Concurrent Games with Symmetry

Pierre Clairambault University of Cambridge

Joint work with

Simon Castellan ENS Lyon Glynn Winskel University of Cambridge

April 23, 2013

Context and motivations

What?

Develop and extend the "truly concurrent" approach to game semantics.

Why?

- Develop compositional partial order models of complex programming languages,
- Get rid of artificialities in standard presentations of games, due to an excessive sequentiality.
- Provide new, unified foundations for denotational semantics.

I How?

View strategies as maps of event structures, focus on causality.

In this talk, I will focus on the addition of symmetry, to model replication.

Game semantics

- Two players: P (Player/Program) and O (Opponent/Environment)
- Very expressive:
 - Models of logics/proof systems: $\lambda\text{-calculus},\,\lambda\mu\text{-calculus},\,\text{LL},\,\text{System F},\,$ Induction/coinduction, etc.
 - Models of programming features: PCF, control operators, references, exceptions, names, concurrency, etc.
 - Presents higher-order computation as an interaction between two players exchanging first-order tokens.
- Algorithmic: verification procedures for third order Idealized Algol, fragments of ML or Parallel Algol...

Game semantics

- Two players: P (Player/Program) and O (Opponent/Environment)
- Very expressive:
 - Models of logics/proof systems: $\lambda\text{-calculus},\,\lambda\mu\text{-calculus},\,\text{LL},\,\text{System F},\,$ Induction/coinduction, etc.
 - Models of programming features: PCF, control operators, references, exceptions, names, concurrency, etc.
 - Presents higher-order computation as an interaction between two players exchanging first-order tokens.
- Algorithmic: verification procedures for third order Idealized Algol, fragments of ML or Parallel Algol...

Models of concurrency

Two flavours:

Interleaving models

$$\llbracket a \parallel b \rrbracket = ab + ba$$

- More elementary/easier to manipulate
- Subject to a <u>combinatorial explosion</u> problem.
- Partial order/"Truly concurrent" models.

$$\llbracket a \parallel b \rrbracket = a \ co \ b$$

- More mathematically elegant/elaborate,
- Avoids the state explosion,
- Models are often at a more preliminary stage.

Game semantics for concurrency

Two flavours:

Interleaving models

- Laird: Game semantics for Idealized CSP.
- Ghica, Murawski: Full abstraction for Parallel Algol.
 → Verification procedures for fragments of PA.

• "Truly concurrent" models

- Abramsky, Melliès: based on closure operators, full completeness for MALL.
- Melliès: based on asynchronous transition systems, full completeness for LL.
- Melliès, Mimram: (non-alternating) asynchronous games.
- Faggian, Piccolo: Concurrent strategies as partial orders,
- Rideau, Winskel: Concurrent strategies as maps of event structures.
 → We will work with this formulation of concurrent games.

Motivations for true concurrency games models

Semantics/verification: Better structures for efficient program verification.

- Interleaving models are subject to the state explosion problem.
 - \hookrightarrow Partial order games models avoid it.
- Interleaved models characterize trace equivalence.
 - \hookrightarrow Partial order models can be more sensitive.

Logic/proof theory: Sheds light on positionality in game semantics.

- Interleaving models orders events <u>chronologically</u>, partial order models orders them causally.
 - \hookrightarrow Assimilates reachable states regardless of the path used to reach them.

 \hookrightarrow <u>Clean notion of positions, getting rid of artificialities in standard</u> presentations (e.g. winning).

• Two strategies reaching the same states using different paths can be assimilated.

 $\hookrightarrow \underline{\text{Possibility of ignoring excessive sequentialization, and obtain by}}_{quotients models of LL}$

2 Concurrent games with symmetry

I. CONCURRENT GAMES

Event structures: a model of concurrent behaviour.

An event structure comprises (E, \leq, Con) where

- *E* is a set of **events**,
- **2** partially ordered by \leq (the **causal dependency** relation),
- **o** together with a **consistency** relation Con.

Properties:

- States in an event structure are (consistent and ≤-downclosed) sets of events, called configurations: C(E).
- Events can carry information, e.g. labels, <u>polarities</u> (pol : E → {+, -}), etc.

Notations:

- Write $e_1 \rightarrow e_2$ iff $e_1 < e_2$ and if $e_1 \leqslant e \leqslant e_2$, then $e_1 = e$ or $e = e_2$.
- For $x \in \mathcal{C}(E)$, write $x \stackrel{e}{\longrightarrow} \inf x \cup \{e\} \in \mathcal{C}(E)$.

Two simple operations on event structures with polarities

Oual.

The dual, E^{\perp} , of an event structure with polarities, E comprises the same underlying event structure E but with a reversal of polarities.

Simple parallel composition.

This operation juxtaposes two event structures E_1 and E_2 to form $E_1 || E_2$.

where $E_1 = \bigoplus$ and $E_2 = \bigoplus \multimap \bigoplus$.

Maps of event structures and pre-strategies

Definition

A map $f: E \to E'$ of event structures is a function on events such that

- Preservation of configurations. For all $x \in C(E)$, $f(x) \in C(E')$,
- Local injectivity. For all $x \in C(E)$, $e, e' \in x$, if f(e) = f(e') then e = e'.

A map of event structures with polarities must additionally preserve polarities.

Definition (Pre-strategies)

A pre-strategy from A to B is a total map

$$\sigma: S \to A^{\perp} \parallel B$$

of event structures with polarities.

We sometimes write $\sigma : A \rightarrow B$ for $\sigma : S \rightarrow A^{\perp} \parallel B$.

Example: the negation strategy

Two operations on event structures with polarities

Notation:
$$[e] = \{e' \in E \mid e' \leq e\}$$

Product.

② Restriction.

If $(E, \leq, \operatorname{Con})$ is an event structure and $R \subseteq E$, then $(E, \leq, \operatorname{Con}) \upharpoonright R = (E', \leq', \operatorname{Con}')$ where:

$$E' = \{e \in E \mid [e] \subseteq R\}$$

$$\leq' = \leq \cap (E' \times E')$$

$$Con' = \{X \cap E' \mid X \in Con'\}$$

Put together, these constructions build **pullbacks** on the category of event structures (with pol.) and maps between them.

Take $\sigma: S \to A^{\perp} \parallel B$ and $\tau: T \to B^{\perp} \parallel C$. Temporarily forget polarities...

Take $\sigma: S \to A^{\perp} \parallel B$ and $\tau: T \to B^{\perp} \parallel C$. Temporarily forget polarities...

• "Parallel interaction" Take the pullback.

Take $\sigma: S \to A^{\perp} \parallel B$ and $\tau: T \to B^{\perp} \parallel C$. Temporarily forget polarities...

• "Parallel interaction" Take the pullback.

Take $\sigma: S \to A^{\perp} \parallel B$ and $\tau: T \to B^{\perp} \parallel C$. Temporarily forget polarities...

- **9** "Parallel interaction" Take the pullback.
- Image: "Hiding" Project to the outer events.

Copycat

Notation: if $a \in A^{\perp} \parallel A$, then \overline{a} is its **dual**.

Definition

If A is a game, the event structure \times_A is defined as follows:

- Its events and consistency are inherited from $A^{\perp} \parallel A$,
- Its causality is:

$$((\leq_{A^{\perp}\parallel A}) \cup \{(a,\overline{a}) \mid a \in A^{\perp} \parallel A \And \operatorname{pol}(a) = -\})^*$$

Example

Not all pre-strategies compose well with copycat

1 Non-receptivity. Compose $\sigma : \emptyset \to \{\ominus\}$ with copycat.

2 Non-innocence. Compose $\sigma : (\bigoplus \rightarrow \bigoplus) \rightarrow (\bigoplus \parallel \bigoplus)$ with copycat.

Strategies

Notation: if
$$x \in \mathcal{C}(A)$$
, $x \stackrel{e}{\multimap} if x \cup \{e\} \in \mathcal{C}(A)$.

Definition

A pre-strategy $\sigma: S \to A$ is a **strategy** iff it is:

- Receptive If for all x ∈ C(S) and a ∈ A with pol(a) = and σx -⊂, then there is a unique s ∈ S such that x -⊂ and σ(s) = a.
- **2** Innocence If $s_1 \rightarrow s_2$ in S with $pol(s_1) = +$ or $pol(s_2) = -$, then $\sigma s_1 \rightarrow \sigma s_2$ in A.

Theorem (Rideau & Winskel, 2011)

() A pre-strategy $\sigma : S \rightarrow A$ is a strategy iff there is an iso:

Intere is a bicategory of concurrent games and strategies.

II. CONCURRENT GAMES WITH SYMMETRY

Motivations and background

Goals.

- Express that several events are interchangeable
- Build exponentials in concurrent games.

Provide a second and uniformity in games.

- AJM games: partial equivalence relations on plays.
- HO/N games: thread indexing by pointers.
- Asynchronous games: groups of index permutations acting on plays.
- Hyland exponential, Lamarche exponential and sequential algorithms, ...

We exploit the notion of symmetry on event structures.

Event structures with symmetry

- **Open maps**¹ provide an abstract notion of bisimulation.
- Defined by a path lifting property.

¹A. Joyal, M. Nielsen and G. Winskel, Bisimulation from Open Maps, LICS'93

Concrete presentation on event structures: isomorphism families

A symmetry on *E* can be presented as an **isomorphism family** on *E*, <u>i.e.</u> a family of bijections $x \cong_{E}^{\theta} y$ between pairs $x, y \in C(E)$ satisfying:

Equivalence relation.

$$\begin{array}{rcl} x \in \mathcal{C}(E) & \Longrightarrow & x \stackrel{\mathrm{id}_x}{\cong} x \\ x \stackrel{\theta}{\cong} y & \longmapsto & y \stackrel{\theta}{\cong} z \\ x \stackrel{\theta}{\cong} y & y \stackrel{\theta}{\cong} z & \Longrightarrow & x \stackrel{\theta}{\cong} z \stackrel{\theta}{\cong} z \end{array}$$

2 Restriction.

Extension.

Event structures with symmetry

Event structures with symmetry are pairs (E, \tilde{E}) .

Definition

If $f : E \to F$ is a map, and $\theta : x \cong y$ is a bijection, define:

$$f \ \theta = \{ (f \ a, f \ b) \mid (a, b) \in \theta \}$$

Then, f preserves symmetry iff

$$x \stackrel{\theta}{\cong}_{E} y \implies f x \stackrel{f}{\cong}_{F}^{\theta} f y$$

Definition

Two maps $f, g: E \to F$ are symmetric iff for all $x \in C(E)$, the bijection

$$\{(f e, g e) \mid e \in x\}$$

is in the isomorphism family.

We get a category \mathcal{ES} of event structures with symmetry, enriched on equivalence relations.

Structure in $\mathcal{E}\mathcal{S}$

No pullbacks! Instead:

Definition (Pseudo-pullbacks)

Definition

From A, we can get \widetilde{A} as an event structure with symmetry, by forming:

How to extend concurrent games with symmetry?

- Games. Event structures with polarities and symmetry.
- **Pre-strategies.** Morphism $\sigma : S \rightarrow A$ preserving symmetry.
- Composition. Pullbacks \longrightarrow pseudo-pullbacks.

What strategies compose well with copycat?

How to extend concurrent games with symmetry?

- Games. Event structures with polarities and symmetry.
- **Pre-strategies.** Morphism $\sigma : S \rightarrow A$ preserving symmetry.
- Composition. $Pullbacks \longrightarrow pseudo-pullbacks.$

What strategies compose well with copycat?

What is copycat?

• Let us try the same definition.

What is copycat?

• Let us try the same definition.

What is copycat?

• Let us try the same definition.

A configuration of C_A corresponds to a pair $x_1 \sqsubseteq x_3$ in the <u>Scott order</u>, defined by:

$$\subseteq = \supseteq^{-} \cdot \subseteq^{+}$$

(strategies can be reformulated as fibrations on the Scott order)

• But what is $\widetilde{\mathbb{C}}_A$?

What is copycat?

• Let us try the same definition.

A configuration of C_A corresponds to a pair $x_1 \sqsubseteq x_3$ in the <u>Scott order</u>, defined by:

$$\sqsubseteq = \supseteq^{-} \cdot \subseteq^{+}$$

(strategies can be reformulated as fibrations on the Scott order)

• But what is $\widetilde{\operatorname{CC}}_A$?

What is copycat?

• Let us try the same definition.

A configuration of C_A corresponds to a pair $x_1 \sqsubseteq x_3$ in the <u>Scott order</u>, defined by:

 $\sqsubseteq \quad = \quad \supseteq^- \cdot \ \subseteq^+$

(strategies can be reformulated as fibrations on the Scott order)

• But what is $\widetilde{\operatorname{CC}}_A$?

All the natural candidates fail, unless one assumes polarization...

We need a saturated version of copycat.

"Definition"

A configuration of CC_A is a situation:

$$x_1 \supseteq^- x_2 \stackrel{\theta}{\cong}_A \overline{x_3} \subseteq^+ \overline{x_4}$$

where $x_1, x_2, x_3, x_4 \in C(A)$.

Remarks.

- We use the symmetry on the symmetry.
- This definition amounts to:

 $\widetilde{\mathbb{C}}_A = \mathbb{C}_{\widetilde{A}}$

• The "Scott order":

 $x_0 \sqsubseteq x_2 = x_0 \supseteq^- x_1 \subseteq^+ x_2$

$$x_0 \xrightarrow{\theta} x_3 = x_0 \supseteq^- x_1 \cong^{\theta}_A x_2 \subseteq^+ x_3$$

Remarks.

- We use the symmetry on the symmetry.
- This definition amounts to:

 $\widetilde{\mathbb{C}_A}$ = $\mathbb{C}_{\widetilde{A}}$

• The "Scott order":

 $x_0 \sqsubseteq x_2 = x_0 \supseteq^- x_1 \subseteq^+ x_2$

$$x_0 \xrightarrow{\theta} x_3 = x_0 \supseteq^- x_1 \cong^{\theta}_A x_2 \subseteq^+ x_3$$

Remarks.

- We use the symmetry on the symmetry.
- This definition amounts to:

$$\widetilde{\operatorname{CC}}_A = \operatorname{CC}_{\widetilde{A}}$$

• The "Scott order":

$$x_0 \sqsubseteq x_2 = x_0 \supseteq^- x_1 \subseteq^+ x_2$$

$$x_0 \xrightarrow{\theta} x_3 = x_0 \supseteq^- x_1 \cong^{\theta}_A x_2 \subseteq^+ x_3$$

Remarks.

- We use the symmetry on the symmetry.
- This definition amounts to:

$$\widetilde{\mathbb{C}_{A}} = \mathbb{C}_{\tilde{A}}$$
$$\widetilde{T \odot S} = \widetilde{T} \odot \widetilde{S}$$

• The "Scott order":

$$x_0 \sqsubseteq x_2 = x_0 \supseteq^- x_1 \subseteq^+ x_2$$

$$x_0 \xrightarrow{\theta} x_3 = x_0 \supseteq^- x_1 \cong^{\theta} x_2 \subseteq^+ x_3$$

Remarks.

- We use the symmetry on the symmetry.
- This definition amounts to:

$$\widetilde{\mathbb{C}_{A}} = \mathbb{C}_{\tilde{A}}$$
$$\widetilde{T \odot S} = \widetilde{T} \odot \widetilde{S}$$

• The "Scott order":

$$x_0 \sqsubseteq x_2 = x_0 \supseteq^- x_1 \subseteq^+ x_2$$

$$x_0 \xrightarrow{\theta} x_3 = x_0 \supseteq^- x_1 \cong^{\theta}_A x_2 \subseteq^+ x_3$$

What equivalence on pre-strategies with symmetry?

Definition (Saturated strategy)

A strategy $\sigma : S \to A$ is **saturated** if the canonical map $\eta_S : S \to S \times_A A$ has an adjoint $act_S : S \times_A A \to S$ making an equivalence:

Summary of results

Definition

A pre-strategy $\sigma: S \to A$ is strong-receptive if $\tilde{\sigma}: \tilde{S} \to \tilde{A}$ is receptive.

Theorem

• A strategy $\sigma: S \to A$ is a <u>strong-receptive</u>, <u>innocent</u> and <u>saturated</u> pre-strategy. We have:

 $\gamma_A \odot \sigma \simeq \sigma$

• Concurrent games with symmetry and strategies form a ~-bicategory (coherence laws satisfied up to symmetry) Strat.

Theorem

The quotient ${\rm Strat}/{\simeq}$ of this ${\sim}\text{-bicategory}$ by equivalence is a compact closed category, hence a model of MLL.

III. Applications

The AJM exponential

Definition

From a game with symmetry A, form !A having:

- Events, pairs $(i, a) \in \mathbb{N} \times A$
- Causality,

$$(i_1, a_1) \leqslant_{!A} (i_2, a_2) \Leftrightarrow i_1 = i_2 \& a_1 \leqslant_A a_2$$

• Consistency,

$$\operatorname{Con}_{A} = \bigcup_{i \in I} \{i\} \times X_i$$

• Isomorphism family,

$$\bigcup_{i\in I} \{i\} \times x_i \qquad \stackrel{\theta}{\cong} {}_{!A} \qquad \bigcup_{j\in J} \{j\} \times x_j$$

when there is a bijection $\pi: I \to J$ and isomorphisms $x_i \stackrel{\theta_i}{\cong}_A x_j$ with, for all $(i, a) \in \bigcup_{i \in I} \{i\} \times x_i$,

$$\theta(i, a) = (\pi(i), \theta_i(a))$$

AJM games and Classical Linear Logic

We recover (and extend) the model of 2 .

Theorem

Concurrent games with symmetry form a model of classical linear logic

Proof.

We have natural maps preserving symmetry:

μ_A	:	!!A	\rightarrow	!A	т	A	:	$ A \parallel A$	\rightarrow	!A
		(i, (j, a))	\mapsto	$(\langle i,j angle, {\sf a})$				(1, (i, a))	\mapsto	(2 <i>i</i> , <i>a</i>)
								(2, (i, a))	\mapsto	(2i + 1, a)
η_A	:	Α	\rightarrow	!A						
		а	\mapsto	(0, <i>a</i>)	е	A	:	1	\rightarrow	!A

satisfying monad/monoid laws up to symmetry. Those are lifted to strategies with a general construction, we get an exponential by self-duality.

²P. Baillot, V. Danos, T. Ehrhard and L. Regnier, <u>Believe it or not, AJM's games model is a</u> model of classical linear logic, LICS'97

Concurrent HO games: arenas

Definition

An **arena** is a forest (A, \leq) with polarity that is **negative**, in the sense that all minimal events have negative polarity.

Those are the usual constructions \times and \Rightarrow on arenas in HO games.

Concurrent games "with pointers"

Definition

From any arena A, form a concurrent game with symmetry ?A having:

- Events, pairs (α, a) where $a \in A$ and $\alpha : [a] \rightarrow \mathbb{N}$.
- <u>Causality</u>,

$$(\alpha_1, \mathbf{a}_1) \leq_{\mathbf{?}A} (\alpha_2, \mathbf{a}_2)$$

$$\begin{array}{l} \text{ff } \alpha_1 \sqsubseteq \alpha_2, \text{ i.e.} \\ \bullet \ a_1 \leqslant a_2, \\ \bullet \ \text{for all } a \leqslant a_1, \ \alpha_1(a) = \alpha_2(a). \end{array}$$

- Consistency, all finite sets of events are consistent.
- Symmetry, the family consisting of order-preserving bijections $\theta : x \cong y$ such that for all $(\alpha, a) \in x$,

$$\theta(\alpha, \mathbf{a}) = (\alpha', \mathbf{a})$$

We could say that (α, a) "points to" (α', a') iff $\alpha' \sqsubseteq \alpha$, and $a' \twoheadrightarrow a$.

Example

Example

The following is a configuration $x \in C(?Bool)$.

So, all events can be duplicated deep in the arena.

- For now, no well-bracketing eventually, only one copy of ⊕^T or ⊕^F should be allows by copy of ⊖^q (unless one wants to model call/cc).
- In a play with pointers, all the different copies of moves would appear in some chronological order. Here, they are causally unrelated (like in Boudes' notion of <u>thick subtrees</u>).

Definition

A HO-strategy on arena A is a (strong-receptive, innocent, saturated) strategy

$$\sigma: S \to \mathbf{?}A$$

that is well-threaded and negative, in the sense that for each $s \in S$, [s] has a unique (negative) minimal event.

Lemma

There is a one-to-one correspondence between:

- HO-strategies $\sigma : S \rightarrow ?(A \longrightarrow B)$,
- Well-threaded, negative strategies $\sigma' : S \rightarrow ?A^{\perp} \parallel ?B$

Using this, HO-strategies $\sigma : S \rightarrow ?(A - \boxplus B)$ and $\tau : T \rightarrow ?(B - \boxplus C)$ can be composed in $Strat/\simeq$.

Using this, we build a SMCC called CHO of arenas and HO-strategies.

The CCC of concurrent HO-strategies

Lemma

There are negative, well-threaded strategies:

 $d_A: ?A \rightarrow ?A \parallel ?A \qquad e_A: ?A \rightarrow 1$

making each arena A a comonoid in CHO.

Proof.

As for AJM games, the strategies are automatically lifted from the monoid in the category of maps of event structures with polarity and symmetry.

Proposition

Negative, well-threaded strategies are comonoid morphisms, so the category $\rm CHO$ is cartesian closed.

HO-innocence

Definition

A HO-strategy $\sigma: S \rightarrow ?A$ is

- **HO-innocent** iff for all $s \in S$, if $s_1, s_2 \leq s$ have negative polarity, then $s_1 \leq s_2$ or $s_2 \leq s_1$.
- Sequential iff for each $s \in S$, if $s_1 \neq s_2$ have positive polarity and $[s] \xrightarrow{s_1} (s_1 c, [s] \xrightarrow{s_2} (s_1, s_2) \notin Con_S$.

Theorem

The subcategory of CHO having alternating arenas as objects and HO-innocent, sequential, deterministic strategies is <u>isomorphic</u> to the standard category of arenas and innocent strategies.

Proof.

For $\sigma : S \to A$ HO-innocent, the prime configurations $[s] \in \mathcal{C}(S)$ are **P-views**:

$$s_1^- woheadrightarrow s_2^+ woheadrightarrow s_3^- woheadrightarrow \ldots woheadrightarrow s_n^+$$

that are O-branching (up to symmetry) by sequentiality and determinism.

IV. CONCLUSION

Conclusion

Achievements:

- General framework for concurrent games with symmetry,
- Able to express and extend the approach of replication of AJM and HO games.

Research directions:

- Relating concurrent game semantics and operational semantics for a higher-order concurrent language,
- Modeling state in the category CHO, relationship with the model of Ghica and Murawski,
- "Folded" version of this model, possibly based on Petri nets, and applications to program verification.