks,...), the
method can straightforwardly be extended by hashing the remainder of the 5-
tuple. Then, we aggregate with respect to time each entry k of the sketch (the
packets (ti, ki)hn) to obtain the time-series Xn,k

∆ (t), t ∈ Z, consisting of the num-
ber of packets observed within bins of size ∆ for the k-th entry (1 ≤ k ≤ K) of
the j-th hash function (1 ≤ j ≤ H). Equivalent analyses could be based on bytes
aggregated traffic. Fig. 2 representd the total aggregated traffic for one trace,
and the time-series of some of the entries of one sketch. For entry 6, the anomaly
is apparent, validating the intuition that sketching will increase the SNR for the
following detection.
Multiresolution-Gamma Modeling. It is well known that aggregated traffic
is not in general Gaussian, and that its marginal probability density function
(PDF) f∆(x) is likely to vary both with the aggregation level ∆ and the degree
of traffic multiplexing. For example, for backbone links, taking f∆(x) as Gaus-
sian is a reasonable approximation for ∆ > 1s, whereas it is a very poor one at
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∆ < 1ms. Based on χ2 goodness of fit tests (details omitted for brevity) applied
to data collected over windows T = 1 to T = 10 minutes long, we found that
for ∆ ≥ 1ms, f∆(x) can be well approximated by members from the Gamma
family, whose density is given by f∆(x) = xα−1e−x/β/(Γ (α)βα). These findings
are in agreement with results in [10, 11] where the same analysis was performed
on a much larger number of traces obtained from standard Internet traffic repos-
itories. A Gamma random variable has mean µ = αβ and variance σ2 = αβ2.
It is fully characterized via its scale parameter β > 0, and the aptly named
shape parameter α > 0. With α close to 0 the density is strongly skewed and
exponential-like, but tends to Gaussian in the limit α → ∞. The quantity 1/α
thereby gives a measure of distance between the Γα,β and N (αβ, αβ2) laws. For
each time-scale ∆, parameters α∆, β∆ are estimated by standard tools. A major
feature is that the model still holds for a large range of aggregation levels ∆ rang-
ing from short time-scales (with near-Poisson PDFs) to large time-scales (with
quasi-Gaussian PDFs) and we thus monitor the functions of the time-scales: α∆

and β∆. The Multiresolution-Gamma Modeling catches not only the marginal
(or one-time) properties at all time-scales ∆, but also the correlations in the
time-series. Indeed, the PDF of the series aggregated at ∆′ feels the correlations
of that aggregated at ∆ < ∆′.
Multiresolution-Gamma modeling and sketches. An original contribution
of the present work is that this Multiresolution-Gamma modeling holds for ag-
gregated series of sketches Xn,k

∆ (t), whether containing anomalies or not. For
instance, Fig. 1, left, shows the adequacy of the model for one entry containing
the anomaly. The central observation consists of the fact that the evolution of
αn,k

∆ is altered with respect to ∆ in some entry(ies) of each sketch when attacks
occur. This is illustrated on Fig. 1 for one of our experiments (Tfn2k, UDP Flood
attack, intensity 7%). For the entry k = 6 is where the traffic of the anomaly
is sorted in for the hash function used. The statistical parameters αn,k of the
anomalies are shown, estimated over 1 minute windows. For the entry in which
the anomaly stands, and the instants when the anomaly occurs, one clearly sees
a drastic change of αn,k

∆ vs. j = log2(∆) not only in value but also in shape. This
is modification of a statistical signature betrays the botnet attack. Tracking this
change is the core of the detection procedure described below.

3.2 Anomaly Detection
Principles. The time series under analysis are split into adjacent non overlap-
ping time windows of length T . Independently for each time window and each
aggregation level, one computes a distance between a statistical characteristic
measured on the current time window indexed by l and that on a reference win-
dow. In a second step, one thresholds this distance to detect unexpectedly large
deviations, and hence anomalous traffic behaviors. The design of such a detec-
tion procedure is subject to three major a priori choices: choice of the reference
for normal traffic, choice of the distance and choice of the threshold value.
Distances. There exists a very large variety of distances that could be used (cf.
e.g., [19] for an exhaustive review). We explore here two of them chosen because
they better suit the purposes and intuitions developed here and as they are also
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known to yield the most robust results.
The first distance used is the Mean Quadratic Distances (MQD) for α∆ and β∆:

Dα(l) =
1
J

J∑
j=1

(α̂2j (l)− α̂2j (ref))2 , Dβ(l) =
1
J

J∑
j=1

(
β̂2j (l)− β̂2j (ref)

)2

(1)

Let us note that the distance is multiresolution in its construction: it uses jointly
different time-scales ∆ ∝ 2j . Another possibility is to directly use a non para-
metric distance between the reference distributions and the current ones. For
instance, Kullback divergence (KD) between two (possibly multi-dimensional)
probability density functions denoted by f1(x) and f2(x), is defined as [19]

KD(f1, f2) =
∫

(f1 − f2)(ln f1 − ln f2)dx. (2)

From this definition, we compute for various aggregation levels, Kullback diver-
gences between the marginal distribution of X∆ estimated within the l−th time
window, f∆(t), and that obtained from the reference window f∆,Ref : K

(1d)
∆ (l) =

KD(f∆,l, f∆,Ref ). The K
(1d)
∆ at various levels may then combined together to

produce multiresolution distances. Note that one could use a multiresolution
distance from the KD, by computing Kullback divergences for various pairs of
aggregation levels (∆, ∆′ 6= ∆) between the joint two-dimensional distributions
f∆,∆′,l and f∆,∆′,Ref obtained from the l−th and reference time windows [11].
The results are comparable to the other distances and were left out for the sake
of the simplicity of the discussion.

4 Detection Performance and Perspectives

Distances as a response to attacks. For each series Xn,k
∆ (t) the reference

consists of all the minutes of traffic collected in the absence of the DDoS attack,
before and after the anomaly, and therefore assumed to be regular traffic. Note
that we are not certain that there is no anomaly caused by others during this
time. We adopt thus a pessimistic scenario by assuming there are not because
we may perturb the reference and we will count as false alarm anomaly detected
outside our attack window when there possibly could be real anomalies! Fig-
ure 2 shows, for one experiment the aggregated traces (at 1s) of total traffic
and of entries of one sketch, and the corresponding distances. thanks to the use
of a high aggregation level, the anomaly can be clearly seen in the proper en-
try (here k = 6). However, it cannot be simply detected by this clear increase
of the mean. Indeed, other sketches (k = 17 for instance in our example) are
likely to exhibit equivalent clear increases of their means with no relation to the
occurrence of an anomaly. To correctly distinguish the anomaly from a mere
increase of traffic, correlations are to be taken into account, hence the interest
of the Multiresolution-Gamma modeling. It is clear from this example that the
anomaly is detected quickly by applying a proper threshold to the computed
distances. Here, we used ∆ = 22, 23, . . . , 29 ms for the MQD.
The statistical performance of the detection procedure are studied in two ways.
First, we determine the natural variabilities of the distances in the absence of
anomaly. Comparisons with distances measured in presence of anomalies for a
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Fig. 2. Trace of a TFN2k, UDP Flood attack, of intensity 7%; K = 40. Left to right:
aggregated traffic over 1s; DQM distance Dα along time, K1d distance for scale ∆ =
10ms and ∆ = 40ms. Top to bottom: total traffic, then traffic in 3 chosen sketch’s
entries (anomaly in k = 6). Asterisks and grey area corresponds to the anomaly. Note
that despite the increase of traffic in sketch 17, our procedure based on correlation
changes says correctly that there is no anomaly.

variety of attacks (with changing intensity and mechanism) enables us to derive
the p-values for the detection procedures, i.e., the probability that the computed
distances bypasses a given threshold simply because of the occurrence of natu-
ral fluctuations. Figure 3 (a) illustrates such p-values. For a single sketch, this
probability is experimentally always found below 4%, and is often much more
lower than 1%.
Second, we report on Fig. 3 (b-c) the probabilities of detection, via standard
Receptor Operational Curves (ROC) consisting of the probability of detection
vs. the probability of false alarm. Performance are given for a single 1 minute
window-frame. Obtained results are satisfactory. From the derivation of the p-
value, we are able to select a threshold so that the probability of false alarm
is set a priori to a chosen level. The KD distance seem to be in general more
sensitive than the simpler MQD; the trade-off is here that the MQD is faster to
calculate than the KD, and also about the properties for mitigation. To improve
robustness, one can use jointly several time-windows, thus handling the classical
trade-off: lower false alarm rate vs shorter alert time. The probabilities of de-
tection obtained from the use of 1, 2, or 4 consecutive (1-minute) time windows
are shown on Fig. 3 (d). Those probabilities of detection were established exper-
imentally from the database, for a a priori 1% false alarm rate. Improvement in
performance is clear, at the price of longer alert times however.
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Fig. 3. Statistical Performance for 1 minute observation. Attacks are: Smurf (4%,o),
UDP (7%,*), TCP(12%,triangle), Mixed (27%,diamond). (a) p-value vs. Intensity of
the attack. (b) ROC curves of Dα for various intensities. (c) ROC curves for Dα (-),
KD j = 1 (–), KD j = 3 (-.), for Smurf (4%,o) and Mixed (27%,diamond). Vertical
lines indicate empirical p-values for this experiment/distance. (d) Prob. of detection
vs. Intensity for alert time of 1 to 4 min, for prob. of false alarm less than 1%.

Conclusions and Perspectives. This work shows that, using a controlled
anomaly database, one can test the statistical performance of anomaly detec-
tion method. We have proposed sketch-based, multiresolution-Gamma statistical
detection procedures and illustrated their probabilities of detection with respect
to the intensity of the anomalies.
Because sketches sort the traffic, a straightforward development lies in the iden-
tification of the malicious packets. Indeed, due to the use of k-universal hash
functions, probability of collisions diminish exponentially with the number of
sketches and the inversion of the hashes is made possible by the use of a col-
lection of sketches. This is a very promising research direction with respect to
attacker identification currently being developed and implemented. Another fea-
ture is that the fast-tabulation method of [18] appears to be scalable for more
loaded networks. Therefore, the full procedure, combining hash, multiresolu-
tion modeling (implemented by the wavelet pyramidal algorithm) and distances
computed over sliding windows, can potentially be implemented on-line. Also,
automatic choices of the reference time-window (based on non-stationary signal
processing methods) and of the threshold are considered. These different futher
developments are under current investigations.
We showed in [11] that the combining of the Gamma-modeling with a long-
memory farima model enabled us to identify attacks from legitimate flash crowds
anomalies. We are currently enquiring on potential extensions when using sketches.
Such extensions may also help us to detect new types of anomalies: indeed, any
departures from our calibrated regular traffics, flash crowds and DDoS attacks
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are likely to correspond to a new type of anomaly. It is our opinion that the pro-
posed detection framework for anomaly detection, with one-point measurement
only, is flexible enough to allow for the statistical detection and mitigation (or
classification) of anomalies.
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