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Abstract

Turbulence deals with the complex motions in fluid at high velocity and/or involving a large range of
length-scales. Turbulence asks then many questions from modeling this complexity to measuring it. In a
first part, the description of signals measured in fluid turbulence experiments will be made along with a
survey of modern signal processing tools that are adapted to their properties of scaling laws, multifractalty
and non-stationarity. A second part will be devoted to the study of one signal processing framework, the
decomposition of self-similar signals on the Mellin oscillating functions, that is a new way to probe jointly
scale invariance and local organization of a signal.

1 Turbulence: experimental signals and signal processing tools

1.1 Preliminary analysis of fluid turbulence

Formalization of the problem. Turbulence is first a problem of fluid mechanics [Bat67]. wét(0); ¢) be the
Lagrangian velocity of a fluid element that isx(0) at initial time; p is its density. It obeys the fundamental
relation of dynamicspD;u = ) pf, wheref are the forces: friction, pressure forces, gravity=f pg),...

This equation is linear but non-local because of the pressure termislthe pressure, the corresponding
force is—Vp which is linked to the whole velocity field. Added to that, it is experimentally hard to track the
movement of one fluid element in a fluid. So, instead of the Lagrangian velocity, the problem is often studied
with the corresponding Eulerian velocity(r, t) at the fixed positiorr. Both velocities are related via the
change of variabler(r(0);¢) = v(r(¢);t). The equation for the Eulerian velocity, called the Navier-Stokes
(NS) equation, reads then as:

1
Dyv = opv + v-V)v =—-Vp+ VAV +E f,. 1
: — Hz—/( ) p P L ! @
local derivative convective derivative viscuous friction

Friction in the fluid (supposed newtonian) is explicitely written here and it is proportional to the vicogitr
an uncompressible flow, the continuity equatidn v = 0 completes the problem. Remark that the pressure
term is non-local because of a Poisson equation that refates: Ap = —§?(v;v;)/dz;0x;. One should
also specify the boundary conditions: the velocity of the fluid is zero at the boundaries. One simple approach
adopted by physicists is to study turbulence in open systems far from the boundaries in order to find a possible
generic behaviour of a turbulent fluid, disregarding the specific geometry of the boundaries.
Signals of Eulerian velocity. Experiments of turbulence consists in studying high speed motions in a fluid
where the flow is disturbed by means of a grid or by creating a jet. The flow becomes turbulent, and the velocity
of the fluid is recorded along time at some position. Common apparatus are hot-wire probes that measure one
component (t) of the velocity at one point only (we will discuss only single probe measurements here).

A sample velocity signab(t) is shown in figure 1, obtained during the experiment GReC [FIin
a jet at high Reynolds number (up 167) in helium at4.5 K (so that its viscosity is very low). The erratic
fluctuations are typical of such signals and one can see numerous points where the signal appears almost
singular. The singular fluctuations are clearer for the dissipative signal, that is measured as the time derivative
of its energyv(t)? /2; it seems made of numerous peaks of variable amplitudes, separated by periods of almost
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Figure 1:Left: a typical Eulerian velocity signai(¢). Right: its corresponding dissipation (derivative of the squared ve-
locity). Those signals were measured by Pietropettal. as part of the GReC experiment [PP83] of fluid turbulence
in low temperature gaseous helium.

no activity: the density of peaks is fluctuating from time to time. This is called spatial intermittency. Lastly, we
notice that there exist large-time fluctuations (long excursions far from the mean) as well short-time variations.
The question is to undertand all those features.

Dimensional analysis of turbulence. The drawback of the NS equation is that it is non-linear, due to the
convective term: one may expect solutions with complicated shapes (as in figure 1). On the other hand, the
friction term may impose some regularity on the solutions. The balance between the two effects is obtained
by dimensional analysis. Léf be a typical velocity, and, a typical length scale of the full flow (for instance

the size of an experiment), théw - V)v ~ U%/L andvAv ~ vU/L?. The ratio is the Reynolds number

Re = UL/v, and this is the only quantity left if one takes out the dimensions from the variables. When Re is
high, the flow becomes irregular and unpredictable, with motions at many difference length scales: the fluid is
turbulent.The symmetries of the equation appear to be broken in the flow: it is disordered spatially and
chaotic temporally.

A key remark is that a turbulent flow is very different from a flow with zero viscocity, even when-Re
(fully developped turbulence). Indeed, the energy dissipated in the flow is never zero because the irregularity
of the solutions increases correspondingly, creating strong gradients in the flow. The dissipation is defined
ase = —d(|v|?/2)/dt. If the flow is stationary, its mean along the time is constant and equals its spatial
mean:z =< £(r) >= —v < |w|? >,; here we introduced the vorticityy = V A v, characterising the
swirling motions in the fluid, and(r) = v(9v;0z; + dv;0z;)*/2 is the local dissipation. A first dimensional
analysis keeps only andv as relevant parameters. Combining them, Kolmogorov introduced a dissipative
length scale; = (v%/2)!/* where the solution should become smooth because of the fluid friction. As a
consequence, the estimated number of modes (needed for computer simulations) is, for the three-dimensional
velocity, (L/n)? = Re”4. This number is too high to conveniently use methods from nonlinear dynamical
systems. Mathematically speaking, characterising the flow from the NS equation is hard because of all those
properties.

An alternative approach in physics is to forget about the dynamical equation and find only the statistical
properties of the velocity field [Bat53, BLF53]. Knowing the complete initial velocity field of a turbulent
fluid, and then following its proper evolution in time is hopeless because of the high number of modes and
of the non-linearity of the equation (it has potential chaotic properties). Experimental observations support
this assertion: the fluid seems erratic, with many ever changing currents and eddies, and typical measurements
of the Eulerian velocity as a function of time are strongly shambled signals. Forgetting about the initial
conditions and exact geometrical setting, one can find simple models to describe statistical properties of the
signal, assuming that(r; ¢) is a random process indexed bandt. We will review main results obtained by



this way, with specific insights about the signal processing tools needed to relate the measurements with the
statistical descriptions of a turbulent field.

1.2 Estimation of scaling laws in turbulence

A multiresolution characterisation: the velocity increments. Harmonic analysis of the velocity relies first

on its spectral analysis. Fourier representation = [ e~ 2™ d¢(v) is suited especially if is stationary, in

which case its spectrut$i, is given byE {d¢(v1)dé(ve)} = Su(v)d(v1 — v2)drridrs (E is the expectation).

See figure 2 for an estimate 6f(»). The support of the spectrum is broad-band &p@) follows roughly

a power-law with cut-offs at the inertial scale and at the small scale were dissipation becomes dominant
(aroundn). This corresponds to the lack of a single time scale of evolution. The flow has a complex evolution
both in time and space. Added to this, the velocity signal is almost Gaussian and does not describe the rare
high-intensity events evidenced in dissipation. A Gaussian law of probability and the spectrum are not enough
to characterise well the apparent complexity and burstines& gfand so the intermittency.

In order to question all the time scales in the signal, the velocity increment over the time separation
(or scale)r at timet was introduced as a more relevant quantidy(7; x,t) = v(x;t — 7) — v(x;t) =
v(x + r;t) — v(x;t). This quantity is a multiresolution quantity in the sense that it describes the velocity
at the varying resolutiom. The second expression féo(7) uses the Taylor hypothesis and postulates that
the velocity fiels is quickly advected so that there is no (or small) evolutiandafring the timer; this is an
hypothesis of “frozen” turbulence during the time scale of the measurement. The incrartienis then a
valid spatial descriptiodv(r) with r = |r| ~ 7|v(x;t)| = Tv. Velocity increments are relevant to capture
both long-time evolution of the signal (dominated by the statistics bécause)(t — 7) andv(7) are then
almost independant) and short time behaviour where the dominant features are intermittent peaks of activity
evidenced in the derivative of the signal.

Wavelet transform and estimation in turbulence. Velocity increments are not the only multiresolution quan-
tities and in the context of estimation, they are not the most well-behaved. A general class of multiresolution
representation is the wavelet transform [Mey9dD](¢, a) = [ v(u)y([u —t/a)du/a. Velocity increments are

“the poor man’s wavelet”, setting(u) = é(u + 1) — 6(u) and lettingr be the scale variable Wavelets are

good basis for estimation [AFTV00] because the property of stationary increments is mapped to the station-
arity of the coefficientd’, (¢, a) and those coefficients decorrelate quickly: the meafTgft, a)|P are good
estimators for the moments &@f|dv(r)|? with » = av ; moreover the wavelet transforms may be blind to
polynomial trend (by using wavelet with more than one zero moment) and are more robust than direct calculus
from the velocity increments.

We want to characteris® () completely, trying to estimate all its moments. They are called the structure
functions:E {|dv(r)|P}. We report in figure 2 some properties of the structure functions: they look like power-
laws over the inertial range. At the bottom of this figure, we draw the evolution of the expajeftshis
power-law with the ordep of the moment, and the probability density function of the increménts) for
differentr, estimated from the wavelet transform:of

A further advantage of the wavelet transform is the possibility to use only local maxima of the wavelet
coeffficients, that represent best the singularities in the signal (this leads to WTMM for continuous wavelet
basis [AM95], or wavelet leaders for discrete basis [Jaf04, Las04]). Indeed, if a signal is singular so that
lv(r) — v(ro)| ~ |r — ro|", its wavelet transform verifie | T, (1o, a)| ~ a" whena — 0. The models will
rely heavily on singularities, so wavelets are good tools to probe them.

1.3 Statistical modelling of Eulerian turbulence

Self-similarity: The theory of Kolmogorov 41. A short review of the theoretical descriptions of scaling laws

in turbulence is needed to understand the experimental analysis. A large litterature on the subject exits, see
for instance [Bat53, MY71, Fri95]. In question is a model of the statistical properties of the random variables
ov(r;x,t). Kolmogorov proposed in 1941 [Kol41a, Kol41b] a full description of velocity postulating that



symmetries of the velocity increments are statistically recovered: time stationarity (independancg, from
spatial homogeneity (independance fragnnote that this is valid because it models turbulence far from the
boundaries) and isotropy. To those he adds the property of self-similarity:

sv(Ar;x,t) ~ X v (r; x, t). (2

This last-property is really interesting: this is a description of the regularity and the intermittency of the
solution because, if this relation holds for small separatiph®ne solution is to havév(r) ~ " which rules

the behaviour of the derivative, and consequently of the dissipation. It defines the kind of peaks one expects
to find in the dissipation signal.

With those symmetries, the only parameters left are the mean dissigatibe viscosityv, the self-
similarity exponenth and the length-scale one considers. Kolmogorov supposes that every spatial scale
behaves the same, with the same mean dissipation so that fet any [sv(r)]?/[r/dv(r)]. Thusdv(r) ~
g!/3r1/3: the velocity has a unique exponent of self-similafity= 1/3. The moment ofv should then obey
the following relations :

E {|0v(r;x,t)|P} = Cp(zr)P/? if n <7 =< L (inertial zone) (3)

Whenp = 2, the scaling law imposes the spectrum of the velocity by means of the Winer-Khinchin relation.
Kolmogorov's well-known prediction is that the spectrum should Bg(k) ~ v°/42'/4(kn)=5/3 if k is in-
betweenl /L and1/n (the inertial zone). This last prediction holds well, as seen on figure 2. But the general
prediction of (3) is found failing for other orderE.{|jv(r; x,¢)|P} as a function of- is only rougly a power-
law 7¢» (but not exactly [BCT93]), and this approximate law has not the expon€pts- p/3 predicted in
(3). The evolution exponents with the orgeis not linear.
Characterisation in terms of singularities: Multifractal formalism. The failure of K41 is related to the
spatial and temporal intermittency of the dissipation: random bursts of activity exist and the regularity of the
signal changes from one point to another, and so ddesm one scale to another. The self-similar property
(2) holds only in a statistical way whereis also a random variable that dependskoandi. If this property
holds forA — 0T, h is called the Hlder exponent of the signal at poirt The set of points sharing the
same Hlder exponent is a complex random set that is a fractal set with dimefXibh This is the multi-
fractal model [FP85, Fri95] that describes the signal in terms of singularities at small scale; it supposes then
that all the statistics are ruled by their behaviour. The complementary property of the multifractal formalism
relates then the singularity spectrun{’) with the scaling exponents, by means of a Legendre transform:
D(h) = inf,(hp + 1 — ¢,). Mathematical aspects of multifractality can be found in [Jaf97]. Experimentally,
in order to measure the multifractal spectrum that is the core of this model, one has first to compute a multires-
olution quantity, then use a Legendre transform that is a statistical measixg:pfrom the exponents,,.
Experiments now agree witf), ~ c1p — 02p2/2, wherec; ~ 0.370 andcy, ~ 0.025; this is a development in
a power seriep” and term" with n < 3 are too small to be correctly estimated nowadays. The singularity
spectrum is then consistent with the log-normal model, Bt) = 1 — (h — ¢1)?/2c2. The expected value
of his 0.37 on a set of dimension 1 in the signal, but the local exponent fluctuates.

Because the physical velocity should be a continuous signal at small scales (smallgy, ihhias been
proposed as a further refinement that the complex time singularities with the|formg|(0), with 2, =
to + i¢ € C could be part of the time signal(¢), and the basis for multifractal interpretation. Such a
distribution of singularities having each a spectrant—2"~1e~2¢U* |ead to a mean spectrum consistent with
the K41 prediction and the quantitative measurements. Yet such singularities have not yet be derived directly
from the NS equation, but only in simpler dynamical systems [FM81, FMWO3].
Characterisation as random cascades.To understand the statistical intermittency of the flow, one may
model only the statistics of the flow. A feature of equati®) is notable: if the equation were true, the
random variablév(r)/(zr)'/? should be independant offCas97]. However experimental measurements of
the probability density function (pdf) @fv(r) shows that its shape changes witleven in the inertial domain;
see figure 2. At large scale (closef, the pdf is almost a Gaussian; when probing smaller scale, exponential
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Figure 2:Statistical analysis of one-point velocity measurements. Top left: spec@ky of the velocity that follows

the K41 prediction of a power-law of exponent 5/3. Bottom left: structure functigs) = E |dv(r)|P for p = 1 to 4;

inserted is shown the Extended Self-Similarity property: the structure fonctions are not really powertatmstdfetter

power laws of one another. Top right : exponefjtef the higher-order statistics (taken from [Gag87] and [CBC95]) are
shown different from the K41 model, and closer to a multifractal models (here the Kolmogorov-Obhukov model —-K62—
and the She-éveque model). Bottom right: pdf of the increments figured at various scales, from small scalerfa few
where the pdf is hon-Gaussian with heavy tails, to large scale (arbumchere the pdf is almost Gaussian; note that

the scale is logarithmic for the pdf. The experimental spectrum and pdf are from the datas of the GReC experiment
[PPB*03].

tails become more and more prominant: rare intense events are more frequent at small scale — this is another
face of intermittency.

This property is best modelled as a multiplicative random process, where each scale is derived from the
larger one. The general class of this model comes from the Mandelbrot martingales [KP75] and was also
developped from the experimental datas in turbulence [Nov71, Cas97]. The defining property is that the
probability functionP, (In |§v|) at scaler satisfies:P,, (In |dv]) = G**(r2)=2(r)l P, (In |§v]), wherex is a
convolution. This is the property of an infinitely divisible process éhi$ the kernel of the cascade, that is
the operator that warps the fluctuations from one scate another: G,, ., = G**72)=7(")] From this,
one can derive the structure functions and they read:

E {|6v(r; x, t)[P} ~ T@n0) with H(p) = —InG(p), (4)

(G is the Laplace transform @f). A consequence of the model is thatifr) is close tolog r, the structure

function obeys a power-law with exponeggs= H (p). If not, the property is extended self-similarity because

all orders share the same la®(™) and for instancéE {|0v(r; x,t)[P} ~ (E{|sv(r;x,t)PHHEP (G = 1

because of the &man-Howarth equation [Fri95]). The interest of multiplicative cascades seen as infinitely

divisible processes is that this leads to effective construction of stochastic processes satisfying exactly the

relations (4), and they can be used as benchmark for the estimation tool based on wavelet [BM03, CRA04].
Lastly, a model that links multifractality and infinitely divisibility was built by adding the fact that beneath



the dissipative scalg, the velocity is differentiabledv(r) = rdv/dx. In order to do this small scale regular-
izaton, one has to define a local dissipative scale, obtained when the local Reynolds nufnber Ra)(r) /v
equals 1, to the strength of the local singularity. In fact we hiave) ~ (/L)*™U if » > n(x) so that
Re(r) = rév(r)/v = (I/L)"*"*)Re. The dissipative scale is fluctuating locallyrd) = LRe™Y/(1+h)
whereas K41 uses a fixed dissipative soale- (v%/2)!/* which is now the mean of thg(h). Given this
behaviour, a unified description of the statisfit$|dv(r; x,¢)|P} was derived, valid both in the inertial and
dissipative scales [Che04, CRD3]. Still, this description is phenomelogy; no interpretation is given in terms
of fluid mechanics.

1.4 Further analysis of turbulence: non-stationarity, vortices and Lagrangian velocity

Vortex models for turbulence and oscillating singularities. Previous models were built on multi-scale
properties of the velocity and on its singularities, and they are good description of the datas. These models
lack connexion with the NS equation and with the structured organisation of turbulent flows which are far
from purely random flows. Another approach is to characterise a flow from its inner structures. Experiments
of turbulence show that there are intense vortices: objects similar to stretched filaments around which the
particles are mainly swirling [DCB91]. The singularities in velocity signals could then be understood as
features of a few organized objects with a complex inner structuration and a singular behaviour near their core
[Mof84, JKVF93]. A mechanism could be spiraling structures, close to what a Kelvin-Helmholtz instability
creates [Mof93]. Lundgren studied a specific collection of elongated vortices having a spiraling structure in
their orthogonal section, and that are solution of the NS equation given a specified strain [Lun82]. It was shown
that such a collection could be responsible for a spectruimi® and intermittency of the structures functions
consistent with modern measurementg,diSP96]. Turbulence would then be some superposition of complex
building objects with geometrical characteristics, such as oscillations or fractality (but in a geometrical, not
statistical, way).

e A simple model for corresponding Eulerian velocity signals would be an accumulation of complex
singularities, complex in the sense that their exponent is complex (and not their initial time as previously
proposed){t — ty)"+%5 ; see some examples of those functions on figure 5. The exp@rienesponsible for
oscillations in the signal and multifractal estimation is perturbed by such oscillations [ABJM98].

The Fourier spectrum of a functierm (%) (¢ — t4)*+0 behaves like*™fatan(2mv/a) | 4722 4 g2|=h=1
except at low frequencies, so whens a, the spectrum scales like|~2"~2, This is a power law so they can
be used as basis functions to built a synthetic signals with properties of turbulence measurements. A sum of
many functions of this kind may have multifractal properties that depends on the distribution/o&titg3
exponents [Bor02]. One is then interested to find whether or not there are such oscillations in velocity signals.

e The consequences of the existence of spiraling strcutures for Lagrangian velocity would be the existence
of swirling motions when a particle is close to a vortex core. Far from vortices, the motion should be almost
ballistic, with small acceleration. A further consequence is that the motion is not well approximated by a
stationary random process and could be better analysed in a non-stationary framework.

e The vortices and the swirling motions are described by the vortigityVe have seen that is related
to dissipation and if vortices are relevant features of a flow, vorticity should be strongly organized in those
specific structures. We should detect them as isolated objects and a question is about their role in intermittency.
Heretoo the non-stationary evolution of those objects is an expected feature.

The general problem is that one can not easily track at the same time the three kinds of interesting prop-
erties for turbulence: non-stationarity of the signals; the inner oscillating or geometric structure; and the
statistical self-similar properties (exponénbr multifractality) of the spiraling vortices or their consequence
for velocity [Bor02].

Alternative representations of signals. Dealing with these three properties, we know how to construct a
representation jointly suited to two of them at the same time. The third one is then difficult to assess.

1. Time evolution and self-similarity: statistical methods using wavelets are adapted to multifractals or



x10*
2

% . 2000
) 2000 o
g 50 o :50 ] 200 250 i
me (ms
- 0.03 0 0.01 0.02 0.03
6000 2 —
4000} - =
2 om0 I W A
£ ¢ 0 ] | IR
EL.zucl: 'WW " v \'_ I
& Y
4000 -2
000 0.03 0 0. 0.0z 0.03
8000 - 0.0z
tlme(msJ /‘».__\
" _ 0.015 i ~
L . \
S * 0.01 I
N | e e Y /!
ER L L P LY Y {
g [ PV il -5 . 0.005
2 : 0 om 002 0.03 0 0. 0oz 0.03
0 50 100 150 200 250 time (s) time (5]

time {ms )

Figure 3:Lagrangian velocity of a particle in turbulence (from [MMMPOL1]). Left: the Doppler signal whose instanta-
neous frequency gives the velocity of the tracked solid particle in a turbulent fluid, and its time-frequency representation.
Right: acceleration, velocity and trajectory, reconstructed for two components from the measurement of velocity by
Doppler effect.

random cascades because they measure statistical quantities of stationary signals with relevant self-
similar properties but no inner oscillations [ABJM98, Jaf04].

2. Time evolution and Fourier analysis: modern Lagrangian and vorticity measurements are made possi-
ble by following the instant variation of the Fourier spectrum of some nonstationary signal. Neither
the temporal nor the spectral representation is enough: time-frequency representations that unfold the
informations jointly in time and frequency [Fla93] are needed.

A linear time-frequency decomposition is achieved in the same manner as the wavelet transform, using
a basis built by shifts in time and frequency of a small wave pack@t: = [[ r,(u, )b, (t)dudf,

with b, () = bo(t — u)e~ 7/t The variable is indeed a frequency and (u, v) gives the component

of v at frequency and timeu. The time-frequency spectrum&{|r,(u,~)[*} Note that instead of

time and frequency shifts, the wavelet transform uses time-shifts and dilation on the mother wavelet,
so that the variables are time and scale rather than of time and frequency. If one is interested in the
time-frequency spectrum, it is possible to achieve better estimation using bilinear densities that are
time-frequency decompositions of the energy, instead of the signal. They are derived from the Wigner-
Ville distribution: W, (¢, f) = [v(t + 7/2)v*(t — 7/2)e~?™/7dr, applying some smoothing in time
and/or frequency. Representations of this kind are used to analyse hereafter the non-stationary signals
of Lagrangian experiments and of vorticity measurements.

3. Self-similarity and inner geometry: we would like to describe at the same time oscillations and self-
similar exponents. It is known that wavelets are not well adapted to study oscillations [ABJM98]. A
variant is measuring geometry in a nonstationary context (self-similarity implies non-stationarity). Ad-
hoc procedures constructed on the wavelet transform [KV94] or on the Mellin-time representations
[Bor02] were considered, but for now with no positive result. The second part of this chapter is de-
voted to the Mellin representation that is adapted to probe self-similarity and some features of geometry
because it is based on self-similar oscillating functiohs- ¢y)"+*. We will sketch the possibilities
offered by this representation, alternative to the Fourier representation.
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Measurements of Lagrangian velocity.Recent experiments have been able to track solid particles released

in a turbulent fluid and record their Lagrangian velocitigg) [LVC *01, MMMPO1]. First experiment uses
high-speed detectors to record the trajectories, and the second one tracks them by sonar methods. In both cases
the measurement deals with a non-stationary signal that should be tracked in position and value along time.
In the experiment [MMMPOL1], ultra-sonor waves are reflected by the particle and the Doppler effect catches

its velocity. The figure 3 shows a sample experimental signal whose instantaneous frequency is the instant
Lagrangian velocity. A time-frequency analysis allow to follow the frequency andfws Acceleration,

velocity and trajectory is reconstructed from this data (for two components).

The signals contain many oscillating events such as the one figured here, and many more trajectories which
are almost smooth and ballistic between short periods with strong accelerations. This is consistent with the
existence of a few swirling structure but a clear connexion between oscillations and intermittency is not made.
By now, statistical analysis of the datas show that Lagrangian velocity is intermittent [MMMPO01], with an
intermittency described well by a multifractal model analog to the one used for Eulerian velocity [BRL
Measurements of vortices and of vorticity. Intead of trying to find indirect effects of the vortices, it was
tried to study directly the intermittency of turbulence in the vorticity domain. Measuring locally vorticity is
difficult and by now not reliable. Using the sound scattering property of vorticity, and acoustic spectroscopy
method was developped [BMW99].

The method measures a time-resolved Fourier component of vortigitk, t) = [ w;(r,t)e” 2™ dr,
summed all over some spatial volume. Figure 4 shows recorded signals of scattering amplides for two different
incident waves; they look alike because both are measure of the same qusiikity,). The intermittency of
the signal is the existence of bursts of vorticities that cross the measurement volume; those packets are also
characteristic of some structuration of vorticity, mayhap as vortices. They are evidenced on the time-frequency
decomposition of one signal on the right. The intermittency is well captured by the description of a slow non-
stationary activity that drives many short-time bursts, and so causes multi-scale propertiesq#MG

To conclude this introduction to turbulence, let us summarize the complexity of fluid turbulence. The
problem is driven by a non-linear PDE that is reluctant to mathematical analysis, so that theories are mainly
phenomelogy and stochastic modelling of the velocity (or vorticity). The signals are irregular, intermittent
and one would like to question their self-similar aspects, their non-stationary properties, and their geometrical
organization. Because there exists no single method that capture all these features, mutiple tools of signal
processing are useful.



2 Mellin representation for stochastic processes

In this second part, we detail a signal processing method that use oscillating functions as basis functions: the
Mellin transformation. Its interest is that it is encompasses both self-similar and oscillating properties in one
description. We will survey some properties that are useful for signal representation and processing.

2.1 Dilation and Mellin representation

We aim at finding a formalism suited to scale invariance. Let us recall the definition of self-similarity:

it is a statistical invariance under the action of dilations. Tgf , be a dilation of scale ratia so that
(Du,X)(t) = A1 X()\t). The exponent] specifies one group of dilatiod Dy, A € R} which is a
continuous unitary representation (@, x) in the spacd.?(R},¢~2~1dt). The harmonic analysis associ-

ated to this group is the Mellin reprenstation. Indeed, the hermitian generator of this g@uefimed as:
i2m(CX)(t) = (—H +td/dt) X (t), so thatDy , = €?>"™*C. The operato€ characterizes a scale because its
eigenfunctions are unaffected by scale changes (dilations), so the eigenvalues are a possible measure of scale.
Those eigenvalueBy; 5(t) satisfydEy (t)/En g(t) = (H + i27B)dt/t, thus Ey 5(t) = t7+2™5 up to a
multiplicative constant. One obtains the basis of Mellin functions with associated representation:

+o0 +oo

MuX)(@) = [ and X = [ BusMaX)(3as. ©)
A signal processing view of several applications the Mellin transform may be found in [Coh93, BBO96, Fla98,
Nic02], and mathematical aspects are documented in [Dav84, Zem87]. Relevant features here argjfisst that
a meaningful scale, second the oscillating aspects of the Mellin funcligngt). Those functions are chirps
of instantaneous frequengy't. See a drawing of such a function on figure 5. One can disregard the behaviour
of those functions near O; the important feature is the chirp part and it holds even if the function is filtered by
some window, as seen on this figure. By this means we may describe both self-similarity and some oscillations,
as long as they can be well approximated by smoothed Mellin function, of thegi@a — ¢, |7 +275.

2.2 Interpretation for self-similarity

A random proces$ X (t),t € R} is self-similar with exponentl (H-ss) and only if for anyA € R}, one
has{(Dy,X)(t),t € R} L (X(t),t € R¥} [Ver87]. Giving the definition of self-similarity [Lam62], J.
Lamperti noticed a specific property of the invertible transformatlgn now called Lamperti transformation
and defined as:

(LgY)(t) =ty (logt), t > 0 and (Lp X)) =e HiX (), t e R (6)

This transformation maps stationary processes onto self-similar processes, and the converse for its inverse.

Stationarity is the invariance under time-shiftsYifis stationary, one hassS,Y)(t)=Y (¢t + 1) 4 Y (t) for

anyT € R. The Lamperti transformation is a unitary equivalence between the groSp arfid the group of
dilationsDp :
;CH_l’DH,)\ﬁH = Slog)\ and [:HST[:H_l = ,DH’eT. (7

This equivalence has interesting consequences: a natural representation of a self-similar’risdessse

its stationary generataf; ~' X. Signal processing for stationary signals is a well-known field and methods
can then be converted in tools for self-similar processes by applying equivalence (7) [FBA03, BFA02]. In this
contexte, Mellin representation is suitedfiess processes in the same way as Fourier representation is suited
to stationary processes, becauslg; = FLy '

+oo . 00 )
(FLy~'X)(8) = / (LX) (u)e— 2Py / FHX (02 g — (M X)(5)  (8)

—00 0
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For instance, time-frequency methods that were suited to measure jointly time and frequency components of a
signal will be converted in time-Mellin scale representations that measure contents as a joint function of time
and Mellin scale.

2.3 Spectral analysis of self-similar processes

e Covariance and spectrum.A H-ss proces (t) has a covariance that reads necessarily as:

Rx(t,s) ZE{X (t)X(s)} = (ts)fcx(t/s). This comes from the correlation functigs () of its stationary
generato®” = (Lz 1 X), with vy (log k) = ¢x (k). The Mellin spectral densitg x (3) of X is then simply
introduced by means of the spectrumyof

>

“+o0o . +o0o )
I'y(3) = / vy (T)e 2T A7 = /O ex (K)E™2™1dk = (Moex)(3) = Ex(8). (9)

—00

H-ss processes admit also an harmonizable decomposition on the Mellin basis@ihat [ t7 2704 X (),
with decorrelated spectral increments. Thus we f&yeX (51)dX (82)} = §(51 — B2) Ex(P1)dF1dSe.

e Scale invariant linear systemsA linear operato is covariant for dilations if it satisfie§Dy \ = Dy G

for any scale ratio. € R;". Using equation (7), we may remplafg; by Si,, » and we obtain the equality:
(La'GLE)Sg) = Sioga (L 'GLy). Thus,Ly~'GLy = H is a linear stationary operator, so it acts as a
filter by means a convolution. The Lamperti transformation maps addition to multiplication g9 wilitact

by means of a multiplicative convolution instead of the usual one:

@x)0 = [ aw/9x6)F = [ xS (10
Let us conside = GX with {X (¢),t > 0} and H-ss process and a scale invariant filter. TheA(t) is
also self-similar becausey zA = Dy \GX = (GDu )X = Dy X. If the covariance o is given bycx,
then a formula of interferences gives the covarianceof 4 (k) = [ c¢x (u)pgy(k/u)du/u, introducing here
the Mellin correlation of the function: py(A) = fg()\s)@s—m—lds. The corresponding property for the
Mellin spectrum is a multiplicationZ 4 (3) = |(M#g)(8)|> Zx(B).
e Representation by scale invariant filters. By means of the Bochner theorem, ahy¢ss process is the
output of a scale-invariant linear system:

“+o00
X = [ ot/ v Towith E{VOVEI} = e 5 ), (11)
0

The random noisé& (¢) is white and Gaussian but nonstationary; it is the image gyof the Wiener pro-
cess. The self-similar procedsis defined byy; the second-order properties are covariances given by means
of ex(k) = o2k~ [ g(k0)g(9)6~2#~1d9, and Mellin spectrum which iEx(8) = o2|(Mug)(B)>. A
further step is to study parametric models of self-similar processes by takihgg)(5) as a rational frac-
tion. One can show thaX (¢) is in this case the solution of a Euler-Cauchy systéifi_, o, t" X ™) (t) =

S o But™V™(t). Models of this kind were studied in [YK97, NG99].

2.4 Examples of Mellin representation

Fractional Brownian motions. A fractional Brownian motions is defined as a Gaussidrss process with
stationary increments [MV68]. Its covariance is necessaflly;, = o2(|t|?" + |s|?H — |t — s|?H) /2 which
satisfies the general expected structure with (k) = o?[k" + k= —|\/k—1/vk|*!] /2. The corresponding
Mellin spectrum is obtained by a straightforward calcullsg the Euler function):

2
. (12)

0.2

T H? + 4n? 2

I'(1/2 + 27 3)
I'(H + i27[3)

EBH (/8)
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Figure 5:Left: some Mellin functions with variousl, with a reassigned spectrogram of an smoothed Mellin function
(whereg(t) is a Kaiser window) that shows the chirp behaviour of the Mellin functions. Middle: samples of Weierstrass-
Mandelbrot functions, both deterministic and randakth & 0.3, A = 1.07). Right: reassigned spectrogram of the
empirical variogram of a Weierstrass-Mandelbrot function (adapted fom [FB03]). See the text for interpretation.

Here, we have a representation of fractional Brownian motions alternative to its harmonic or moving-
average representations. The Barnes-Allan [BA66] model, known to be cldBg thhas exactly the same
Mellin spectrum thatBy. From this spectral representation, one can synthetize exact samples of fractional
Brownian motions: it is enough to prescribe Mellin spectral increments satisfying equation (12) with random
L.i.d. phases in0, 2x[. An inverse Mellin transform gives then a fractional Brownian motion. Classical meth-
ods of whitening, prediction and interpolation for this process were derived from this Mellin representation
in [NP99, NPOQO]. Developments of the synthesis method from the Mellin spectrum for other self-simiilar
processes without stationary increments were studied also in [Bor02].

The Weiertrass-Mandelbrot function. This function is a good model of inexact self-similarity that can be
studied by means of a Mellin decomposition. It is defined [BL80JagE) = >°, ., A" (1 — e"t)eion,

with i.i.d. phasesp,. The function is given here as a sum of Fourier modes this is possible because it has
stationary increments. But another feature is more obvious if one considers its decompostion on a Mellin

basis: its scale invarianced’ (¢) has Discrete Scale Invariance [BFA02] becalise)\t) L \~kH W (t),
scale invariance for dilations with a scale ratio that is a powek ohly. Using £z, one can find up the

Mellin representation for the deterministic version of the function, with= 0, [BL80, FBO3]: W (t) =

. ﬂ%;ﬂ/lnk)e[—mwwn/ InX)/2] B m/ina(t).

The two writings ofl// () give first its time-frequency representation then its time-Mellin scale represen-
tation. In this case, both methods of analysis are valid as tools to measure the characteristics of the function.
The relevance comes from the joint properties of stationary increments and self-similarity (even in the weak-
ened sense of Discrete Scale Invariance). A time-frequency analysis illustrates this, see figure 5. Deterministic
and randomized versions o (¢) have a spectrogram (from the detrended empirical variogram) that is made
partly of pure tones, and partly of chirps, that are localized on the Mellin médesn/In A. Here both as-
pects are showh, depending on the width of the smoothing window with respect to the rapidity of variation of
the chirp (one see the chirp when its frequency does not change quickly over the length of the window) [FBO3].

Concluding remarks. We lectured here a signal processing view of turbulence. We have surveyed how
the complexity of turbulence, and the need to understand various models and experiments, is linked to a great
diversity of signal processing methods that are useful for turbulence: time-scale analysis, time-frequency
analysis, self-similarity and geometry analysis.

Concerning the last point, we are far from having at disposal convenient tools for estimation of the ge-
ometry (fractal sets, oscillations,...) of a self-similar process. We have proposed here a framework adapted
to self-similarity and based on the oscillating Mellin functiafi$?>*” but we have not yet found a tractable
extension to oscillating singularities of the fofm— ¢,|***>™5 that could be of relevance in turbulence. The
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origin of time ¢y has to be a variable in the second case, whereas the Lamperti framework is for a fixed time
origin of the Mellin functions. Because of that, a mixture of oscillating functions su¢h-ag,|"**>™* may
have multifractal properties close to the one measured in turbulence but one lack signal processing tools to
inverse the mixture and estimates the various parametgrs (3) of each object.

Finally, turbulence is still an active and open field with many problems that are interesting from a math-
ematical, physical or signal processsing point of view. This is a subject where one needs to establish fruitful
interactions between models, tools of analysis and measurements.

Thanks. | would like to thank people that made this work possible by their competence and their willingness to share
their knowledge and their ideas. | thank espcially Olivier Michel, Patrick Flandrin and Pierre-Olivier Amblard, with
whom | have the pleasure to work. | am also thankful to C. Baudet, B. Castaing, N. Mordant, J.F. Pinton, and J.C.
Vassilicos, all of them who taught me the few things | know about turbulence.
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