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Motivation:

Compositional reasoning on higher-order programs
with shared ressources, that is modular w.r.t. effects
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Realizability /Logical Relations?!

Advantages:
@ provides models of type systems and program logics;
o defined directly using operational semantics;
@ captures abstraction properties likes parametricity;
°

provides Kripke-style reasoning (a.k.a forcing/presheaves
construction) on shared ressources

@ modular wrt observation (biorthogonality).
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Realizability /Logical Relations?!

Advantages:
@ provides models of type systems and program logics;
o defined directly using operational semantics;
@ captures abstraction properties likes parametricity;
°

provides Kripke-style reasoning (a.k.a forcing/presheaves
construction) on shared ressources

@ modular wrt observation (biorthogonality).

Drawbacks:
e complex inductive definition (step-indexing);
@ extensional (no clear distinction between programs and environments);
o full-abstraction only via biorthogonality;
@ hard to automate.

3/38



We Want Game Semantics!

Models built on representations of the interactions between the program
and its environment...

4/38



We Want Game Semantics!

Models built on representations of the interactions between the program
and its environment...

... but with some specific features:
o defined from operationnal semantics
@ provide coinductive and Kripke-stype reasoning
@ handle asymmetric settings (Programs and Environments written in
different languages)

Operational Game Semantics!
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What's in this talk 7

@ Fully-abstract operational game models

» For simply-typed call-by-value A-calculus with higher-order references
and call/cc

» Modular reasoning on the power of Opponent based on a asymmetric
& uniform presentation of visibility and well-bracketing.

@ Kripke normal-form bisimulations

» Complete & tractable technique for proving contextual equivalence
» Compositional reasoning on shared ressource (i.e. references)
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Effectful fragments of ML

@ Simply-typed call-by-value A-calculus

@ with references: ground (can store integers or locations) or
higher-order (can also store functions)

@ with or without call/cc control operator

S
(higher-order store) (higher-order store+-call/cc)
GOS
(ground store) (ground store-+call/cc)
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Semantic studies

(higher-order store) (higher-order store+call/cc)

(ground store) (ground store+-call/cc)

For these four languages we design:
@ a fully-abstract model using operational game semantics

@ a complete operational technique for proving contextual equivalence
using Kripke open bisimulations
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@ Operational Semantics

© Operational Game Semantics

© Kripke Normal-Form Bisimulations
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Operational Semantics

We use reduction semantics:
@ reduction relation M — M’ between terms

@ closed by evaluation contexts:

M — M
K[M] — K[M]

In call-by-value:

Values V. £ x| x.M
Terms M 2 V| MN
Evaluation Contexts K = o | VK | KM

Reduction relation
(Ax.M)V — M{V/x}
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Contextual equivalence

Definition

Two programs My, M, are contextually equivalent when for all context C,

C[M1] and C[Ms,] are observationally indistinguishable.

This definition depends on:
@ The language the contexts are written in

~+ in general the same as the one of My, M,;
~ In our CBV A-calculus : C 2 o | Ax.C | MC | CM

@ the observation that is used
~~ termination: reduces to a value

~~ error: reduces to Klerr()] with err a distinguished, free variable.
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Contextual equivalence

Definition

Two programs My, M, are contextually equivalent when for all context C,

C[M1] and C[Ms,] are observationally indistinguishable.

This definition depends on:
@ The language the contexts are written in

~+ in general the same as the one of My, M,;
~ In our CBV A-calculus : C 2 o | Ax.C | MC | CM

@ the observation that is used
~~ termination: reduces to a value

~~ error: reduces to Klerr()] with err a distinguished, free variable.

Talcott's ClU-equivalence:
@ only consider evaluation contexts;
@ substitute free variables with values;

CIU and contextual equivalence are equal (in a symmetric setting) !
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Operational Semantics for references

@ We consider heaps: partial maps from locations ¢ to values.

e Evaluation reduction works on pairs (M, h):

(refV,h) = (L h-[0— V])
(C:=V,h = (0),h— V]
(1€, h) —  (h(0), )

New evaluation contexts:

K2, . |refK|K:=M|l:=K|K
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Operational Semantics for call/cc

We embed evaluation contexts into terms using cont K construct.

(K[call/cc(x.M)], h) —  (K[M{cont K/x}], h)
(K[throw V to cont K'],h) — (K'[V], h)
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@ Operational Semantics

© Operational Game Semantics

© Kripke Normal-Form Bisimulations
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Introducing Operational Game Semantics

Interactions between the program and the context are represented by
traces generated by a bipartite labelled transition system.

@ Bipartite: Program=Player; Context=0Opponent
@ Player behavior is fully determined by the program;

@ Opponent behavior represents all possible contexts.

@ Functional values and continuations are represented using free
variables called names;

e Configurations of the LTS have a dynamic environment ("inventory”)
~ that keeps track of the functional values and continuations
associated to these names.
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Exchanging Values

Player and Opponent exchanges abstract values:

AB=()[tt|ff]n]f](AB)

@ avoid being too intentional

@ negative values are represented by names: they are opaque
» functional names f

@ similar to Levy's ultimate patterns.
@ In this talk: no exchange of locations or continuations !
Abstracting values:

(A,y) € AVal,(V) when A: 0 and A{~} =V
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Actions

Four kind of actions

o Player Answer ¢(A): an abstract value A is sent through a
continuation name c.

o Player Question f(A, c): an abstract value A and a continuation
name c are sent through a function name f.

@ Opponent Answer (OA) c(A): an abstract value A is received from
the environment via the continuation name c.

@ Opponent Question (OQ) (A, c): an abstract value A and a
continuation name c are received from the environment through a
function name f.
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Traces

Traces are sequence of actions alternating between Player and Opponent
@ similar to traces generated by the (Internal) 7-calculus;

@ justification pointer used in game semantics can be reconstructed
from the binding structure of actions;

@ removing continuation names in traces for HOS: back to direct style.
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Configurations

The state of the bipartite LTS are:

Player (active) configurations (M, c,~,&, h);
Opponent (passive) configurations (7, &, h).

They are formed by:

a term M;
a continuation name c;

an dynamic environment ~:
a map from names to functional values or evaluation contexts;

a continuation structure &:
a map from continuation names to continuation names;

a heap h.
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LTS for HOSC

(PT) <M7 C7 77 67 h> % <N7 Cl?’Ya 57 h,>
when (M, ¢, h) — (N,c’, )
(A) .
(PA) <V,C,’7,£, h> E— <7’7 753 h>
when ¢ : o and (A,7') € Aval,(V)
f(A,c) , , ,
(PQ) | (K[fV],c,v,&§,h) ——= (v-+ -[c'— K] & [ — c],h)
when ¢’ : ¢/, f : 0 — ¢’ and (A,') € AVal,(V),

(04) | (7.€, h) A (KA . h)
when c: 0, A: o and y(c) = K, &(c) = ¢
(0Q) | (7,&,h) A9 (VA ¢, 7,6, by

when f:0 =0/, A:0,c:0’ and y(f) =V
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We consider the following program M:

let x = ref 0 in AMf.x:=lx—1;f();x:=lx+1;!x
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We consider the following program M:

let x = ref 0 in AMf.x:=lx—1;f();x:=lx+1;!x

v
(M, ) = (M£.0 =W —1;£(); 0=+ 1,14, o, [¢ — O])
28 (e Vile~ o)
—_——
gl

ELDy (Y Foam 10 0))
5 (K[fOl, c1,7, [€ — —1]) with K=e;0:=l0+1;14

v £

—_————
I <7'[C2'_>K]7[C2'_>C1]7[€'_>_1]>
here Opponent can either answer to ¢
or interrogate g again (nested call)

2O KIO] e, 6 [0 —1])

¢ can still be used afterwards, meaning that we can use the evaluation
context K many times to increment /. 2038



Operational Game Semantics for HOS contexts

e Opponent cannot use call/cc anymore
» but Player still can (asymmetric situation).

@ Opponent behaviour is then restricted:

» Opponent Answers must follow the O-bracketing discipline
» enforced in the OA rule of the LTS by keeping track of the
continuation structure for Opponent too.

o Well-bracketing when Player cannot use call/cc neither: the
continuation structure used in the LTS is then a stack, getting back
the model of [Laird 2007].
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LTS for HOS

T

(PT) | {M,c,7,&, h) — (N, c,v, &, h)
when (M, c,h) — (N,c', )

c(A
(PA) | (Vieovehy S8y v e h )

when ¢ : o, (A7) € AVal,(V), {(c) = ¢

(PQ) | (KIV] c.yah) 29 (o [ s K] € [¢ s ], b, )

when 10 — o', (A7) € AVal,(V), ¢’ : ¢

(0A) | (7,€. b, c") A (KA v, B
whenc=c", c:0,A:0,7(c) =K, &(c)=¢
(0Q) | (v,€, h,c") A9 VA, v, e s ), b

when f:oc =o', A:o,c:0,v(f)=V
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M2 letx = ref 0in Mf.x:=lx — 1;f();x =lx +1;!x

&o %
o N— -
(M, cy,[co— L])— ML= —1,£(); 0=+ 1, ¢, o, &0, [£ — 0])
S, (g V] o, 0 0], 1)
—_———
¥
&1
g(f,c1) —
— <V f7C17£0'[C1HL]a7,[£HO]>
~ v &
f ,C2
10, O e o K& - [ al, [0 1], o)
&3
g(f',c3) , ,
— <Vf7C3arY7£2'[C3’_>C2]7[£}_>71]>
- (K", 3,7, &3, [ = —2])
v &

1((),cs
TOD, 2 e s KL & - [ aa), [0 —2], ca)

Then Opponent answers should be first on ¢4, then on ¢p.
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Operational Game Semantics for GOSC contexts

@ Opponent cannot store functional values nor continuations produced
by call/cc

» but Player still can (asymmetric situation).

@ Both Opponent Questions and Answers are restricted: O-visibility

» to control the functional names used in Opponent Questions and the
continuation names used in Opponent Answers to be in the scope,
called the O-view;

» enforced in the Opponent rules of the LTS by keeping track of the
O-views at each interaction points.
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Modularity

Operational Game Semantics for GOS contexts
e Opponent cannot store functional values and cannot use call/cc.
@ Combine both O-bracketing and O-visibility
@ On Opponent Answer, O-bracketing implies O-visibility.
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Modularity

Operational Game Semantics for GOS contexts
e Opponent cannot store functional values and cannot use call/cc.
@ Combine both O-bracketing and O-visibility
@ On Opponent Answer, O-bracketing implies O-visibility.

More generally, a common LTS for the four fragments:

@ enforcing O-bracketing and O-visibility is based on the trace already
played,

@ uniform treatment by incorporating in configurations a notion of
history of available names used,

@ condition on Opponent moves depending if we want to capture
HOSC, HOS, GOSC, or GOS contexts.
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Theorem (Full Abstraction)

For each fragment GOS,GOSC,HOS,HOSC, the set of traces, generated by

the corresponding LTS, for two programs My, My, are equal iff My, M, are
contextually equivalent.

@ For HOS and GOS: error observation rather than termination in the
definition of contextual equivalence

> to avoid the restriction to complete traces.

@ Proofs of these full-abstraction results use ciu-equivalence and
definability theorems.
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Theorem (Full Abstraction)

For each fragment GOS,GOSC,HOS,HOSC, the set of traces, generated by
the corresponding LTS, for two programs My, My, are equal iff My, M, are
contextually equivalent.

@ For HOS and GOS: error observation rather than termination in the
definition of contextual equivalence

> to avoid the restriction to complete traces.

@ Proofs of these full-abstraction results use ciu-equivalence and
definability theorems.

@ Asymmetric case: My, M are in HOSC, while contexts are taken
either in HOS, GOS or GOSC;

» Player is more powerful than Opponent;
» soundness wrt ciu-equivalence only...
» equivalence is not a congruence anymore !
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Can we prove contextual equivalence of two programs
using these fully-abstract models 7

Prove trace equality of the LTS corresponding to the two programs using
bisimulations.

e Eager normal-form bisimulations for ~HOSC [Stgvring & Lassen
2007]

o extended to HOS in [Biernacki, Lenglet & Polesiuk, 2019]

@ main difficulty: the dynamic environment ~ of LTS configurations
keeps growing
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@ Operational Semantics

© Operational Game Semantics

© Kripke Normal-Form Bisimulations
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We would like to relate each corresponding components of
the environments independently

Problem: this is unsound in presence of references

let ¢ =refl0 in let ¢ =refl0in

letinc ()=c:=lc+1in | letdec()=c:=lc—11in
let get () =lc in let get () =!c in

(inc, get) (dec, get)

~> Related to the unsoundness of applicative bisimulations in a similar
setting [Koutavas,Levy, Sumii 2015] ?
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A Solution:

Use worlds w as memory invariants to specify the heap resources shared by
all the components of the two programs.

~~ as introduced with Kripke Logical Relations [Pitts & Stark 1998;
Dreyer, Neis, Birkedal 2010]

Adaptation to Bisimulations over Operational Game Semantics LTS:

Kripke Normal-Form Bisimulations
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Kripke reasoning

Definition

A world transition system (WTS) A is a triple (Worlds, Cq, Ega,Z),
where:

@ Worlds is a set of states,

® Cqs Eop are binary reflexive relations on Worlds,
e 7 : Worlds — P(Heap x Heap) is the invariant assignment.

For example:

@ Relational invariants: Z(w) = {(h1, h2) | h1(¢1) = —h2(62)}
@ Transition systems of invariants:
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Decomposing configurations

@ Partial configurations D, D’: remove the shared resources
> heap h;
» available name history components used to restrict Opponent
behaviour.

@ Product of partial configurations D @ D’:
» concatenate the dynamic environments v,~' of D, D’;
> at most one Player (i.e. active) configuration among D, D’;
» Opponent names can be shared between D, D’.

@ Prime configurations:
» partial configurations that are irreducible w.r.t. ®;
» either Player (active) configuration with empty dynamic environment ~;
» or Opponent (passive) configurations with singleton ~.
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Decomposing configurations
@ Partial configurations D, D’: remove the shared resources
> heap h;
» available name history components used to restrict Opponent
behaviour.

@ Product of partial configurations D @ D’:
» concatenate the dynamic environments v,~' of D, D’;
> at most one Player (i.e. active) configuration among D, D’;
» Opponent names can be shared between D, D’.

@ Prime configurations:
» partial configurations that are irreducible w.r.t. ®;
» either Player (active) configuration with empty dynamic environment ~;
» or Opponent (passive) configurations with singleton ~.

Normal-Form bisimulations/Bohm trees corresponds to
LTS over prime configurations !
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Kripke Normal-Form Bisimulations for HOSC

Kripke Normal-Form Bisimulations are relations over triples
R = (Ry, Rx, Re) which are post-fixpoint of (V 4, K 4,€,), i.e.
R C (V4(R),K4(R),E4(R)), where:

VA(Ry, Rk, Re) £ {(BV,V,w) ]| V:3 A fBeclnt,Bool, Unit} U
{(c0—=d ,Vi,Vo,w) | YW Jgq w. VA: 0. Ve 7.
(o', ViA,c, VoA, c,w') € Re }

K4s(Rv,Rc,Re) £ { (0,0 Ki,c1,Ka, 0, w) | VW' T, w. VA: 0.
(U/a Kl[A]7 C1, KQ[AL 2, W/) € Rc‘: }

SA(RV7R/C5R5) £ { (07 MlaC17M27C27W) ‘ v(hl)h2) EI(W)
Ppiv V Ppa V Ppq }
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Kripke Normal-Form Bisimulations for HOSC

Ppiv & (Mi,ci, b))t A (Mo, o, ho) 1

Ppa £ Vi, Vo, c. Iw’ dow. H(hll,hlz) € I(W/). (O’, Vi, Vs, W,) € Ry A
(Mlaclvhl) —* (V],C, hi) A (M27C27 h2) —* (V27Ca hé)

(1>

IKy, Vi, Ko, Vo. 3¢, ¢y i 7. Fo1,02. 3F 101 — o2 W TJp (w).
H(hll, hé) - I(W/) (0'1, \/17 \/27 W/,H) S RV
A\ (0’2,(’)’7 Kl, C{, KQ, Cé, W/,H) € Rx
A (My, cr, b)) =" (Ki[fVi], e, by) A (M2, @2, he) =% (Ko[fV2], 65, h3)

Ppg
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Modular Kripke Normal-Form Bisimulations

Extending the definition to restricted Opponent (GOS,GOSC,HOS):

@ by index the definition of KNFB with a world-history H that
associates worlds to continuation and functional names;

o related to the available-name history of the uniform OGS LTS.

Theorem (Soundness & Completeness)

For each fragment x € { GOS, GOSC, HOS, HOSC}, considering for two
programs My, M, of these fragments, there exists a world transition system
A and an A, x-Kripke normal-form bisimulation that contains My, M, iff
My, My are contextually equivalent in x.

@ Soundness: prime decomposition of the LTS.
o Completeness: transformation of the OGS LTS into a WTS A.
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Relating Semantic Squares

Relate semantic characterizations of effects
coming from game semantics and Kripke logical relations

HOS HOSC

well-bracketing
public transitions

GOS —— GOSC
well-bracketing+visibility visibility
public transitions—+backtracking backtracking

@ [Abramsky & McCusker 1997], [Laird 1997]
@ [Dreyer, Neis & Birkedal 2010]
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In the future:

Construction from normal-form bisimulations to Kripke normal-form
bisimulations as an up-to/abstraction technique ?

Assymetric reasoning on effects between the program and contexts
and fully-abstract interopability.

Extension to parametric polymorphism, following [Lassen, Levy 2008],
[Jaber, Tzevelekos 2016, 2018].

Automation of contextual equivalence for these fragments, following
[Jaber 2020].
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