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DyVerSe aims to develop a theoretical framework for dynamic/game semantics for programming lan-
guages, capturing in one versatile setting a spectrum of computational features, representative of the
heterogeneity of software (e.g. higher-order functions, concurrency, probabilities or other quantitative
aspects). Our ambition is (1) to help unify denotational semantics by providing the missing link between
various incompatible models focusing on specific aspects, and (2) to provide a toolbox to reason compo-
sitionally about the dynamic behaviour of programs, with an eye towards specification and verification.
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1 Context, Positioning, and Objectives

1.1 Objectives and Research Hypothesis

How to prove that a program P is correct, or equivalent to an optimized P ′? This simple question, pre-
requisite for certifying software, lies at the heart of decades of work in formal semantics of programming
languages. Its study prompted a wealth of developments, each with its methodology and scope. Opera-
tional semantics axiomatizes execution directly on syntax, while denotational semantics gives meaning
to programs by embedding them in a suitable syntax-independent mathematical space.

Operational semantics is a powerful and extensible methodology, perfectly fit for formalization in a
proof assistant – it is, for instance, behind the celebrated CompCert project [Ler09]. On the other hand,
its deployment often follows from ad-hoc choices, and it is not robust to variations in the language. It
is tied to syntax and struggles with compositionality1. Denotational semantics is syntax-independent,
and often more principled. It is a great tool to reason about program equivalence (two programs being
equivalent if they denote the same object), to prove general properties of languages (e.g. termination),
and it comes with compositional reasoning principles on programs. The wider mathematical space in
which programs are embedded sometimes suggests new useful constructs (it is the birth story of Linear
Logic [Gir87]). In exchange, it is more mathematically demanding and it is often quite brittle: distinct
fragments of the same language may require radically different representations.

As illustration, we show below a naive probabilistic program for leader election in a distributed system
with ring architecture. Each process picks a random identifier, and sends it across the ring. Processes
only propagate messages with higher identifier than their own. For succinctness, our program is not
robust to collisions of random identifiers. But if they all happen to be chosen distinct, only the largest
makes the tour, selecting the leader. The program features higher-order functions, parallelism, side-
channel communication2, and probabilistic choice. It is in an Ocaml-like syntax but all those features
exist e.g. in Erlang [Arm10]. The command send(c, m) sends m on channel c, while listen(c) listens
on c, returning m when received. The function spawn takes N : nat and f : chan ∗ chan → unit, and
(1) spawns N processes in a ring, each running f(prev, next), with prev and next new channels linking
them to the previous and next process; (2) returns the list of all prev channels as a means to broadcast
the start signal. The parameter lead : chan ∗ chan→ unit, is to be ran by the elected leader only.

1Operational semantics can be made compositional, but behind lie structures from denotational semantics: for instance,
the operational semantics behind the recent Compositional CompCert [SBCA15] “bears much in common” (quoting the
paper) with Ghica and Tzevelekos’ operational reconstruction of game semantics [GT12].

2Here parallelism means simultaneous execution, independently of communication between threads. Side-channel com-
munications refers to either message passing or shared memory, handled similarly in our semantic framework.
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let rec proc(id, prev, next, k) =
if id = 0 then proc(rand_int(),prev,next,k) else (* Initialisation *)

match listen(prev) with
| Elect -> send(next,Candidate id); proc(id,prev,next,k) (* Sends application *)
| Candidate n -> if n > id then (send(next,Candidate n); (* Lost the election *)

proc(id,prev,next,k));
if n < id then proc(id,prev,next,k); (* Drops candidate n *)
if n = id then k(prev,next) (* Won the election *)

let main () =
let threads = spawn(N, fun (prev,next) -> proc(0,prev,next,lead)) in

map (fun x -> send(x,Elect)) threads (* Start election *)

How can we prove that for this program (as opposed to the abstract algorithm behind), with a
certain probability, exactly one process will run lead? The combination of features used makes even
describing formally the behaviour of proc a challenge. On the operational side, this could be done
in principle using Segala automata [Seg95], which can capture the combination of probabilistic choice
with the non-determinism arising from scheduling (though we are not aware of this being done in the
presence of higher-order). On the denotational side, there are great models (all fully abstract, the ideal
match between a language and its semantics) of higher-order languages with parallelism and side-channel
communication [GM08], (unobservable) parallelism and probabilities [EPT18], and side-channel commu-
nication and probabilities [DH00]; but not to the three together. Even worse, these models have little to
do with each other: [DH00] and [GM08] build on game semantics but rely on incompatible settings, while
[EPT18] belongs to the distinct family of weighted relational models. There are no known connections or
bridges between them. It is unclear what perspective or information they offer on the full language.

Beyond these specific features, this illustrates the general state of affairs in semantics that DyVerSe
aims to address: there is a missing link between the syntax-tied operational semantics and a spectrum of
incomparable denotational semantics of restricted scope. DyVerSe aims to construct that missing link: a
syntax-independent and fine-grained description of program executions which could serve both as a unified
compositional operational semantics for a wide array of computing features, and as a bridge between
specific denotational models. To achieve this, DyVerSe will build on and extend concurrent/asynchronous
games [AM99b, RW11], whose recent developments [CGW12, CCW14, CCW15, CCPW18] suggest a plan
of attack. Beyond its foundational value and its use as a tool to transport semantic results, we believe
this missing link will provide tools to put under scrutiny the structures used to eliminate race conditions
and ensure harmonious use of resources in languages like Rust, lend itself to algorithmic treatment, and
offer new opportunities for the certification and verification of programs.

1.2 Position of the Project as it Relates to the State of the Art

Traditional denotational semantics (e.g. Scott domains) model programs as functions, through their
input/output behaviour. Effects (e.g. state, non-determinism, etc) can be captured via monads, but
monads do not readily combine. Though combining effects has been a driving question in denotational
semantics these past decades, it is hardly a streamlined process. For instance, though there is significant
recent research activity around domain settings supporting probabilities and higher-order [SYW+16,
VKS19], it is unclear how they combine with non-determinism [Gou17], let alone concurrency; nor how
all these models relate together.

Game semantics [HO00, AJM00], though also a denotational semantics, takes a radically different
approach: instead of a function it represents a program as a strategy, i.e. the collection of (representations
of) its interactions against all execution environments. Once executions are first-class mathematical
objects (called plays) one can characterise those achievable using only specific effects. This led to a wealth
of fully abstract models, rewarded in 2017 by the Alonzo Church Award (from the ACM SIGLOG, the
EATCS, the EACSL, and the Kurt Gödel Society). To cite the announcement:

“Game semantics has changed the landscape of programming language semantics by giving a
unified view of the denotational universes of many different languages. This is a remarkable
achievement that was not previously thought to be within reach.”

But are games models truly “unified”? For deterministic sequential programs, yes: various effects
(degrees of control and state) are indeed captured as additional conditions on one single canvas [AM99a].
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But the very representation picked for executions (plays) impacts expressivity, and imposes constraints on
the execution environment. Dealing with effects such as concurrency [GM08], demonic non-determinism
[HM99] or exceptions [Lai01] demanded reworking the notion of play (in incompatible ways); while
extensions with probabilities [DH00] or non-determinism [HM99] appeared too rough to support a char-
acterization of “pure” executions (i.e. innocence [HO00]). Beyond sequential deterministic languages,
current game semantics is far from unified, it is – just like semantics in general – a scattering of inde-
pendent developments made incomparable by their implicit or explicit assumptions on the underlying
computational model. The challenge behind DyVerSe is – besides modeling combinations of effects as of
yet not covered – to push this unified picture beyond sequential deterministic languages.

To attack this, DyVerSe relies on another family of game semantics, called concurrent, causal or asyn-
chronous. Pioneered by Melliès and others [AM99b, Mel04, MM07, FP09], they have been actively de-
velopped recently (with major contributions by the coordinator [CGW12, CCW14, CCW15, CCPW18]),
building on new definitions due to Winskel [RW11]. Following a long development, they have only recently
reached the maturity to compare in expressivity with traditional models. Concurrent games build on
event structures [Win86], a notion originating from connections between domain theory and concurrency
theory [NPW79]. Event structures are the natural truly concurrent3 analogue of trees, representing causal
dependence and independence: for instance Petri nets canonically unfold to event structures [HW08].

It is natural to expect game semantics based on event structures to provide models of concurrent lan-
guages. In addition, our recent work [CGW12, CCW14, CCW15, CCPW18] has emphasized a perhaps
less expected phenomenon: switching to a causal setting means that strategies are not anymore repre-
sentations of how programs are observed by a specified type of environment, but of what are the causal
dependencies and constraints behind the program’s actions, independently of the execution environment.
This has far-reaching implications even for sequential programs: this commitment to specific types of
environments is exactly what causes the variety of traditional games models to be incompatible. And
indeed, to substantiate this intuition we have recently obtained the first results hinting at our desired
unified view: in [CCPW18] we gave the first games model that (1) is fully abstract for pure probabilistic
programs, and (2) embeds compositionally into traditional probabilistic game semantics [DH00] and into
the weighted relational model [EPT18], two radically different models.

Besides denotational semantics, traditional game semantics have relatively well-studied connections
with operational semantics [DHR96, LS14]. However, these work rely on interleaving-based representa-
tions of execution, and so fail to apply to our (truly concurrent) event-structure-based setting. So instead,
DyVerSe proposes an original approach based on unfoldings of multi-token geometry of interaction (first
introduced by Laurent [Lau01]), regarded as generalizations of Petri nets.

1.3 Methodology and Risk Management

The core ambition of DyVerSe is to push the development of concurrent games to deliver the truly “unified
view of semantics” that traditional game semantics promised, along with a convincing relationship with
operational semantics. Beyond this core goal we aim to give the community tools to put our structures
at work – for instance for specification and verification purposes; to study semantic structures behind
concurrent programming languages (such as Rust) ensuring a harmonious interplay of shared resources;
or for other situations where a sharp causal understanding of complex computing systems may help, such
as in logic and proof theory.

The concrete objectives of DyVerSe span five tasks, and each task is composed of three objectives
or more. For each objective we specify the anticipated duration to reach its main goals (short-term,
medium-term or long-term) once its potential dependencies are met; and an assessment of the risk (low-
risk, medium-risk or high-risk) – how confident we are that research unfolds as planned. This being
fundamental research these elements of foreplanning are, of course, subjective and indicative.

Task A. Structures (P. Clairambault, PhD student)

When designing a game semantics, the first choice is: what mathematical structure to use for represen-
tations of plays and strategies? It is a critical one. In traditional game semantics, as strategies describe

3They represent concurrency through partial orders rather than interleavings. Truly concurrent models have been
advocated for the verification of concurrent systems, as they avoid the state explosion problem due to interleavings.
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Figure 1: A Segala Event Structure and its Unfolding as a Segala Automaton

how programs are viewed by their execution environments, the choice of the mathematical representation
of plays bears a commitment to one ambient programming language outside of which the games model
becomes meaningless. Concurrent games avoid this by presenting causal choices behind the program’s
behaviour. However, there are still a wide variety of causal structures that one may adopt, impacting
how rich the representation will be. Though the concurrency literature is rich in such structures, for
some of our objectives we will need to develop new, more expressive ones.

Task A regroups objectives towards new structures, prerequisite to their application in DyVerSe.
Objectives A.1 and A.3 aim for more expressive mathematical settings for true concurrency. Those are
not specific to game semantics and should impact the wider concurrency community. Objective A.2
studies structures more specific to games.

A.1 Non-determinism and Probabilities. We demonstrated in [CCPW18] that concurrent games
are perfectly fit as a model of probabilistic programs (we focus here on discrete probability distributions,
though an extension to the continuous case has been proposed [PW18]). However, this concerns only
purely probabilistic programs, such as purely functional programs extended with probabilistic choice, in
which all choices are probabilistic. In the presence of concurrency and side-channel communication (as in
our example on p.2), data races are solved externally by the memory or the scheduler, and there appears
to be no meaningful way to express this purely probabilistically.

We will extend probabilistic event structures [Win13] so that they support non-determinism and prob-
abilities. For that we will first define alternating event structures, supporting two kinds of conflict: one
internal and one external. Adding probabilities will be done so that for each resolution of the external
conflict, we get a valid probabilistic event structure. We will validate our model by giving an unfolding
to tree-like Segala automata [Sto02] (a standard to represent systems that combine probabilistic and
non-deterministic choice) preserving the interpretation of probabilistic CCS [DD07], thus yielding the
truly concurrent analogue of Segala automata, in the sense that event structures are the truly concurrent
analogue of trees. In Figure 1, we display the envisaged solution. On the right hand side we show the
interpretation of a process of probabilistic CCS (> is non-deterministic choice and ⊕ is a fair probabilistic
choice) as a Segala automaton. The tree alternates between the two kinds of choices: non-deterministic
choices resolving a choice of the scheduler, and probabilistic choices sending a signal with a certain prob-
ability. On the left hand side we show the corresponding “Segala event structure”, with immediate causal
dependency written _, two kinds of conflicts, and probability annotations on events as a superscript.

We consider this objective as short-term and low-risk, as investigations are already underway.

A.2 Enriched Concurrent Games. The representation of programs in concurrent games is extensive,
in the sense that ground data domains are represented in a flat way, aligning all (potentially infinitely
many) possible values. Consequently, a program taking an integer as an argument has a different branch
for each possible value. In some cases, for instance when the data flow has little impact on the control
flow, it is tempting to keep the two separate; representing the data flow as an additional information on
top of the causal structure. In [ACHW18], we followed this idea to extract constructive information from
classical proofs, and in [ACL19] we extended this to keep track of time in the execution of concurrent
programs. In both cases the additional information is regarded as metadata, that is tracked throughout
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execution but does not affect the control flow.
The objective of A.2 is, drawing inspiration from the two works above, a general theory of enriched

concurrent games, where additional information added to the causal structure comes, for instance, from
an arbitrary cartesian category or Lawvere theory. In contrast to [ACHW18] and [ACL19], we want to
make it so that the control flow may indeed be affected by this additional data, by cutting events carrying
information that is dubbed inconsistent. In our opinion, a requirement for such a setting to be successful
is the ability to perform symbolic computation, where e.g. the additional information is composed of sets
of formulas such as numerical constraints, cutting out inconsistent branches. We leave however for E.2
the implementation and application to verification of symbolic concurrent games.

We consider this as short-term and low-risk ; the structures involved are well-understood.

A.3 Nominal Event Structures. Names form a special data that can be generated, passed around,
and tested for equality, but with no further structure. This is captured by mathematical frameworks such
as nominal sets [Pit13] that force all operations to behave uniformly w.r.t. names, in the sense that their
behaviour cannot depend on specific representatives. Nominal techniques have established themselves as
a valuable addition to the toolbox of researchers in semantics and verification. Besides their intended use
to represent binding, they provide means to speak about locations (e.g. memory locations) or messages
abstracting away the low-level aspects, leading to applications in semantics [MT11] and security [Gor00];
they also provide symmetries extending automata techniques to infinite alphabets [Seg06]. In traditional
game semantics, their impact has been considerable [MT16].

The main objective of A.3 is to define and study nominal event structures. In nominal event struc-
tures, events carry names. Events can generate fresh names, but they may also carry names introduced
independently, provided their generation occurred in their causal history – so that name leakage is con-
strained by causality. This will be, to our knowledge, the first truly concurrent nominal model, which
we will relate to its interleaving counterparts in terms of automata [Tze11] or transition systems. As a
side objective, we will investigate the possibility to simplify, through the use of names, our mechanism to
handle replication of resources via symmetry in concurrent games [CCW14]. If, as we suspect, nominal
sets lack expressivity for this purpose, we will see how they can be extended.

We consider A.3 a medium-term and medium-risk objective. It is rather open-ended but has a high
potential for impact inside and outside DyVerSe.

Task B. Representation (P. Clairambault, O. Laurent, G. Munch-Maccagnoni, Postdoc)

Task B regroups objectives towards the core semantic objective of DyVerSe, i.e. the unified framework
for denotational semantics. Of course, such an objective needs to be qualified in order to be meaningful.
No denotational model can claim to cover the whole realm of programming features, which is wide and
open-ended; nor would it be wise to try. By nature, denotational models abstract away some aspects of
computation. To take some extreme examples, covering features such as meta-programming or explicit
memory management would question the hypotheses that underlie the very methodology of denotational
semantics, and which makes it useful to reason about programs.

More concretely, the approach followed by DyVerSe is to aim for the right balance and attack a
combination of features that (1) is sufficiently widespread to be significant, and (2) addresses some of
the fundamental difficulties intrinsic to considering combinations of effects. Following these guidelines,
we have identified three effects usually modelled via radically different theoretical tools:

{parallelism, shared state, probabilistic choice}

Drawing inspiration from Abramsky’s semantic cube research programme [AM99a], we analyse these
effects through extensions of PCF [Plo77], Plotkin’s paradigmatic pure Call-By-Name programming lan-
guage. The combinations yield 8 languages (organized in the “DyVerSe cube” in Figure 2), among which
5 already have known fully abstract models: PCF [HO00, AJM00], Idealized Algol (IA) [AM96], Prob-
abilistic PCF (PPCF) [EPT18], Probabilistic Idealized Algol (PIA) [DH00], and Idealized Parallel Algol
(IPA) [GM08]. The two languages PCF‖ and PPCF‖ are extensions of PCF and PPCF respectively with
a parallel primitive. Finally, Probabilistic Idealized Parallel Algol (PIPA) has, to our knowledge, no de-
notational model. Though this makes it seem like the situation is well-explored, as argued before these
fully abstract models are radically different, and in most cases have no clear relationship with each other.
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Figure 2: The DyVerSe cube

However, their existence provides us with clear targets and points for comparison, in the sense that our
unifying framework should have a clear connection with them all.

The reader might wonder why we single out these particular features, whereas there are multiple
others around: control [Lai97], exceptions [Lai01], or even quantum primitives [CdVW19] to cite a few.
Recall that game semantics was celebrated for its ability to accommodate many computational effects in
a single framework, for deterministic sequential programs. The fact that this failed to extend to the non-
deterministic case was noticed early on [Har99], and attributed to the lack of explicit branching structure –
this analysis was confirmed quite recently, independently by Tsukada et al [TO15] and ourselves [CCW14].
From this experience stems our analysis: effects combine in subtle ways with branching behaviour, and
so a successful unifying framework must first represent branching adequately.

Amongst our three effects, parallelism and probabilistic choice both embody a form of branching of
the execution. The third effect, shared state, is not about branching per se, but by providing side-channel
communication it interacts with parallelism and generates a third kind of branching, non-determinism, as
resolution of data races corresponds to an external choice which cannot be sensibly resolved by assigning
probabilities4. We believe that dealing adequately with those three types of branching is the main
obstacle to a successful unifying framework, and that once this is done, other non-branching effects
(message-passing, control, exceptions, etc) can be handled more directly by integrating the relevant
structures from sequential games.

B.1 Full Abstraction for PIPA. Amongst the 8 languages of the DyVerSe cube, 5 already have fully
abstract models. But in fact PCF‖ and PPCF‖ do as well: without side-channel communication parallel
execution is non-observable, and can be sequentialized without affecting observational equivalence. So,
up to observation, these two languages do not significantly differ from their sequential counterparts.

Therefore, preparing the ground for the DyVerSe cube leaves us with the necessity to give denotational
semantics to PIPA. In traditional domain theory, this would be a daunting task as even for pure languages,
combinations of non-determinism and probabilities require elaborate mathematical techniques [Gou17].
We believe however that our intensional approach gives a new, realistic angle of attack.

This semantics will be obtained by rebuilding the cartesian closed category of concurrent games
[CCW19] based on the extension of event structures for combinations of non-determinism and probabilities
in A.1. We will prove the model computationally adequate, against an operational semantics based on
Segala automata, and at first for an angelic resolution of non-determinism (though we can later combine
with the developments of [CCHW18] to allow other resolutions of non-determinism). We will aim to
prove full abstraction, via a finite definability result.

Adequacy is medium-term and medium-risk : the required constructions are elaborate, but the way
seems clear provided A.1 is successful. Full abstraction is high-risk, but is less critical to the sequel.

4 It might be counter-intuitive to the reader that we consider PCF‖ to be deterministic, since in its usual interleaving
operational semantics parallelism would be resolved by non-deterministic scheduling. However, in a truly concurrent model
non-competing parallel execution remains deterministic. Likewise, we reserve non-determinism for external choice for which
we can assign no probabilities, so in that sense we do not regard PPCF‖ as featuring non-determinism.
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B.2 The DyVerSe cube. Building on B.1, and following the methodology of Abramsky’s semantic
cube programme [AM99a] we will provide three conditions on strategies, each condition corresponding
to the absence of one of the considered computational features. Innocence will draw inspiration from
our concurrent innocence from [CCW15], and generalize it to this richer setting – innocence corresponds
to the absence of side-channel communication. Probability-determinism simply consists in forcing all
probabilities to be 1, and captures the absence of probabilistic choice. Finally, we will introduce a notion
of sequentiality (earlier notions seem too restrictive), forbidding parallelism. For each combination of
conditions, we will construct a functorial collapse to the matching fully abstract model.

Building on B.1, we consider B.2 as medium-term and low-risk. The development will take time,
due to the variety of other models we have to relate to. If B.1 only yields adequacy for PIPA, we still
regard unifying all other vertices of the DyVerSe to be a worthy achievement.

B.3 Metalanguage and its semantics. Although the DyVerSe cube concerns Call-By-Name lan-
guages, it would be a serious flaw for our developments and an obstacle to their adoption if they were
inherently limited to Call-By-Name. Objective B.3 aims to study evaluation order in concurrent games
in the light of modern developments in proof theory and the theory of programming languages, and to
ensure that our developments on effects do not depend on the evaluation order5.

The last two decades of research have established the notion of polarity, originally proof-theoretical,
as a powerful lens through which one may understand atomically issues related to the evaluation order of
programs and their computational effects. Milestones include Polarized Linear Logic, thoroughly investi-
gated by Laurent [Lau05], Levy’s Call-By-Push-Value [Lev99], and recent work by Munch-Maccagnoni et
al [CFM16, MM17] putting together Call-By-Push-Value with the understanding of resources offered by
Linear Logic. The latter framework may be regarded as a metalanguage, within which high-level features
of various programming languages may be understood via translations.

In a sense, games form the setting where the relationship between polarity and evaluation order is
the most plain to see. It is reflected by the two interacting players (Player, who plays for the program;
and Opponent, who plays for the environment): Call-By-Name languages may be interpreted in negative
games where Opponent starts, while Call-By-Value languages may be interpreted in positive games [HY99]
where Player starts. While there is a games model of Call-By-Push-Value [Lev02] following this idea, we
are aware of no games model giving a full account of both evaluation order and resources. Reciprocally
concurrency, whose place appears clearly in concurrent games, is not accounted for by this line of work
on polarity and evaluation order. The objectives of B.3 are two-fold. Firstly, build a concurrent games
model of the metalanguage of [CFM16]. This should have the double benefit of exhibiting basic structure
in games useful for further model constructions, and of making sure that all the other developments of
DyVerSe (and, in particular, those of B.1 and B.2) do not rely on implicit assumptions regarding the
evaluation order. Secondly, draw inspiration from this model to design an extension of the metalanguage
giving a full status to concurrent primitives.

The first objective is short-term and low-risk, while the second is medium-term and more open-ended
(but also likely to reach outside of the games community).

Task C. Operation (P. Clairambault, O. Laurent, Postdoc)

While game semantics is very successful as a denotational semantics, it is interesting that some of its
most striking applications merely exploit its operational content – let us cite applications to hardware
compilation [Ghi07] or as a tool for proving decidability of Monadic Second Order logic (MSO) on infinite
trees generated by higher-order recursion schemes [Ong06]. In those works game semantics is used
to express more locally the complex mechanism of higher-order, possibly effectful computation, as the
exchange of “tokens” or the computation of “traversals” in a game-theoretic interaction. Indeed, regarded
operationally, game semantics provides techniques to design operational semantics for open programs,
in such a way that the “results” of the operational semantics may be composed. Game semantics, seen
through this angle, is the art of presenting operational semantics compositionally, or, to quote Ghica, “How
to denotational an operational semantics” [Ghi18]. This feature of game semantics is to be emphasized

5In game semantics, aspects relative to computational effects are often orthogonal to the evaluation order. For instance,
the exact same innocence condition corresponds to the absence of shared state with negative games for Call-By-Name
[HO00] and for positive games in Call-By-Value [HY99].
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when one of the biggest challenge faced by the formal methods community is how to design modular
methods which have a chance to scale, as strongly emphasized by O’Hearn [O’H18]. Hence, it is our
conviction that a framework such as the one DyVerSe proposes cannot be complete without a convincing
way of connecting concurrent games with operational semantics.

Of course, game semantics is already operational in the sense that all the operations used to obtain
denotationally the strategy corresponding to a program are effective and can be computed. Nevertheless
the inductive reconstruction of a strategy by induction on the program syntax makes it difficult to
directly and formally relate actions of the strategy with the program syntax and its operational behaviour
as expressed by more standard means. Ideally one wants the best of both worlds: a single semantics
that one may regard as being generated either operationally or denotationally, depending on the needs.
For traditional game semantics, such connections with operational semantics have been well-studied,
starting with [DHR96], connecting Hyland-Ong game semantics with the Krivine Abstract Machine
and linear head reduction. Since then researchers have managed to build a much closer connection,
essentially presenting game semantics and (open) operational semantics as two sides of the same coin
[GT12, LS14, Jab15] – in those works the same object (the strategy) can be regarded as either computed
denotationally by induction on syntax, or extracted directly from the operational semantics.

Building such a correspondence in the context of DyVerSe, however, is a challenge. Whereas all
operational semantics above are sequential or interleaving-based, our game semantics is truly concurrent.
To fulfil our objective we first need an operational semantics fine-grained enough to carry information
about causal dependence and independence. The starting point of Task C is that a convincing candidate
exists under the form of multi-token Geometry of Interaction [Lau01], [LFHY14]. Originally introduced
by Girard in [Gir89], Geometry of Interaction (GoI) provides a methodology to perform higher-order
computation via an abstract machine describing the movements of a token through the programme
syntax6 – one speaks of a token machine. Although GoI does not look like a traditional operational
semantics, it certainly deserves the name. Famously, for the pure λ-calculus it was shown to compute
Lamping’s optimal reduction [GAL92], leading to an intense activity around its use for the practical
implementation of programming languages, by Mackie [Mac95] among others.

GoI has strong ties with game semantics: Baillot proved in his thesis [Bai99] that for Intuitionistic
Multiplicative Exponential Linear Logic (IMELL), GoI could be used to generate the strategy interpreting
a proof in the sense of game semantics; hence formally linking an operational semantics (the GoI token
machine) with a denotational semantics (the game semantics). Although there is, to our knowledge, no
other formal result connecting the two, there is little doubt among the experts that the connection remains
true for richer languages. Researchers studying the links between games and operational semantics have
instead focused on more standard operational settings, such as LTSs.

However, for the purposes of DyVerSe, GoI has a major advantage over more standard approaches to
operational semantics: it extends smoothly in the presence of parallelism, without resorting to interleav-
ings. For sequential programs, token machines allow only one token through (a graph-based representation
of) the program syntax – representing the control flow. However, the local rules describing its movements
apply just as well if several tokens are present; new mechanisms may then be added to spawn new tokens
[Lau01] or synchronize them [LFHY14]. The resulting machines can be then regarded as colored Petri
nets [P+80]. Now, unfolding is one of the most basic and well-studied operations on Petri nets, including
colored Petri nets [LHY12]. For regular Petri nets, unfolding yields event structures [HW08]. As our
concurrent strategies are themselves event structures, it is natural to look for an operational/denotational
correspondence as an unfolding.

C.1 Multi-Token GoI and Games for the affine Call-By-Value PCF. Objective C.1 aims for an
operational/denotational correspondence by unfolding, for affine (i.e. no replication) Call-By-Value PCF,
with parallel evaluation. We aim for a correspondence along the lines of the diagram below.

CBV PCF
Multitoken machine //

Denotational semantics
''

Colored Petri Net

Unfolding
uu

Concurrent Strategies

6The focus of [Gir89] was less operational: paired with a realizability construction, GoI was used to build denotational
semantics for System F. Over time, the terminology Geometry of Interaction has come to focus on the operational aspects.
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Figure 3: A multi-token machine node and its unfolding as a concurrent strategy

We illustrate the idea in Figure 3 (though in Call-By-Name, with a parallel evaluation of the boolean
and ∧). A program is represented graphically via combining nodes, linked by edges. The left hand side
of Figure 3 represents a (rather trivial) token machine, with only node the boolean operation ∧. Edges
may carry tokens following a direction, and each node has an action on incoming tokens specified by local
transitions. Here we show two of the transitions of ∧: the top one expresses that upon an evaluation
request, ∧ starts the evaluation of its two arguments in parallel by sending two tokens. The bottom one
expresses that upon receiving true and false, ∧ synchronises them and replies false. Dangling edges
have external transitions (not shown in Figure 3) induced by the type represented as a game. Unfolding,
in the same technical sense as for Petri nets, yields the diagram on the right hand side, with Opponent
moves in red (from the environment), Player moves in green (from the program), and the Hasse diagram
of their causal dependencies: a fragment of a concurrent strategy.

We feel like this objective is a good place to start, laying the basis for further work: there is already
a multi-token GoI machine for full Call-By-Value PCF with parallel evaluation (meaning that in M N ,
the function and the argument are evaluated in parallel) [LFHY14]. Likewise, the corresponding games
model is already well-understood; it is the linear fragment of [CdVW19] (ignoring quantum primitives).
The absence of replication simplifies the games model dramatically, as there is no need for symmetry
[CCW14]. Hence this should serve as a proof of concept, and to set up the proof techniques. Once this
basic picture is in place, we will extend it to the affine fragment of the metalanguage of B.3.

We consider this as medium-term and medium-risk ; we foresee no particular difficulty, but to our
knowledge nothing of the sort has been done before, and the proof methods have to be developed.

C.2 Multi-Token GoI and Games for IPA. Once C.1 has established the basic principles of our
methodology relating GoI to concurrent games via unfoldings, the next step is to deal with replication
on the one hand, and shared state on the other hand. For these we will devise a multi-token machine,
drawing inspiration from the memoryfull GoI of [MHH16]. On the games side we will aim to unfold to
the truly concurrent games of IPA introduced in [CCW19]. To our knowledge, this will be the first GoI
machine for a concurrent programming language with shared state.

We consider this as medium-term and medium-risk. Hopefully we can rely on the proof techniques of
C.1 which will have be developed with this extension in mind.

C.3 GoI and Unfoldings for the DyVerSe cube. Objective C.3 aims to extend C.2 to represent all
the primitives of PIPA. For that, we will extend the probabilistic multi-token machine of [LFVY17] to
deal with non-deterministic choice as well, and construct the unfolding to the strategies of B.1.

We consider C.3 as long-term and high-risk. There is significant prior research to do; for instance we
will have to do some preliminary work on unfoldings of probabilistic extensions of Petri nets. Though
objective C.3 is very desirable to tie Track B and Track C together, we regard it as less fundamental
than C.2 and C.4 for the success and impact of DyVerSe.

C.4 Implementation. Objective C.4 aims at implementing the constructions and results of Task C.
While there are already implementations of GoI, no such implementation exists, to our knowledge, for
multi-token machines. Besides, while these implementations focus on actually executing GoI, our imple-
mentation will focus on computing unfoldings and presenting them as strategies. Via these unfoldings,
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our implementation will be able to directly present to the user a representation of the concurrent strategy
corresponding to a program, and allow them to interactively play with it.

We regard this implementation as a crucial outcome of DyVerSe, hence we will start it as soon as
possible after C.1 is completed and expand it as Task C develops. The main purpose of the implemen-
tation is to provide a platform with which one can visualize and experiment with the constructions of
DyVerSe; which we believe is essential in the diffusion and impact of our developments and ideas. Nev-
ertheless, once the implementation is developed, we will investigate its applicability as a tool in software
development: in particular, we have in mind interactive debugging for higher-order effectful languages –
some of the applications of Task E also rely on and extend the implementation.

That we manage to develop the implementation is low-risk and medium-term: while we lack an
established track record in software development, we are confident that we have enough experience in
programming (notably in Ocaml) for this. Nevertheless, the quality and scope of the implementation
would certainly benefit from additional experience. Therefore, prior programming experience will be an
important selection criterion for the DyVerSe postdoc, who will contribute to C.4.

Task D. Interference (P. Clairambault, G. Munch-Maccagnoni, C. Riba, PhD student)

The developments of Tasks B and C aim to capture the execution of complex programming languages
“in the wild”, representing faithfully their potential untamed, unproductive behaviours such as deadlocks
or data races – the latter is an example of what Reynolds calls interference7 [Rey78]. In contrast,
many of the developments of programming language theory aim to design structures that constrain
the execution, ensuring by construction or by verification that the behaviour of programs is defined,
i.e. that the programs are deterministic up to the choice of the scheduler. As an early example of
that, Reynold’s Syntactic Control of Interference [Rey78] (with later improvements by O’Hearn et al
[OPTT99]) forbids unwanted interference by forcing distinct active (potentially mutated) identifiers to
refer to distinct locations in memory. Syntactic Control of Interference (SCI) is amongst the inspirations
of Bunched Implications [OP99] which stands behind Separation Logic [O’H19], one of the most striking
contributions of logic to formal methods of the past decades. Finally, Mozilla’s Rust [JJKD18] makes
the practical demonstration of these ideas at scale: Rust forbids data races with a notion of ownership
determined by an affine typing rule familiar from Linear Logic, to which it adds an elaborate borrowing
mechanism reminiscent of SCI, so as to increase expressivity.

As such constructs have an increasing importance in modern programming languages, Task D aims
to answer the need for semantic tools to prove their soundness, and study in a principled way the design
space around them. In [CCW15], we have exploited true concurrency to present deterministically the
parallel execution of the pure higher-order programming language PCF, hence giving a concrete, geometric
representation of the fact it is interference-free. We regard this result as a proof-of-concept for Task D.
We aim to extend it, and exploit the corresponding models to reason about interference.

D.1 Game Semantics for SCI. We believe that a satisfactory semantic understanding of interference
should start with SCI; because it is simpler, and because earlier investigations on its semantics provide a
starting point. In particular, in his PhD [Wal04], Wall has constructed a game semantics for sequential
SCI – interestingly, his model involved replacing the view familiar from traditional game semantics with
a partially ordered version, similar to structures from our concurrent games.

Objective D.1 will start by investigating Basic SCI. Basic SCI [OPTT99] is a Call-By-Name concur-
rent programming language with shared state, with typing rules restricted in the following way.

Γ `M : A→ B ∆ ` N : A

Γ,∆ `M N : B

Γ `M : com ∆ ` N : com

Γ,∆ `M ‖ N : com

Γ `M : com Γ ` N : com

Γ `M ; N : com

where Γ,∆ implies that the two are disjoint (and com is the type of commands that may perform some
side effects before possibly evaluating to a single value skip). The typing rules imply that identifiers may
not be shared when spread over an application or parallel composition. However, they may be shared over
a sequential composition, where it is clear that no data race can occur. We will first build a concurrent
game semantics for Basic SCI, where programs are interpreted by deterministic strategies. Then this will

7This use of interference is not related to its widespread use in the context of security of information flow [RS01].
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be extended to SCIR [OPTT99], which extends Basic SCI with a notion of passive types that may be
shared at will. In other words, D.1 will yield a concurrent version of [Wal04].

We regard this as medium-term and low-risk – we expect to be able to take significant inspiration
from [Wal04]. This step is however necessary, drawing useful lessons for further research.

D.2 Games Semantics for Idealized Rust. Rust is a recent programming language due to Mozilla
Research, which provides the programmer both a low-level control over resource management, and strong
guarantees about safety and the absence of data races. For that, it relies on an ownership-and-borrowing
design not unlike SCI, but much more elaborate: there are in particular means to transfer ownership of
mutable variables over channels, and share read-only or mutable references in a suitably controlled way.
Rust itself does not have a formal description or semantics; but Dreyer’s ERC project RustBelt aims to
provide Rust with theoretical foundations – in particular, in their striking recent work [JJKD18], the
RustBelt team gave a sound and adequate logical relation semantics (formalized in Iris) for a formalized
fragment λRust of Rust, yielding a soundness proof for the type system. Also, the calculus Oxide presented
very recently [WPMA19] is complementary to RustBelt and gives a faithful account of the ownership-
and-borrowing mechanism.

We argue that ownership is causal in essence. Objective D.2 aims to provide a causal analysis of the
fundamental mechanisms behind the design of Rust. This will be done by constructing a concurrent games
model of a language Idealized Rust featuring ownership transfer and shared borrowing (this language must
be defined, but good inspirations exist in λRust or Oxide). This development will build onD.1, but also on
A.3 as we expect that treating ownership will require the use of names as identifiers of owned resources.
As an application of our model, we will investigate how the structures interact with evaluation order
as specified by the metalanguage of B.3, and relate it with our recent algebraic model of the resource-
management contents of ownership in Rust [CM18]. In particular, we expect this analysis to be be fruitful
in our ongoing proposal to port Rust’s model to functional programming languages, in particular to the
upcoming multicore OCaml [Mun18].

We regard this as being medium-term and medium-risk. Though soundness of this fragment of Rust
will follow and made more robust and compositional, the ambition of DyVerSe is not to compete with
Oxide or RustBelt. Rather, we aim to put the structures behind Rust under a different light, informing
new designs as with our OCaml proposal, or being more amenable to automation than logical relations.

D.3 Strategies as Safe Petri Nets. Although not designed primarily for this purpose, we believe
that the interference-free aspect of a language such as Basic SCI enables an effective representation of its
concurrent game semantics as investigated in D.1, amenable to algorithmic treatment.

In Task C we develop, through GoI, an interpretation of programs as certain colored Petri nets. This
interpretation is badly infinitary: the colors themselves come from an infinite alphabet, as per their use
for copy indexing in a language with unrestricted replication of resources. Yet, the case of Basic SCI
is special: replication is allowed, but only sequentially. In other words resources must be “freed” before
being reused. This imposed sequential ordering on resource usage means that copy indexing may be done
implicitly via this ordering, rather than through explicit indices as in GoI, so that one may get rid of the
colors of tokens. Furthermore, because of the non-interference property of Basic SCI, we believe that only
one token may occupy a place at a given time, so that the GoI version of our games may be formulated as
a (1)-safe Petri net. This is promising, because safe Petri nets are one of the few classes of Petri nets with
good decidability properties, such as trace equivalence or even the truly concurrent pomset equivalence
[EN94]. We are aware that Basic SCI is a very poor language in terms of expressivity: our positioning in
D.3 is more to identify decidable fragments for the very hard problems of verifying higher-order stateful
concurrent programs, rather than providing a practical verification tool. In that our main inspiration
is the celebrated result of Ghica and McCusker [GM03] presenting strategies for second-order Idealized
Algol as finite automata, and the subsequent line of work of algorithmic game semantics [AGMO04].

Relying on objectives C.2 and D.1, objective D.3 aims to present the concurrent strategies for
Basic SCI (with finite datatypes) developed in objective D.1 as unfoldings of safe Petri nets. We will
also investigate the possibilities this might offer for automated verification. There are also strong links
between the proposed interpretation of Basic SCI as Petri nets and Ghica’s Geometry of Synthesis [Ghi07]
which also relies on a language like SCI for hardware compilation. We will henceforth attempt to apply
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our model to give a truly concurrent soundness proof of Ghica’s hardware compilation procedure.
We regard the core objective of D.3 as short-term and medium-risk in the sense that provided its

dependencies are met, it shall be easily seen whether an interpretation of programs as safe Petri nets
as envisaged is possible. Applications of this construction, including the relationship with Geometry of
Synthesis, are open-ended and therefore more long-term.

Task E. Applications (P. Clairambault, C. Riba)

The core contribution of DyVerSe is a theoretical framework, which we hope will allow a sharper under-
standing of causal structures behind high-level and effectful concurrent programming languages. However,
we believe the sign of a useful theoretical framework is that it provides tools relevant to other communities
of researchers. Both for the scientific well-foundedness of our investigations and to ensure the visibility
of our work, we will develop applications of our tools outside of game semantics.

Causality is a fundamental notion, relevant to many applications ranging from weak memory con-
currency [Alg12] to security [CW01] or software diagnosis [BFHJ03]. We believe there is tremendous
untapped potential in the causal analysis of complex programs and systems offered by DyVerSe and con-
current games in general. Concurrent games have already been put to work outside of game semantics,
with recent contributions highlighting causal structures in logic [ACHW18], [CY19], solving an open
problem in probabilistic coherence spaces [CP18], or supporting Bayesian inference in probabilistic pro-
gramming [CP19], but we have barely scratched the surface. Accordingly the objectives below are far
from exhaustive regarding the potential applications of concurrent games. They have been selected for
their potential impact, and their synergy with the rest of DyVerSe.

E.1 Parallel Higher-Order Model-Checking. Higher-Order Model-Checking (HOMC) proposes an
approach to the automated verification of higher-order programs. This line of work, actively developed
in the past 15 years, was prompted by Ong’s celebrated result that Monadic Second-Order Logic (MSO),
a powerful specification logic, is decidable on infinite trees generated by Higher-Order Recursion Schemes
[Ong06]. Though the complexity is in principle prohibitive (non-elementary), Kobayashi (among others)
demonstrated that HOMC, coupled with predicate abstraction and Counter-Example Guided Abstraction
Refinement (CEGAR) could be used in practice to verify higher-order programs [Kob09, KSU11], and
reported surprisingly good performance [Kob13].

HOMC mostly concerns sequential higher-order programs and it might seem that an extension to
concurrent programs is hopeless; after all, even the pairwise reachability analysis of two synchronizing
pushdown systems is undecidable [Ram00]. Despite this fundamental limitation, Yasukata et al proved
that pairwise reachability was decidable for concurrent higher-order programs if the synchronization
mechanism is restricted to nested locks [YKM14]. Interestingly, this is done by reduction to HOMC,
translating the program to a non-deterministic scheme implementing its interleaving semantics, and
using that the language of branches respecting the lock discipline is regular. Seen from the perspective
of DyVerSe this invites the question: what properties could we express and verify if, rather than an
interleaving semantics, we had direct access to the causal, truly concurrent representation of the execution
of such programs? Could we decide properties of behavioural logics designed to express truly concurrent
properties [BC14] such as causality or independence?

For sequential programs, the execution traces of a program are obtained as the Böhm tree of the
scheme representing the program, i.e. its infinite normal form. But how may we proceed if, as in
[YKM14], the execution is no longer a tree, but a labeled partial order? Interestingly, in Ong’s original
proof [Ong06], the Böhm tree was described as the game semantical strategy of the scheme to be analysed,
which is isomorphic to the Böhm tree. While Böhm trees do not apply in this truly concurrent scenario,
our concurrent strategies do, forming the basis of our proposed investigation.

In objective E.1, we propose to model-check concurrent strategies corresponding to higher-order con-
current programs with restricted synchronization primitives. For that we will work on the metalanguage
of B.3 (so as to insure, as in [CGM18], that we cover directly all evaluation orders), extend it with nested
locks and concurrent game semantics. Drawing inspiration from our earlier work on HOMC [CGM18] we
will design a decidable intersection type system for the language, and prove its soundness by relating it
to the concurrent game semantics (in the spirit of [TO14]). Besides we will investigate the expressivity
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of the intersection type system on the generated concurrent strategies, in terms of fragments of the logic
for true concurrency of [BC14].

We regard this task as medium-term and medium-risk.

E.2 Verification by Symbolic Execution. Verification of concurrent programs is notoriously dif-
ficult, because exact methods bump against a very low undecidability frontier, and both exact and
approximate methods struggle with the so-called state explosion problem caused by the high number of
possible interleavings. Notable approaches to avoid the state explosion problem include partial order
reduction [FG05] and net unfoldings [Esp94]; both exploit the independence of certain sub-computations
in order to reduce the search space. Though a wealth of extensions has been considered, to our knowl-
edge such methods have not been applied to high-level concurrent programming languages such as those
considered in DyVerSe, with features such as higher-order functions. One significant difficulty in such an
endeavor is to extract from higher-order effectful programs a first-order model amenable to automated
verification. Game semantics was quickly identified as a relevant tool to perform this extraction [GM06],
for higher-order sequential programs – first for finite-state verification, more recently extended by infinite
state verification through symbolic computation [Dim14].

In E.2 we propose to investigate the efficiency of the representation of programs offered by DyVerSe
for verification purposes. In contrast to D.3 and E.1 which aim to identify decidable complete verifica-
tion problems, in E.2 we attack infinite state programs through symbolic computation, and are perfectly
content with approximate methods. We will enrich the implementation of C.4 with symbolic computa-
tion, relying on the theoretical foundations established in A.2. We will experiment with applying this
to verification and testing, for instance following the symbolic computation of Petri nets described in
[GMMP89]. Validation will be experimental, through the development of benchmarks.

We regard E.2 as medium-term and high-risk. Though it could have notable impact, none of us are
experts in automated program verification nor have significant experience with experimental validation.

E.3 Witness extraction in arithmetical theories. The theory of programming languages has had,
in the past 40 years, deep and fruitful interactions and cross-fertilization with mathematical logic and proof
theory in particular, alongside the Curry-Howard correspondence [SU06] between proofs and programs.
Following this tradition, we are also keen to develop applications of our causal methods in logic; and
in particular to proof mining. In fact we have already done so: in [ACHW18] we have constructed a
concurrent games model for first-order classical proofs, which allows us to extract the computational
content of proof in the sense of Herbrand disjunctions [GK05]. In that work, we represent as event
structures the causality between quantifiers inherent in a classical proof, and terms in the Herbrand
disjunction are extracted by composing partial witnesses alongside the causal path. Our model is original,
in that it avoids the use of higher-order functions that is usually associated with witness extraction, as
for instance with Gödel’s Dialectica interpretation [AF98].

In E.3 we propose to extend the methodology of [ACHW18] beyond pure first-order proofs, in the
context of theories of arithmetic. Relying on the structures of A.2, we will build a concurrent games
model of Peano Arithmetic (PA) with events annotated with arithmetical functions (notably, the ability
to remove inconsistent events is crucial to deal with equality, to discard wrong equality claims). We
will first reprove – as a proof of concept application – the classical characterisation of provably total
functions in PA with induction restricted to Σn formulas. As for pure first-order proofs our method
will avoid the use of higher-order functionals central to techniques such as Gödel’s Dialectica [AF98]
or realizability [Kri09]. To our knowledge, avoiding higher-order functionals in witness extraction is for
now a specificity of the witness function method [Bus95] (used in particular in the context of theories of
bounded arithmetic where functional interpretations do not apply). We will seek formal links with the
witness function methods, uncovering semantic structures in proof mining.

We regard E.3 as a medium-term and medium-risk objective. Though we are confident in obtaining
a model of PA, its usability in proof mining and relationship to existing tools are rather open-ended.

E.4 Proof Methods for Effectful Probabilistic Program Equivalence. There are a number
of well-established models and techniques to reason about equivalences between probabilistic processes
[DEP02, vBMOW05], or associated notions of metrics [DGJP04]. For higher-level probabilistic languages
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Figure 4: Organization in time and dependencies between tasks

such as extensions of the λ-calculus, notions of program equivalence or techniques to establish it have been
actively investigated in recent years. Developments include probabilistic notions of applicative bisimu-
lation [CL14] or logical relations [BB15]; quantitative extensions to metrics have also been considered
[CL17]. These developments however are still at an early stage, and to our knowledge do not scale to
languages comparing in expressivity with e.g. PIPA. Game semantics, with its wealth of full abstraction
results, is well-known in the classical setting as a powerful tool to reason about program equivalence; we
want to exploit this in the probabilistic case.

Objective E.4 aims to leverage and extend the semantic developments of Task B, and in particular
objective B.2, to study notions of equivalence for complex probabilistic programs, including concurrency
and shared state. We will first characterise concretely observational equivalence for PIPA, and study its
effective presentability. We will give a general study of the impact of adding probabilistic choice to pro-
gramming languages of the DyVerSe cube in terms of observational equivalence. We will design semantic
structures in concurrent games generalizing the metric study of [CL17], and derive proof techniques to
bound distance between complex probabilistic programs.

We regard E.4 as long-term and high-risk. If B.2 is successful, we are confident of its impact as to
the study of equivalences between probabilistic programs. The extension to metrics is very open-ended.

Organization in time and risk management

Figure 4 illustrates the organization of DyVerSe in time. We indicate the envisaged presence of non-
permanent researchers, emphasizing the postdoc funded by the project. We also indicate the dependencies
between tasks. The diagram is of course indicative, and incomplete: for instance, objective B.3, although
having few strict dependencies, will have if successful an impact on most of the other tasks.

In the description of the individual tasks, we have attempted to point out what were the main risks
or areas of uncertainties, and which fallbacks mitigated them. In designing DyVerSe we kept in mind the
desire that should any objective fail completely, the rest of the project will retain sufficient integrity for
DyVerSe to have significant impact.

2 Impact and Benefits

We will publish our results in top journals (Logical Methods in Computer Science, Mathematical Struc-
tures in Computer Science, Theoretical Computer Science, Transactions on Programming Languages and
Systems) and conferences (LICS, POPL, CONCUR, FoSSaCS, ICALP, FSCD. . . ) relevant for theory of
programming languages, with an eye on open access. Our track record witnesses our ability to do so.
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The implementation of C.4 will be open-source, available on GitHub, and we will submit an associated
paper to the international conference TACAS. We will also make a demo available online.

Some objectives of DyVerSe (most notably, E.2) may impact in the medium-term the practice of
automated verification of programs. We will, of course, investigate the possibility and invest effort on it,
should it arise. Most notably, the scientific methodology of DyVerSe is resolutely long-term, and aims at
progress in our understanding of the fundamental structures behind rich programming languages, so as to
better design them, reason on them and implement them. We believe that the contributions of DyVerSe, if
properly disseminated towards the scientific community, have the potential to become part of the essential
toolbox in theory of programming languages. Historically, the wide diffusion of game semantic tools has
been hampered by its technicality, an obstacle to understanding. This lead to an unfortunate situation,
with researchers from other communities reinventing limited forms of game semantics according to their
needs, without necessarily being aware that relevant mathematical tools were available (see for instance
[DF15, SBCA15]). While not an end in itself, we believe our implementation can allow researchers to
identify the results of DyVerSe by seeing them at play, and help give our fundamental results visibility
and a long-lasting impact on the scientific community.
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