
Models of concurrency, categories, and games
Pierre Clairambault and Glynn Winskel

Models of concurrency, categories, and games ENS Lyon, September 2017

EVENT STRUCTURES

Event structures are the concurrent analogue of trees in which ‘branches’ are
partial orders of event occurrences. Just as a transition system unfolds to a
tree, so a Petri net unfolds to an occurrence net and from this to an event
structure.

1

Representations of domains

What is the information order? What are the ‘units’ of information?

(‘Topological’) [Scott]: Propositions about finite properties;
more information corresponds to more propositions being true.
Functions are ordered pointwise.
Can represent domains via logical theories. (‘Logic of domains’)

(‘Temporal’) [Berry]: Events (atomic actions);
more information corresponds to more events having occurred.
Intensional ‘stable order’ on ‘stable’ functions. (‘Stable domain theory’)
Can represent Berry’s dI domains as event structures.

2

Event structures

An (prime) event structure comprises (E,≤,Con), consisting of

- a set E, of events

- partially ordered by ≤, the causal dependency relation, and

- a nonempty family Con of finite subsets of E, the consistency relation,

which satisfy
{e′ | e′ ≤ e} is finite for all e ∈ E,
{e} ∈ Con for all e ∈ E,
Y ⊆ X ∈ Con⇒ Y ∈ Con, and

X ∈ Con & e ≤ e′ ∈ X ⇒ X ∪ {e} ∈ Con.

Say e, e′ are concurrent if {e, e′} ∈ Con & e 6≤ e′ & e′ 6≤ e.

3

Event structures - two simple examples

© ©

©

_LLR_LLR

©

�ZZe _LLR

©

© © ©

1 2 3

Con = { ∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3} }

4

Configurations of an event structure

The configurations, C∞(E), of an event structure E consist of those subsets
x ⊆ E which are

Consistent: ∀X ⊆fin x. X ∈ Con and

Down-closed: ∀e, e′. e′ ≤ e ∈ x⇒ e′ ∈ x.

For an event e the set [e] =def {e′ ∈ E | e′ ≤ e} is a configuration describing
the whole causal history of the event e.

x ⊆ x′, i.e. x is a sub-configuration of x′, means that x is a sub-history of x′.

If E is countable, (C∞(E),⊆) is a Berry dI domain (and all such so obtained).
Finite configurations: C(E).

5

Example: Streams as event structures

000 001 010 011 110 111

00

cc OOOO

01

OO ;;

... 11

;;OO

0

cc OO

1

;;

conflict (inconsistency) // causal dependency ≤

6

Simple parallel composition

000 001 010 011 110 111

00

cc OOOO

01

OO ;;

... 11

;;OO

0

cc OO

1

;;

aaa aab aba abb bba bbb

aa

cc OOOO

ab

OO <<

... bb

<<OO

a

bb OO

b

<<

7

Maps of event structures
• Semantics of synchronising processes [Hoare, Milner] can be expressed in terms

of universal constructions on event structures, and other models.
• Relations between models via adjunctions.

In this context, a map of event structures f : E → E′

is a partial function on events f : E ⇀ E′ such that for all x ∈ C(E)

fx ∈ C(E′) and

if e1, e2 ∈ x and f(e1) = f(e2), then e1 = e2. (local injectivity)

The map f is rigid if total and preserves ≤.
Maps preserve concurrency, and locally reflect causal dependency i.e.

e1, e2 ∈ x & f(e1) ≤ f(e2)⇒ e1 ≤ e2 .

8

Process constructions on event structures

“Partial synchronous” product: A×B with projections Π1 and Π2,
cf. CCS synchronized composition where all events of A can synchronize with all
events of B. (Hard to construct directly so use e.g. stable families.)

Restriction: E �R, the restriction of an event structure E to a subset of events
R, has events E′ = {e ∈ E | [e] ⊆ R} with causal dependency and consistency
restricted from E. An equaliser ...

Synchronized compositions: restrictions of products A × B � R, where R
specifies the allowed synchronized and unsynchronized events.

Pullback: Given f : A → C and g : B → C their pullback is obtained as the
restriction of the product A×B to events

{e | if fΠ1(e) & gΠ2(e) defined, fΠ1(e) = gΠ2(e)} .

9

Product—an example

b (b, ∗) (b, ∗) (b, c)

× =

a

_LLR

c (a, ∗)

_LLR 5 66?

(a, c)

_LLR

(∗, c)

The duplication of events with common images under the projections, as in
the two events carrying (b, ∗) can be troublesome!

10

Recursively-defined event structures

An approximation order � on event structures:

(E′,≤′,Con′) � (E,≤,Con) ⇐⇒ E′ ⊆ E &

∀e′ ∈ E′. [e′]′ = [e′] &

∀X ′ ⊆ E′. X ′ ∈ Con′ ⇐⇒ X ∈ Con .

The order � forms a ‘large cpo,’ with bottom the empty event structure, and
lubs of an ω-chains given by unions.

Constructions on event structures can be ensured to be continuous w.r.t. � ;
it suffices to check that they are �-monotonic and continuous on event sets,
i.e. A�B ⇒ Op(A) �Op(B) and
a ∈ Op(

⋃
i∈ωAi)⇒ a ∈

⋃
i∈ωOp(Ai) on ω-chains.

; recursive definition via least fixed points.

11

Hiding - via a factorization system
A partial map

f : E → E′

of event structures has partial-total factorization as a composition

E
p−→E ↓V t−→E′

where V =def {e ∈ E | f(e) is defined} is the domain of definition of f ;

the projection E↓V =def (V,≤V ,ConV), where

v ≤V v′ iff v ≤ v′ & v, v′ ∈ V and X ∈ ConV iff X ∈ Con & X ⊆ V ;

the partial map p : E → E ↓V acts as identity on V and is undefined otherwise;

and the total map t : E ↓V → E′, called the defined part of f , acts as f .

12

A factorisation system ...
The factorisation is characterised to within isomorphism by the following universal
characterisation: for any factorisation

f : E
g0

// E1

g1
// E′

where g0 is partial and g1 is total there is a (necessarily total) unique map
h : E↓V → E1 such that

E
f0
//

g0
""

E↓V
h
��

f1
// E′

E1

g1

<<

commutes.

13

STABLE FAMILIES

A technique for working with event structures. They generalise the
configurations of an event structure to allow the same event to occur is several
incompatible ways. Nevertheless they determine event structures.

14

Stable families

A stable family comprises F , a nonempty family of finite subsets, called
configurations, satisfying:

Completeness: ∀Z ⊆ F . Z ↑ ⇒
⋃
Z ∈ F ;

Stability: ∀Z ⊆ F . Z 6= ∅ & Z ↑ ⇒
⋂
Z ∈ F ;

Coincidence-freeness: For all x ∈ F , e, e′ ∈ x with e 6= e′,

∃y ∈ F . y ⊆ x & (e ∈ y ⇐⇒ e′ /∈ y) .

(Z ↑ means ∃x ∈ F∀z ∈ Z. z ⊆ x, and expresses the compatibility of Z.)
We call elements of

⋃
F events of F .

15

Stable families - alternative characterisation

A stable family comprises F , a family of finite subsets, satisfying:

Completeness: ∅ ∈ F & ∀x, y ∈ F . x ↑ y ⇒ x ∪ y ∈ F ;

Stability: ∀x, y ∈ F . x ↑ y ⇒ x ∩ y ∈ F ;

Coincidence-freeness: For all x ∈ F , e, e′ ∈ x with e 6= e′,

∃y ∈ F . y ⊆ x & (e ∈ y ⇐⇒ e′ /∈ y) .

16

Proposition Let x be a configuration of a stable family F . For e, e′ ∈ x define

e′ ≤x e iff ∀y ∈ F . y ⊆ x & e ∈ y ⇒ e′ ∈ y.

When e ∈ x define the prime configuration

[e]x =
⋂
{y ∈ F | y ⊆ x & e ∈ y} .

Then ≤x is a partial order and [e]x is a configuration such that

[e]x = {e′ ∈ x | e′ ≤x e}.

Moreover the configurations y ⊆ x are exactly the down-closed subsets of ≤x.

17

Proposition Let F be a stable family. Then, Pr(F) =def (P,Con,≤) is an event
structure where:

P = { [e]x | e ∈ x & x ∈ F} ,

Z ∈ Con iff Z ⊆ P &
⋃
Z ∈ F and,

p ≤ p′ iff p, p′ ∈ P & p ⊆ p′ .

Lemma (∗) [e]x ⊆ z ⇐⇒ [e]x = [e]z, whenever e ∈ x and z in F .
Proof. From e ∈ [e]x ⊆ z we get [e]z ⊆ [e]x. Hence e ∈ [e]z ⊆ x ensuring the
converse inclusion [e]x ⊆ [e]z, so [e]x = [e]z. ‘⇐’ Trivial. 2

18

Categories of stable families and event structures

A (partial) map of stable families f : F → G is a partial function f from the
events of F to the events of G such that for all configurations x ∈ F ,

fx ∈ G & (∀e1, e2 ∈ x. f(e1) = f(e2)⇒ e1 = e2) .

Two significant maps:

The map of event structures E → Pr(C(E)) takes an event e to the prime
configuration [e] =def {e′ ∈ E | e′ ≤ e} — it is an isomorphism.

The map of stable families top : C(Pr(F))→ F takes [e]x to e;
it induces an order-isomorphism between (C(Pr(F)),⊆) and (F ,⊆)
given by y 7→ top y =

⋃
y . Details on the next slide.

19

top : C(Pr(F))→ F with [e]x 7→ e induces an order iso:
θ(y) = top y =

⋃
y with mutual inverse φ(x) = {[e]x | e ∈ x}.

Clearly, both θ and φ preserve ⊆.

θφ(x) =
⋃
{[e]x | e ∈ x} = x .

φθ(y) = {[e]⋃ y | e ∈
⋃
y}. To show rhs = y use

Lemma (∗) [e]x ⊆ z ⇐⇒ [e]x = [e]z, whenever e ∈ x and z in F .

“y ⊆ rhs”: [e]x ∈ y ⇒ [e]x ⊆
⋃
y ⇒ [e]x = [e]⋃ y ∈ rhs, by (∗).

“rhs ⊆ y: Assume p ∈ rhs. Then p = [e]⋃ y with e ∈
⋃
y. We have e ∈ [e′]x ∈ y

for some e′, x with e′ ∈ x. So [e]x ⊆ [e′]x ∈ y ensuring [e]x ∈ y. Therefore
[e]x ⊆

⋃
y so by (∗) we obtain p = [e]⋃ y = [e]x, giving p ∈ y.

20

Adjunctions via free objects
One way to present an adjunction between two categories A and B is by

• a functor G : B → A

• an operation F from objects of A to objects of B

• for each A ∈ A, a unit map ηA : A → GF (A) satisfying for any B ∈ B and
any map f : A→ G(B) there is a unique map g : F (A)→ B s.t. f = G(g) ◦ ηA.

A
F

11 B
G

qq

A

f
##

ηA
// GF (A)

G(g)
��

F (A)

g
��

G(B) B

21

Adjunctions via cofree objects
A dual way to present an adjunction between two categories A and B is by

• a functor F : A → B

• an operation G from objects of B to objects of A

• for each B ∈ B, a counit map εB : FG(B)→ B satisfying for any A ∈ A and
any map g : F (A)→ B there is a unique map f : A→ G(B) s.t. g = εB ◦F (f).

A
F

11 B
G

qq

G(B) B FG(B)
εB

oo

A

f
OO

F (A)
g

cc

F (f)
OO

22

Adjunctions via natural bijections

Another way to present an adjunction between two categories A and B is by a
pair of functors F : A → B and G : B → A for which there is a bijection

θA,B : B(F (A), B) ∼= A(A,G(B)) ,

natural in A ∈ A, B ∈ B.

The unit, ηA = θA,F (A)(idF (A)).

The counit, εB = θ−1
G(B),B(idG(B)).

F is called the left adjoint and G the right adjoint of the adjunction.
Often the adjunction is denoted by F a G.

23

An adjunction from event structures to stable families

E
C()

00 Fam
Pr

qq

Pr is right adjoint to the functor, taking an event structure E to the stable family
C(E).

The unit of the adjunction E → Pr(C(E)) takes an event e to the prime
configuration [e] =def {e′ ∈ E | e′ ≤ e} — it is an isomorphism.

The counit top : C(Pr(F))→ F takes [e]x to e;
it induces an order-isomorphism between (C(Pr(F)),⊆) and (F ,⊆)
given by y 7→ top y =

⋃
y .

24

Product of stable families

Let A and B be stable families with events A and B, respectively. Their product,
the stable family A× B, has events comprising pairs in
A×∗ B =def {(a, ∗) | a ∈ A} ∪ {(a, b) | a ∈ A & b ∈ B} ∪ {(∗, b) | b ∈ B} ,
the product of sets with partial functions, with (partial) projections π1 and
π2—treating ∗ as ‘undefined’—with configurations

x ∈ A× B iff

x is a finite subset of A×∗ B s.t. π1x ∈ A & π2x ∈ B,
∀e, e′ ∈ x. π1(e) = π1(e′) or π2(e) = π2(e′)⇒ e = e′ ,&

∀e, e′ ∈ x. e 6= e′ ⇒ ∃y ⊆ x. π1y ∈ A & π2y ∈ B &

(e ∈ y ⇐⇒ e′ /∈ y) .

25

Product of event structures

Right adjoints preserve products. Consequently we obtain a product of event
structures A and B as

A×B =def Pr(C(A)× C(B))

and its projections as Π1 =def π1top and Π2 =def π2top.

Hence Π1x = π1

⋃
x and Π2x = π2

⋃
x, for x ∈ C(A×B).

26

Pullbacks of stable families with total maps

Let f : A → C and g : B → C be total maps of stable families. Assume A and B
have underlying sets A and B. Define D =def {(a, b) ∈ A×B | f(a) = g(b)}
with projections π1 and π2 to the left and right components. Define a family of
configurations of the pullback to consist of

z ∈ D iff

z is a finite subset of D such that π1z ∈ A & π2z ∈ B,
∀e, e′ ∈ z. e 6= e′ ⇒ ∃z′ ⊆ z. π1z

′ ∈ A & π2z
′ ∈ B &

(e ∈ z′ ⇐⇒ e′ /∈ z′) .

(Local injectivity of π1, π2 follows automatically.)

27

Pullbacks of stable families with total maps - a
characterisation

Proposition Finite configurations of D correspond to the composite bijections

θ : x ∼= fx = gy ∼= y

between configurations x ∈ A and y ∈ B s.t. fx = gy for which the transitive
relation generated on θ by

(a, b) ≤θ (a′, b′) if a ≤x a′ or b ≤y b′

is a partial order.

Consequently finite configurations of the pullback of event structures
correspond to “secure bijections” as above.

28

Other adjunctions between models for concurrency

Many models for concurrency naturally form categories, related by adjunctions:

• The ‘inclusion’ of Event Structures in Stable Families has a right adjoint, Pr ;

•The inclusion of (the category of) Trees in Event Structures has a right adjoint,
serialising an event structure to a tree;

•The ‘inclusion’ functor from Trees to Transition Systems has a right adjoint,
that of unfolding a transition sytem to a tree;

•The inclusion of Occurrence Nets in (1-Safe) Petri Nets has a right adjoint,
unfolding a net to its occurrence net;

•The forgetful functor from Occurrence Nets to Event Structures has a left
adjoint.

...... (Adjunctions compose.)

29

DISTRIBUTED GAMES

In which games and strategies are represented by event structures.

30

Structural maps of event structures - recap

A map of event structures f : E → E′ is a partial function f : E ⇀ E′ such that
for all x ∈ C(E)

fx ∈ C(E′) and e1, e2 ∈ x & f(e1) = f(e2)⇒ e1 = e2 .

Note that when f is total it restricts to a bijection x ∼= fx, for any x ∈ C(E).
A total map is rigid when it preserves causal dependency.

Maps preserve concurrency, and locally reflect causal dependency:

e1, e2 ∈ x & f(e1) ≤ f(e2) (both defined) ⇒ e1 ≤ e2 .

31

Pullbacks of total maps of event structures (For composition)
Total maps f : A → C and g : B → C have pullbacks in the category of event
structures:

P
π1

}}

π2

!!

A

f
!!

B

g}}

C .

Finite configurations of P correspond to the composite bijections

θ : x ∼= fx = gy ∼= y

between configurations x ∈ C(A) and y ∈ C(B) s.t. fx = gy for which the
transitive relation generated on θ by (a, b) ≤ (a′, b′) if a ≤A a′ or b ≤B b′
is a partial order.

32

Defined part of a map (For hiding)

A partial map
f : E → E′

of event structures has partial-total factorization as a composition

E
p−→E ↓V t−→E′

where V =def {e ∈ E | f(e) is defined} is the domain of definition of f ;

the projection E↓V =def (V,≤V ,ConV), where

v ≤V v′ iff v ≤ v′ & v, v′ ∈ V and X ∈ ConV iff X ∈ Con & X ⊆ V ;

the partial map p : E → E ↓V acts as identity on V and is undefined otherwise;

and the total map t : E ↓V → E′, called the defined part of f , acts as f .

33

Distributed games

Games and strategies are represented by event structures with polarity, an event
structure (E,≤,Con) where events E carry a polarity +/− (Player/Opponent),
respected by maps.

(Simple) Parallel composition: A‖B , by juxtaposition.

Dual, B⊥, of an event structure with polarity B is a copy of the event structure
B with a reversal of polarities; this switches the roles of Player and Opponent.

34

Distributed plays and strategies

A pre-strategy, or nondeterministic play, in a game A is a total map

S

σ
��

A
preserving polarity; S is the event structure with polarity describing the moves
played according to the pre-strategy.

A strategy in a game A is a (special) pre-strategy σ : S → A .

A pre-strategy from A to B is a pre-strategy in A⊥ ‖ B, so σ : S → A⊥ ‖ B .
[Conway, Joyal]

NB: A pre-strategy in a game A is a pre-strategy for Player;
a pre-strategy for Opponent - a counter-pre-strategy - is a pre-strategy in A⊥.

35

A strategy - an example

S ⊕ ⊕

	
_LLR

	
_LLR

configurations of S = “states of play”

σ

��

A ⊕

	 	

configurations of A = “positions of the game”

The strategy: answer either move of Opponent by the Player move.

36

When are two pre-strategies the same?

A map between pre-strategies:

S

σ ��

f
// S′

σ′
��

A

which commutes.

When f is an isomorphism we regard the two pre-strategies as essentially the
same.

37

Example of a strategy: copy-cat strategy from A to A

CCA

A⊥ A

a2 	 � ,,2 ⊕ a2

a1 ⊕

_LLR

	

_LLR

�llr a1

38

Copy-cat in general

Identities on games A are given by copy-cat strategies γA : CCA → A⊥ ‖ A
—strategies for player based on copying the latest moves made by opponent.

CCA has the same events and polarity as A⊥ ‖ A but with causal dependency
≤CCA given as the transitive closure of the relation

≤A⊥‖A ∪ {(c, c) | c ∈ A⊥ ‖ A & polA⊥‖A(c) = +}

where c↔ c is the natural correspondence between A⊥ and A. A finite subset is
consistent iff its down-closure is consistent in A⊥‖A. The map γA is the identity
on the common underlying set of events. Then,

x ∈ C(CCA) iff x ∈ C(A⊥ ‖ A) & ∀c ∈ x. polA⊥‖A(c) = + ⇒ c ∈ x .

39

Composition of pre-strategies σ : S → A⊥‖B, τ : T → B⊥‖C
Via pullback. Ignoring polarities, the composite partial map

T ~ S
Π1

yy

Π2

%%

S‖C

σ‖C %%

A‖T

A‖τyy

A‖B‖C

��

A‖C

has defined part, yielding T�S
τ�σ

// A⊥‖C once reinstate polarities.

40

For copy-cat to be identity w.r.t. composition
Receptivity σ : S → A⊥ ‖ B is receptive when σ(x) ⊆− y implies there is a

unique x′ ∈ C(S) such that x ⊆ x′ & σ(x′) = y . x ⊆
_

��

x′
_

��

σ(x) ⊆− y

Innocence (a.k.a. Courtesy) σ : S → A⊥ ‖ B is innocent when it is

+-Innocent: If s _ s′ & pol(s) = + then σ(s) _ σ(s′) and

−-Innocent: If s _ s′ & pol(s ′) = − then σ(s) _ σ(s′).

[_ stands for immediate causal dependency]

Theorem Receptivity and innocence are necessary and sufficient for copy-cat to
act as identity w.r.t. composition: σ�γA ∼= σ and γB�σ ∼= σ for all σ : A + // B.

41

Strategies—alternative description

A strategy S in a game A comprises a total map of event structures with
polarityσ : S → A such that
(i) whenever σx ⊆− y in C(A) there is a unique x′ ∈ C(S) so that

x ⊆ x′ & σx′ = y , i.e. x
_

σ
��

⊆ x′
_

σ
��

σx ⊆− y ,

and
(ii) whenever y ⊆+ σx in C(A) there is a (necessarily unique) x′ ∈ C(S) so that

x′ ⊆ x & σx′ = y , i.e. x′
_

σ
��

⊆ x
_

σ
��

y ⊆+ σx .

42

A bicategory of games
Objects are event structures with polarity—the games, A, B, ... ;
Arrows σ : A + // B are strategies σ : S → A⊥‖B ;

2-Cells A
+

σ′

77

+
σ

''

⇓ f B are maps f : S → S′ such that S

σ

=

""

f
// S′.

σ′��

A⊥‖B
The vertical composition of 2-cells is the usual composition of maps. Horizontal
composition is given by � (which extends to a functor via the universality of pb
and partial-total factorisation).
Duality: σ : A + // B corresponds to σ⊥ : B⊥ + // A⊥, as A⊥‖B ∼= (B⊥)⊥‖A⊥.
The bicategory of strategies is compact-closed (so has a trace, a feedback
operation extending that of nondeterministic dataflow)—though with extra
features of winning conditions or pay-off, this will weaken to ∗-autonomy.

43

DETERMINISTIC STRATEGIES

44

Deterministic strategies

Say an event structures with polarityS is deterministic iff

∀X ⊆fin S. [X]− ∈ ConS ⇒ X ∈ ConS ,

where [X]− =def {s′ ∈ S | ∃s ∈ X. polS(s ′) = − & s ′ ≤ s}.
Say a strategy σ : S → A is deterministic if S is deterministic.

Proposition An event structure with polarityS is deterministic iff

x
s
−−⊂ & x

s′

−−⊂ & polS(s) = + implies x ∪ {s, s′} ∈ C(S), for all x ∈ C(S).

Notation x
e
−−⊂y iff x ∪ {e} = y & e /∈ x , for configurations x, y, event e.

x
e
−−⊂ iff ∃y. x

e
−−⊂y.

45

Nondeterministic copy-cats

Take A to consist of two events, one +ve and one −ve event, inconsistent with
each other ⊕ 	 . The construction CCA:

A⊥ 	 � ,,2 ⊕ A

⊕ 	�llr

To see CCA is not deterministic, take x to be the singleton set consisting e.g. of
the −ve event on the left and s, s′ to be the +ve and −ve events on the right.

46

Lemma Let A be an event structure with polarity. The copy-cat strategy γA is
deterministic iff A satisfies

∀x ∈ C(A). x
a
−−⊂ & x

a′

−−⊂ & polA(a) = + & polA(a ′) = −
⇒ x ∪ {a, a′} ∈ C(A) . (Race-free)

Lemma The composition τ�σ of two deterministic strategies σ and τ is
deterministic.

Lemma A deterministic strategy σ : S → A is injective on configurations
(so, σ : S � A).

; sub-bicategory of race-free games and deterministic strategies, equivalent to
an order-enriched category.

47

Theorem A subfamily F ⊆ C(A) has the form σC(S) for a deterministic strategy
σ : S → A, iff

reachability: ∅ ∈ F and if x ∈ F , ∅
a1
−−⊂x1

a2
−−⊂ · · ·

ak
−−⊂xk = x within F ;

determinacy: If x
a
−−⊂ and x

a′

−−⊂ in F with polA(a) = +, then x∪ {a, a′} ∈ F ;

receptivity: If x ∈ F and x
a
−−⊂ in C(A) and polA(a) = −, then x ∪ {a} ∈ F ;

+-innocence: If x
a
−−⊂x1

a′

−−⊂ & polA(a) = + in F & x
a′

−−⊂ in C(A), then

x
a′

−−⊂ in F (receptivity implies −-innocence);

1-stable: If x1

a
−−⊂x and x2

b
−−⊂x in F , then x1 ∩ x2 ∈ F .

48

Example: a tree-like game

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

	

`` OOOO

	

OO >>

	 	

>>OO

⊕

`` OO

⊕

OO >>

	

`` >>

conflict (inconsistency) // immediate causal dependency

⊕ Player move 	 Opponent move

49

Special cases

50

Stable spans, profunctors and stable functions The sub-bicategory of Games
where the events of games are purely +ve is equivalent to the bicategory of stable
spans: a strategy σ : S → A⊥‖B corresponds to

S+
σ−1

~~

σ+
2

!!

A B ,

where S+ is the projection of S to its +ve events; σ+
2 is the restriction of σ2 to

S+ is rigid; σ−2 is a demand map taking x ∈ C(S+) to σ−1 (x) = σ1[x].

Composition of stable spans coincides with composition of their associated
profunctors. The feedback operation of nondeterministic dataflow is obtained as
a special case of the trace on concurrent games.

When deterministic (and event structures are countable) we obtain a sub-
bicategory equivalent to Berry’s dI-domains and stable functions.

51

Ingenuous strategies Deterministic concurrent strategies coincide with the
receptive ingenuous strategies of and Melliès and Mimram.

Closure operators A deterministic strategy σ : S → A determines a closure
operator ϕ on C∞(S): for x ∈ C∞(S),

ϕ(x) = x ∪ {s ∈ S | pol(s) = + & [s]− ⊆ x} .

The closure operator ϕ on C∞(S) induces a partial closure operator ϕp on C∞(A)
and in turn a closure operator ϕ>p on C∞(A)> of Abramsky and Melliès.

Simple games “Simple games” of game semantics arise when we restrict Games
to objects and deterministic strategies which are ‘tree-like’—alternating polarities,
with conflicting branches, beginning with opponent moves.

Conway games tree-like, but where only strategies need alternate and begin with
opponent moves.

52

Winning strategies in a game with winning conditions
A game with winning conditions: a game A with W ⊆ C∞(A)

Let σ : S → A a strategy. Informally,

σ is winning iff against a counter-strategy, the resulting plays give a win for
Player.

I.e., for any strategy, τ : T → A⊥, the composition before hiding

T ~ S

{{

τ~σ

��

##

S

σ ##

T

τ{{

A

results in 〈σ, τ〉 = {(τ ~ σ)z | z maxl in C∞(T ~ S)} ⊆W.

Lemma σ : S → A is winning iff σx ∈W , for all +-maximal x ∈ C∞(S).

53

Operations on games with winning conditions

Dual (A,W)⊥ = (A⊥, C∞(A) \W). To win is to not win in (A,W).

Simple parallel composition (A,WA)‖(B,WB) = (A‖B,WA‖B), where

WA‖B = WA‖C∞(B) ∪ C∞(A)‖WB .

To win is to win in one game or the other.

A winning strategy from (A,WA) to (B,WB) is a winning strategy in
(A,WA)⊥‖(B,WB); where win if a win in A implies a win in B.

Lemma The composition of winning strategies is winning.

; a bicategory winning strategies.

54

From strategies to probabilistic strategies

S

σ
��

A

Idea:

(1) Endow S with conditional probability (via valuation on configurations), while

(2) taking account of the fact that in a strategy Player can’t be aware of the
probabilities assigned by Opponent. (E.g. in ‘Matching pennies’)

Causal independence between Player and Opponent moves will entail their
probabilistic independence. Equivalently, probabilistic dependence of Player
on Opponent moves will presuppose their causal dependence, cf. Judea Pearl.

55

Concurrent strategies at the crossroads

Extend to winning conditions or payoff, imperfect information, probabilistic,
quantum strategies, parallel causes. “Structural Game Theory.” Determinacy.

But the strategies are linear, so disallow backtracking. One reason to introduce
symmetry in games and strategies. Then can support (co)monads up to
symmetry for copying, to break linearity. There are relations with homotopy.

A semantics of classical proofs as strategies; dependency between existential
witnesses and universally quantified variables is revealed as causal dependency of
Player on Opponent moves. ; A compositional proof of Herbrand’s theorem.

Strategies as concurrent processes: A language and structural operational
semantics for strategies. Subtle differences with the traditional process calculi.

Programs as strategies ...

56

