
Event Structures, Stable Families and

Games

Glynn Winskel
gw104@cl.cam.ac.uk

ENS Lyon, October 2017

2

Chapter 1

Event structures

Event structures are a fundamental model of concurrent computation and, along
with their extension to stable families, provide a mathematical foundation for
the course.

1.1 Event structures

Event structures are a model of computational processes. They represent a
process, or system, as a set of event occurrences with relations to express how
events causally depend on others, or exclude other events from occurring. In
one of their simpler forms they consist of a set of events on which there is
a consistency relation expressing when events can occur together in a history
and a partial order of causal dependency—writing e′ ≤ e if the occurrence of e
depends on the previous occurrence of e′.

An event structure comprises (E,≤,Con), consisting of a set E, of events
which are partially ordered by ≤, the causal dependency relation, and a nonempty
consistency relation Con consisting of finite subsets of E, which satisfy

{e′ ∣ e′ ≤ e} is finite for all e ∈ E,
{e} ∈ Con for all e ∈ E,
Y ⊆X ∈ Con Ô⇒ Y ∈ Con, and

X ∈ Con & e ≤ e′ ∈X Ô⇒ X ∪ {e} ∈ Con.

The events are to be thought of as event occurrences without significant dura-
tion; in any history an event is to appear at most once. We say that events e,
e′ are concurrent, and write e co e′ if {e, e′} ∈ Con & e /≤ e′ & e′ /≤ e. Concurrent
events can occur together, independently of each other. The relation of imme-
diate dependency e _ e′ means e and e′ are distinct with e ≤ e′ and no event in
between. Clearly ≤ is the reflexive transitive closure of _.

An event structure represents a process. A configuration is the set of all
events which may have occurred by some stage, or history, in the evolution of

3

4 CHAPTER 1. EVENT STRUCTURES

the process. According to our understanding of the consistency relation and
causal dependency relations a configuration should be consistent and such that
if an event appears in a configuration then so do all the events on which it
causally depends.

The configurations of an event structure E consist of those subsets x ⊆ E
which are

Consistent: ∀X ⊆ x. X is finite⇒X ∈ Con, and

Down-closed: ∀e, e′. e′ ≤ e ∈ x Ô⇒ e′ ∈ x.

We shall largely work with finite configurations, written C(E). Write C∞(E)
for the set of finite and infinite configurations of the event structure E.

The configurations of an event structure are ordered by inclusion, where
x ⊆ x′, i.e. x is a sub-configuration of x′, means that x is a sub-history of x′.
Note that an individual configuration inherits an order of causal dependency on
its events from the event structure so that the history of a process is captured
through a partial order of events. The finite configurations correspond to those
events which have occurred by some finite stage in the evolution of the process,
and so describe the possible (finite) states of the process.

For X ⊆ E we write [X] for {e ∈ E ∣ ∃e′ ∈X. e ≤ e′}, the down-closure of X.
The axioms on the consistency relation ensure that the down-closure of any finite
set in the consistency relation s a finite configuration, and that any event appears
in a configuration: given X ∈ Con its down-closure {e′ ∈ E ∣ ∃e ∈X. e′ ≤ e} is a
finite configuration; in particular, for an event e, the set [e] =def {e′ ∈ E ∣ e′ ≤ e}
is a configuration describing the whole causal history of the event e. We shall
sometimes write [e) =def {e′ ∈ E ∣ e′ < e}.

When the consistency relation is determined by the pairwise consistency of
events we can replace it by a binary relation or, as is more usual, by a comple-
mentary binary conflict relation on events (written as # or ⌣).

Remark on the use of “cause.” In an event structure (E,≤,Con) the rela-
tion e′ ≤ e means that the occurrence of e depends on the previous occurrence
of the event e′; if the event e has occurred then the event e′ must have occurred
previously. In informal speech cause is also used in the forward-lookciaing sense
of one thing arising because of another. Often when used in this way the history
of events is understood beforehand. According to the history around my life,
the meeting of my parents caused my birth. But the history might have been
very different: in an alternative world the meeting of my parents might not
have led to my birth. More formally, w.r.t. a configuration x in which an event
e occurs while it seems sensible to talk about the events [e) causing e, it is so
only by virtue of the understood configuration x.

We also encounter events which in a history may have been caused in more
than one way. There are generalisations of the current event structures which
do this, and support “disjunctive causes.” We will work with the simple def-
inition above in which an event, or really an event occurrence, e is causally

1.2. MAPS OF EVENT STRUCTURES 5

dependent on a unique set of events [e). Much of the mathematics we develop
around these simpler forms of event structures (sometimes called prime event
structures in the literature) is reusable when it comes to considering events with
several causes. Roughly the simpler event structures will suffice in considering
nondeterministic strategies. Where their limitations first show up is in a treat-
ment of probabilistic strategies; even there closely related structures come into
play.

1.2 Maps of event structures

Let E and E′ be event structures. A (partial) map of event structures f ∶ E → E′

is a partial function on events f ∶ E ⇀ E′ such that for all x ∈ C(E) its direct
image fx ∈ C(E′) and

if e1, e2 ∈ x and f(e1) = f(e2) (with both defined), then e1 = e2.

The map expresses how the occurrence of an event e in E induces the coincident
occurrence of the event f(e) in E′ whenever it is defined. The map f respects
the instantaneous nature of events: two distinct event occurrences which are
consistent with each other cannot both coincide with the occurrence of a com-
mon event in the image. Partial maps of event structures compose as partial
functions, with identity maps given by identity functions.

We will say the map is total if the function f is total. Notice that for a total
map f the condition on maps now says it is locally injective, in the sense that
w.r.t. any configuration x of the domain the restriction of f to a function from x
is injective; the restriction of f to a function from x to fx is thus bijective. Say
a total map of event structures is rigid when it preserves causal dependency.

Maps preserve the concurrency relation, when defined.

1.2.1 Partial-total factorisation

Let (E,≤,Con) be an event structure. Let V ⊆ E be a subset of ‘visible’ events.
Define the projection of E on V , to be E↓V =def (V,≤V ,ConV), where v ≤V
v′ iff v ≤ v′ & v, v′ ∈ V and X ∈ ConV iff X ∈ Con & X ⊆ V .

Consider a partial map of event structures f ∶ E → E′. Let

V =def {e ∈ E ∣ f(e) is defined} .

Then f clearly factors into the composition

E
f0 // E↓V f1 // E′

of f0, a partial map of event structures taking e ∈ E to itself if e ∈ V and
undefined otherwise, and f1, a total map of event structures acting like f on V .
We call f1 the defined part of the partial map f . We say a map f ∶ E → E′ is a
projection if its defined part is an isomorphism.

6 CHAPTER 1. EVENT STRUCTURES

The factorisation is characterised to within isomorphism by the following
universal characterisation: for any factorisation

E
g0 // E1

g1 // E′

where g0 is partial and g1 is total there is a (necessarily total) unique map
h ∶ E↓V → E1 such that

E
f0 //

g0 !!

E↓V

h

��

f1 // E′

E1

g1

==

commutes.

1.3 Products of event structures

The category of event structures has products, which essentially allow arbitrary
synchronizations between their components. For example, here is an illustration
of the product of two event structures a _ b and c, the later comprising just a
single event named c:

b (b,∗) (b,∗) (b, c)

× =

a

_LLR

c (a,∗)

_LLR 6 66@

(a, c)

_LLR

(∗, c)

The original event b has split into three events, one a synchronization with c,
another b occurring unsynchronized after an unsynchronized a, and the third b
occurring unsynchronized after a synchronizes with c. The splittings correspond
to the different histories of the event.

It can be awkward to describe operations such as products, pullbacks and
synchronized parallel compositions directly on the simple event structures here,
essentially because an event determines its whole causal history. One closely
related and more versatile, though perhaps less intuitive and familiar, model is
that of stable families. Stable families will play an important technical role in
establishing and reasoning about constructions on event structures.

Chapter 2

Stable families

Stable families support a form of disjunctive causes in which an event may be
enabled in several different but incompatible ways. Stable families, their basic
properties and relations to event structures are developed.1

2.1 Stable families

The notion of stable family extends that of finite configurations of an event
structure to allow an event can occur in several incompatible ways.

Notation 2.1. Let F be a family of subsets. Let X ⊆ F . We write X ↑ for
∃y ∈ F . ∀x ∈ X.x ⊆ y and say X is compatible. When x, y ∈ F we write x ↑ y
for {x, y} ↑.

A stable family comprises F , a nonempty family of finite subsets, satisfying:
Completeness: ∀Z ⊆ F . Z ↑ Ô⇒ ⋃Z ∈ F ;
Stability: ∀Z ⊆ F . Z /= ∅ & Z ↑ Ô⇒ ⋂Z ∈ F ;
Coincidence-freeness: For all x ∈ F , e, e′ ∈ x with e /= e′,

∃y ∈ F . y ⊆ x & (e ∈ y ⇐⇒ e′ ∉ y) .

We call the elements of ⋃F of a stable family F its events.
An alternative characterisation of stable families:

Proposition 2.2. A stable family comprises F , a family of finite subsets, sat-
isfying:
Completeness: ∅ ∈ F & ∀x, y ∈ F . x ↑ y Ô⇒ x ∪ y ∈ F ;

Stability: ∀x, y ∈ F . x ↑ y Ô⇒ x ∩ y ∈ F ;
Coincidence-freeness: For all x ∈ F , e, e′ ∈ x with e /= e′,

∃y ∈ F . y ⊆ x & (e ∈ y ⇐⇒ e′ ∉ y) .
1A useful reference for stable families is the report “Event structure semantics for

CCS and related languages,” a full version of the ICALP’82 article, available from
www.cl.cam.ac.uk/∼gw104, though its terminology can differ from that here.

7

8 CHAPTER 2. STABLE FAMILIES

Proof. Simple inductions show that the reformulations of “Completeness” and
“Stability” are equivalent to their original formulations.

Proposition 2.3. The family of finite configurations of an event structure
forms a stable family.

On the other hand stable families are more general than finite configurations
of an event structure, as the following example shows.

Example 2.4. Let F be the stable family, with events E = {0,1,2},

{0,2} {0,1} {1,2}

{0}
⊂ ⊂

{1}

⊂⊂

∅
⊂⊂

or equivalently

{0,2} {0,1} {1,2}

{0}

?� -

{1}

?�Q1

∅

, �R2

where −Ð⊂ is the covering relation representing an occurrence of one event.
The events 0 and 1 are concurrent, neither depends on the occurrence or non-
occurrence of the other to occur. The event 2 can occur in two incompatible
ways, either through event 0 having occurred or event 1 having occurred. This
possibility can make stable families more flexible to work with than event struc-
tures.

A (partial) map of stable families f ∶ F → G is a partial function f from the
events of F to the events of G such that for all x ∈ F ,

fx ∈ G & (∀e1, e2 ∈ x. f(e1) = f(e2) Ô⇒ e1 = e2) .

Maps of stable families compose as partial functions, with identity maps given
by identity functions. We call a map f ∶ F → G of stable families total when it
is total as a function; the f restricts to a bijection x ≅ fx for all x ∈ F .

Definition 2.5. Let F be a stable family. We use x−⊂y to mean y covers x in

F , i.e. x ⊂ y in F with nothing in between, and x
e−Ð⊂ y to mean x ∪ {e} = y

for x, y ∈ F and event e ∉ x. We sometimes use x
e−Ð⊂ , expressing that event e is

enabled at configuration x, when x
e−Ð⊂ y for some y.

2.2. STABLE FAMILIES AND EVENT STRUCTURES 9

2.2 Stable families and event structures

Finite configurations of an event structure form a stable family. Conversely, a
stable family determines an event structure:

Proposition 2.6. Let x be a configuration of a stable family F . For e, e′ ∈ x
define

e′ ≤x e iff ∀y ∈ F . y ⊆ x & e ∈ y Ô⇒ e′ ∈ y.
When e ∈ x define the prime configuration

[e]x = ⋂{y ∈ F ∣ y ⊆ x & e ∈ y} .

Then ≤x is a partial order and [e]x is a configuration such that

[e]x = {e′ ∈ x ∣ e′ ≤x e}.

Moreover the configurations y ⊆ x are exactly the down-closed subsets of ≤x.

Lemma 2.7. Let F be a stable family. Then,

[e]x ⊆ z ⇐⇒ [e]x = [e]z

whenever e ∈ x and z in F .

Proof. “⇒” From e ∈ [e]x ⊆ z we get [e]z ⊆ [e]x. Hence e ∈ [e]z ⊆ x ensuring
the converse inclusion [e]x ⊆ [e]z, so [e]x = [e]z. “⇐” Trivial.

Proposition 2.8. Let F be a stable family. Then, Pr(F) =def (P,Con,≤) is an
event structure where:

P = {[e]x ∣ e ∈ x & x ∈ F} ,
Z ∈ Con iff Z ⊆ P & ⋃Z ∈ F and,

p ≤ p′ iff p, p′ ∈ P & p ⊆ p′ .

There is an order isomorphism

θ ∶ (C(Pr(F)),⊆) ≅ (F ,⊆)

where θ(y) = ⋃ y for y ∈ C(Pr(F)); its mutual inverse is φ where φ(x) =
{[e]x ∣ e ∈ x} for x ∈ F .

Proof. It is easy to check that Pr(F) is an event structure. Clearly, both θ and
φ preserve ⊆.

Firstly, θφ(x) = ⋃{[e]x ∣ e ∈ x} = x, for all x ∈ F , by an obvious argument.
Secondly, φθ(y) = {[e]⋃y ∣ e ∈ ⋃ y}, for y ∈ C(Pr(F)). To show rhs = y we

use Lemma 2.7 repeatedly:

[e]x ⊆ z ⇐⇒ [e]x = [e]z ,

10 CHAPTER 2. STABLE FAMILIES

whenever e ∈ x and z in F .
From e ∈ [e]x ⊆ z we get [e]z ⊆ [e]x. Hence e ∈ [e]z ⊆ x ensuring the converse
inclusion [e]x ⊆ [e]z, so [e]x = [e]z.
“y ⊆ rhs”: [e]x ∈ y⇒ [e]x ⊆ ⋃ y⇒ [e]x = [e]⋃y ∈ rhs.
“rhs ⊆ y: Assume p ∈ rhs. Then p = [e]⋃y with e ∈ ⋃ y. We have e ∈ [e′]x ∈ y
for some e′, x with e′ ∈ x. So [e]x ⊆ [e′]x ∈ y ensuring [e]x ∈ y. As [e]x ⊆ ⋃ y we
obtain p = [e]⋃y = [e]x, so p ∈ y.

Remark. The above proposition ensures that the partial orders comprising
stable families ordered by inclusion and the orders of configurations of event
structures are the same to within isomorphism; both coincide with the orders of
finite elements of “prime algebraic domains” in which every finite, or isolated,
element dominates only finitely many elements.

The operation Pr is right adjoint to the “inclusion” functor, taking an event
structure E to the stable family C(E). The unit of the adjunction at an event
structure E is a map E → Pr(C(E)) which takes an event e to the prime
configuration [e] =def {e′ ∈ E ∣ e′ ≤ e}. The counit at a stable family F is a
map topF ∶ C(Pr(F)) → F which takes a prime configuration [e]x to e; this is
well-defined as a function by coincidence-freeness (see the proof of Theorem 2.9.

Theorem 2.9. There is a map topF ∶ Pr(F) → F given by topF([e]x) = e for
e ∈ x ∈ F . In fact, Pr(F), topF is cofree over F i.e. for any map g ∶ C(E′) → F
of stable families with E′ a prime event structure, there is a unique map f ∶
E′ → Pr(F) such that g = topF f .

Proof. By Proposition 2.8, Pr(F) is a prime event structure. We require that
topF ∶ C(Pr(F)) → F above is a map. Firstly we need top is well-defined as
a function top ∶ P → E where P = {[e]x ∣ e ∈ x ∈ F}. Suppose [e]x = [e′]y
for e ∈ x and x ∈ F and e′ ∈ y and y ∈ F . Then by the coincidence-freeness
of F we have e = e′, giving top well-defined as a (total) function. From the
definition, if z is a configuration of Pr(F) then z = {[e]x ∣ e ∈ x} for some x ∈ F ;
thus top(z) = ⋃ z = x ∈ F . Let z be a configuration of Pr(F) so p, p′ ∈ z and
top(p) = top(p′) = e say. Then p = p′ = [e]⋃ z. Thus top is a map of stable
families.

We show Pr(F), topF is cofree over F . Let g ∶ C(E′) → F be a map of stable
families where E′ is a prime event structure E′ = (E′,Con′,≤′). We require a
unique map f ∶ E′ → Pr(F) s.t. the following diagram commutes:

F C(Pr(F))topoo

C(E′)
g

cc

f

OO

Define f ∶ E′ → P by

f(e′) = { [g(e′)]g[e′] if g(e′) is defined,
undefined otherwise.

2.2. STABLE FAMILIES AND EVENT STRUCTURES 11

Above [e′] is the downwards closure of e′ in E′. Let x ∈ C(E′). Then

fx = {[g(e′)]g[e′] ∣ e′ ∈ x & g(e′) is defined}
= {[e]gx ∣ e ∈ gx}

where we have observed that [g(e′)]g[e′] ⊆ gx when e′ ∈ x, so [g(e′)]g[e′] =
[g(e′)]gx. Hence fx is a configuration of Pr(F). If e, e′ ∈ x and f(e) = f(e′)
(both defined) then g(e) = g(e′) (both defined) so e = e′, as g is a map. Thus f
is a map. Clearly topf = g so f makes the diagram commute.

Let f ′ ∶ E′ → Pr(F) be a map such that the diagram commutes i.e. topf = g .
We require f ′ = f . Let e′ ∈ E′. Firstly note if g(e′) is defined then because top is
a total function we must have f ′(e) defined which agrees with f . So suppose that
g(e) defined. Then f ′(e) is a prime configuration of F s.t. top(f ′(e)) = g(e).
Now top is just union so using the assumed commutation we get

f ′(e) ⊆ ⋃ f ′[e] = topf ′[e] = g[e]

As f ′(e) is a prime configuration in g[e] and top(f ′(e)) = g(e) we have f ′(e) =
[g(e)]g[e], i.e. f ′(e) = f(e).

Consequently f is the unique map making the diagram commute.

Theorem 2.9 gives a bijection between maps maps g ∶ C(E) → F of stable
families and maps f ∶ E → Pr(F) of event structures where E is an event
structure and F is a stable family. The bijection is natural in E. As is well-
known there is a unique extension of Pr to a functor so that the bijection is also
natural in F . Once extended in this way we obtain the natural bijection of an
adjunction.

Corollary 2.10. The functor C() from the category of event structures to the
category of stable families has a right adjoint the functor which acts as Pr on
stable families and as follows on a map f ∶ A → B of stable families: the map
Pr(f) ∶ Pr(A) → Pr(B) takes [a]x, an event of Pr(A), where a ∈ x ∈ A, to the
event [f(a)]fxof Pr(B) if f(a) is defined, and to undefined otherwise.

The unit of the adjunction at an event structure E is the isomorphism E ≅
Pr(C(E)) taking e to [e]. The counit at a stable family F is given by topF ∶
C(Pr(F)) → F .

Proof. Let f ∶ A → B be a map of stable families. We must first be sure that
Pr(f) is well-defined as a partial function. Suppose [a]x = [a′]y for a ∈ x ∈ A
and b ∈ y ∈ B. We require Pr(f)([a]x) = Pr(f)([a′]y) when either is defined.
Firstly, a = a′ by the coincidence-freeness of A. Suppose f(a) is defined. Then,

[f(a)]fx ⊆ f[a]x = f[a]y ⊆ fy .

Hence by Lemma 2.7, [f(a)]fx = [f(a)]fy, i.e. Pr(f)([a]x) = Pr(f)([a′]y).
We should check that Pr(f) is a map of event structures. By Proposition 2.8,

a configuration y of Pr(A) has the form {[a]x ∣ a ∈ x} for some x ∈ A. Under
Pr(f) it is sent to

{[f(a)]fx ∣ a ∈ x & f(a) is defined} = {[b]fx ∣ b ∈ fx} ,

12 CHAPTER 2. STABLE FAMILIES

a configuration of Pr(B). Moreover, if [a]x, [a′]x′ ∈ y and Pr(f)([a]x) = Pr(f)([a′]x′),
then [f(a)]fx = [f(a′)]fx′ . But now f(a) = f(a′) as B is coincidence-free and
a, a′ ∈ ⋃ y ∈ A which implies a = a′. As [a]x, [a]x′ ⊆ ⋃ y from Lemma 2.7 we
deduce [a]x = [a]⋃y = [a]x′ , as required.

The map Pr(f) clearly makes the diagram

B C(Pr(B))topBoo

A

f

OO

C(Pr(A))topAoo

Pr(f)

OO

commute Hence, Pr(f) gives the unique extension of Pr to a functor which
makes the bijection (between maps g ∶ C(E) → F of stable families and maps f ∶
E → Pr(F) of event structures) given by the cofreeness property of Theorem 2.9
natural, so forming an adjunction.

It is easily checked that the putative unit and counit maps do indeed corre-
spond to the identities on C(E) and Pr(F), respectively, as required for their
to be unit and counit.

Remark. The fact that the unit is an isomorphism and the fact that the left
adjoint is full and faithful are in fact equivalent and say that the adjunction is in
a coreflection. Later it will play a role in obtaining products of event structures
from those of stable families.

2.3 Process constructions

2.3.1 Products

Let A and B be stable families with events A and B, respectively. Their
product, the stable family A × B, has events comprising pairs in A ×∗ B =def

{(a,∗) ∣ a ∈ A} ∪ {(a, b) ∣ a ∈ A & b ∈ B} ∪ {(∗, b) ∣ b ∈ B}, the product of sets
with partial functions, with (partial) projections π1 and π2—treating ∗ as
‘undefined’—with configurations

x ∈ A × B iff

x is a finite subset of A ×∗ B such that

(a) π1x ∈ A & π2x ∈ B,
(b) ∀e, e′ ∈ x. π1(e) = π1(e′) or π2(e) = π2(e′) ⇒ e = e′ ,&
(c) ∀e, e′ ∈ x. e /= e′ ⇒ ∃y ⊆ x. π1y ∈ A & π2y ∈ B & (e ∈ y ⇐⇒ e′ ∉ y) .

Note how (a) and (b) express that the projections are maps while (c) says
the structure A×B is coincidence-free.

In checking that A×B, π1, π2 is a product in the category of stable families
we shall use the following lemma showing that the direct image under a partial
function preserves intersections when the function is locally injective.

2.3. PROCESS CONSTRUCTIONS 13

Lemma 2.11. Let θ ∶ E0 ⇀ E1 be a partial function between sets E0 and E1.
Let X ⊆ P(E0). Then if

∀e, e′ ∈ ⋃X . θ(e) = θ(e′) Ô⇒ e = e′

then θ⋂X = ⋂ θX.

Proof. Suppose θ(e) = θ(e′) (both defined) implies e = e′ for every e, e′ ∈ ⋃x.
Clearly θ is monotonic w.r.t. ⊆ so θ⋂X ⊆ ⋂ θX. Take e ∈ ⋂ θX and x ∈ X.
For some e′ ∈ x we have θ(e′) = e. Take y ∈ X. Then for some ey ∈ y we have
θ(ey) = e. However ey, e ∈ ⋃X and θ(ey) = θ(e′). Thus by hypothesis ey = e′.
Therefore e′ ∈ ⋂X so e ∈ θ⋂X. This establishes the converse inclusion; so
θ⋂X = ⋂ θX, as required.

Theorem 2.12. For stable families A and B the construction A×B with projec-
tions π1 and π2 described above is the product in the category of stable families.

Proof. Suppose x ⊆ A × B and e, e′ ∈ x. We shall say “y is a separating set for
e, e′ in x” when y ⊆ x and π1(y) ∈ A and π2(y) ∈ B and e ∈ y ⇐⇒ e′ ∉ y.

We first check F =def A×B is a stable family.
Complete. Suppose X ⊆ F and X ↑. We require ⋃X satisfies (a)-(c) in the
definition of product.

(a) Clearly πi⋃X = ⋃πiX. As X is compatible in F so are π1X in A and
π2X ∈ B. Thus π1(⋃X) ∈ A and π2(⋃X) ∈ B.

(b) By the compatibility of X, if e, e′ ∈ ⋃X and πi(e) = πi(e′), both being
defined, for i = 1 or 2, then e = e′.

(c) Suppose e, e′ ∈ ⋃X and e ≠ e′. Then ∃x, y ∈ X . e ∈ x & e′ ∈ y. If either
e ∉ y or e′ ∉ x we have respectively either y or x is a separating set for e, e′

in ⋃X. Otherwise e, e′ ∈ x or e, e′ ∈ y. Then as both x and y satisfy (c)
we obtain the required separating set.

Stable. Suppose ∅ ≠X ⊆ F and X ↑. We require X satisfies (a)-(c).

(a) By lemma 2.11, πi⋂X = ⋂πiX. But ⋂π1X ∈ A, as π1X is a compatible
set in A, and similarly ⋂π2X ∈ B, so we have π1(⋂X) ∈ A and π2(⋂X) ∈
B.

(b) As any x ∈X satisfies (b) and ⋂X ⊆ x certainly ⋂X satisfies (b).

(c) Suppose e, e′ ∈ ⋂X and e ≠ e′. Choose x ∈ X. Because x ∈ F there is a
separating set y for e, e′ in x. Take v = y ∩ ⋂X. Clearly y,⋂X ⊆ x so
because A and B are stable, by lemma 2.11*** π1v = π1y ∩ π1⋂X) ∈ A
and π2v = π2y∩π2⋂X ∈ B. This makes v a separating set for e, e′ in ⋂X.

Coincidence-free. Suppose e, e′ ∈ x ∈ F and e ≠ e′. As x satisfies (c) there is a
separating set y for e, e′ in x. We further require y ∈ F . Clearly y satisfies (a),
(b). To Show y satisfies (c), assume ε, ε′ ∈ y and ε ≠ ε′. Take a separating set v

14 CHAPTER 2. STABLE FAMILIES

for ε, ε′ in x. Take u = v ∩ y. Then, just as in the proof of stability, part (c), we
get u is a separating set for ε, ε′ in x.

Thus we have shown A × B is a stable family. It remains to show that
with projections π1, π2 it forms the product in the category of stable families.
First note π1 and π2 are maps by (a), (b) in the construction of the product .
Suppose there are maps f1 ∶ F → A and f2 ∶ F → B are maps of stable families.
We require a unique map h such that the following diagram commutes:

A×B
π2

##

π1

||
A B

F
f2

;;

f1

bb h

OO

Take h so that

h(e) = { (f1(e), f2(e)) if f1(e) is defined or f2(e) is defined
undefined otherwise

In a pair (f1(e), f2(e)) we shall identify undefined with ∗.
Obviously πi ○ h = fi in the category of sets with partial functiosn, for i = 1,2
so provided h is a map of stable families it is unique so the diagram commutes.
To show h is a map we need:

∀x ∈ F . hx ∈ F (I)

∀x ∈ F∀e, e′ ∈ x . h(e) = h(e′) Ô⇒ e = e′ (II)

We prove (II) first:
Suppose e, e′ ∈ x ∈ F . Then if h(e) = h(e′) then fi(e) = fi(e′), both being

defined, for either i = 1 or i = 2. As each fi is a map e = e′, as required to
prove (II).

Now we prove (I). Let x ∈ F . We need hx satisfies (a)-(c) in the construction
of the product. Both (a) and (b) follow from the commutations πi ○h = fi using
the map properties of f1 and fa2. To prove (c), suppose e, e′ ∈ hx and e ≠ e′.
Then e = h(ε) and e′ = h(ε′) for some ε, ε′ ∈ x. We must have ε ≠ ε′. Thus as F
is coincidence-free we have some y ∈ F such that y ⊆ x and ε ∈ y ⇐⇒ ε′ ∉ y. As
we know h satisfies (II) above it follows that one and only one of e, e′ is in hy.
The commutations πi ○ h = fi give π1hy ∈ A and π2hy ∈ B . Thus hy separates
e, e′ in x.

Thus finally we have shown A×B with projections π1, π2 is a product in the
category of stable families.

Proposition 2.13. Let x ∈ A × B, a product of stable families with projections
π1 and π2. Then, for all y ⊆ x,

y ∈ A × B ⇐⇒ π1y ∈ A & π2y ∈ B .

2.3. PROCESS CONSTRUCTIONS 15

Proof. Straightforwardly from the definition of A×B.

Right adjoints preserve products. Hence if A×B, π1, π2 is a product of stable
families then Pr(A) × Pr(B), Pr(π1), Pr(π2) is a product of event structures.
Consequently we obtain a product of event structures A and B by first regarding
them as stable families C(A) and C(B), forming their product

C(A) × C(B), π1, π2

and then constructing the event structure

A ×B =def Pr(C(A) × C(B))

with projections the composite maps

Π1 ∶ A ×B
Pr(π1)// Pr(C(A)) ≅ A and Π2 ∶ A ×B

Pr(π2)// Pr(C(B)) ≅ B

—the isomorphisms are inverses to those of the unit of the adjunction. The
projections can be simplified:

Proposition 2.14. Let A and B be event structures.

A ×B =def Pr(C(A) × C(B))

and its projections as Π1 =def π1top ∶ A×B → A and Π2 =def π2top ∶ A×B → B.

Proof. For example,

Π1 ∶ A ×B
Pr(π1)// Pr(C(A)) ≅ A

takes an event [e]x ∈ A × B via Pr(π1) to [π1(e)]π1x if π1(e) is defined, by
Corollary 2.10, whence to π1(e) under the isomorphism, i.e. to π1○top([e]x).

2.3.2 Restriction

The restriction of F to a subset of events R is the stable family F ↾ R =def

{x ∈ F ∣ x ⊆ R} . Defining E ↾ R, the restriction of an event structure E to a
subset of events R, to have events E′ = {e ∈ E ∣ [e] ⊆ R} with causal dependency
and consistency induced by E, we obtain C(E ↾R) = C(E) ↾R .

Proposition 2.15. Let F be a stable family and R a subset of its events. Then,
Pr(F ↾R) = Pr(F)↾top−1R .

We remark that we can regard restriction as arising as an equaliser. E.g. for
an event structure E and a subset R of events, the inclusion map E ↾R ↪ E is
the equaliser of the two maps idE , the identity map on E, and r ∶ E → E, which
acts as identity on events with down-closure in R and is undefined elsewhere.

16 CHAPTER 2. STABLE FAMILIES

2.3.3 Synchronized compositions

Synchronized parallel compositions are obtained as restrictions of products to
those events which are allowed to synchronize or occur asynchronously. For
example, the synchronized composition of Milner’s CCS on stable families A and
B (with labelled events) is defined as A×B ↾R where R comprises events which
are pairs (a,∗), (∗, b) and (a, b), where in the latter case the events a of A and b
of B carry complementary labels. Similarly, synchronized compositions of event
structures A and B are obtained as restrictions A×B ↾R. By Proposition 2.15,
we can equivalently form a synchronized composition of event structures by
forming the synchronized composition of their stable families of configurations,
and then obtaining the resulting event structure—this has the advantage of
eliminating superfluous events earlier.

Products of stable families within the subcategory of total maps can be
obtained by restricting the product (w.r.t. partial maps). Construct

A×t B = A × B ↾A ×B

where we restrict to the cartesian product of the sets of events of A and B,
called A and B respectively; projection maps are obtained from the projection
functions from the cartesian product. Explicitly, assume A and B have under-
lying sets A and B and that their product A ×B has projections π1 and π2 to
the left and right components. Then, define the family of configurations of the
product of stable families with total maps to consist of

z ∈ A ×t B iff

z is a finite subset of A ×B such that π1z ∈ A & π2z ∈ B,
∀e, e′ ∈ z. π1(e) = π1(e′) or π2(e) = π2(e′) ⇒ e = e′ ,&
∀e, e′ ∈ z. e /= e′ ⇒ ∃z′ ⊆ z. π1z

′ ∈ A & π2z
′ ∈ B & (e ∈ z′ ⇐⇒ e′ ∉ z′) .

Proposition 2.16. A×tB with projections π1 and π2 is a product in the category
of stable families with total maps.

Products of stable families within the subcategory of total maps have a
particularly simple characterisation:

Proposition 2.17. Finite configurations of a product A×t B of stable families
with total maps are secured bijections θ ∶ x ≅ y between configurations x ∈ A and
y ∈ B, such that the transitive relation generated on θ by taking (a, b) ≤ (a′, b′)
if a ≤x a′ or b ≤y b′ is a partial order.

Proof. Assume θ is a secured bijection between x ∈ A and y ∈ B with generated
partial order ≤. As such θ is a subset of ordered pairs A × B. It satisfies
π1θ = x ∈ A and π2θ = y ∈ B. Suppose e, e′ ∈ θ are distinct pairs. As ≤ is a partial
order, the down-closure [e] does not contain e′, or vice versa. W.l.o.g. assume
[e] does not contain e′. Note, from the definition of ≤, that π1[e] is a ≤x-down-
closed subset of x so π1[e] ∈ A; similarly, π2[e] ∈ B. Taking z′ =def [e] we fulfil
the final condition required of z in order for it to be in A×t B.

2.3. PROCESS CONSTRUCTIONS 17

Conversely, let z ∈ A×tB. Then x =def π1z ∈ A and y =def π2z ∈ B. Moreover,
because both π1 and π2 are total and locally injective maps from z ⊆ A×B they
induce a bijection z ∶ x ≅ y. For (a, b), (a′, b′) ∈ z, write

(a, b) ≤1 (a′, b′) iff a ≤x a′ or b ≤y b′ .

For z to be a secured bijection we require that ≤=≤∗1 is a partial order.
We first show that if (a, b) ≤ (a′, b′) then

∀z′ ⊆ z. π1z
′ ∈ A & π2z

′ ∈ B & (a′, b′) ∈ z′ Ô⇒ (a, b) ∈ z′ .

It is clearly sufficient to show this for (a, b) ≤1 (a′, b′), i.e. when a ≤x a′ or
b ≤y b′. Suppose a ≤x a′ (the other case is similar) and that z′ ⊆ z with π1z

′ ∈ A,
π2z

′ ∈ B and (a′, b′) ∈ z′. As a′inπ1z
′ ⊂ x and a ≤x a′ we must also have a ∈ π1z

′.
As z is a bijection, with z′ ⊆ z this is only possible if (a, b) ∈ z′, as required.

Suppose (a, b) ≤ (a′, b′) and (a′, b′) ≤ (a, b). Then,

∀z′ ⊆ z. π1z
′ ∈ A & π2z

′ ∈ B & ((a, b) ∈ z′ ⇐⇒ (a′, b′) ∈ z′) .

For z ∈ A×tB this entails (a, b) = (a′, b′). We have shown ≤ to be anti-symmetric
so a partial order. A configuration z of the product is a secured bijection, as
required.

2.3.4 Pullbacks

The construction of pullbacks can be viewed as a special case of synchronized
composition. Once we have products of event structures pullbacks are obtained
by restricting products to the appropriate equalizing set. Pullbacks of event
structures can also be constructed via pullbacks of stable families, in a similar
manner to the way we have constructed products of event structures. We obtain
pullbacks of stable families as restrictions of products. Suppose f ∶ A → C and
g ∶ B → C are maps of stable families. Let A, B and C be the sets of events of
A, B and C, respectively. The set P =def {(a, b) ∣ f(a) = g(b)} with projections
π1, π2 to the left and right, forms the pullback, in the category of sets, of the
functions f ∶ A → C, g ∶ B → C. We obtain the pullback in stable families
of f , g as the stable family P, consisting of those subsets of P which are also
configurations of the product A×B—its associated maps are the projections π1,
π2 from the events of P. When f and g are total maps we obtain the pullback
in the subcategory of stable families with total maps.

As a corollary of Proposition 2.17 we obtain a simple characterization of
pullbacks of total maps within stable families:

Lemma 2.18. Let P, π1, π2 form a pullback of total maps f ∶ A → C and g ∶
B → C in the category of stable families. Configurations of P are precisely
those composite bijections θ ∶ x ≅ fx = gy ≅ y between configurations x ∈ A and
y ∈ B s.t. fx = gy for which the transitive relation generated on θ by taking
(a, b) ≤ (a′, b′) if a ≤x a′ or b ≤y b′ is a partial order.

18 CHAPTER 2. STABLE FAMILIES

For future reference we give the stand-alone construction of pullbacks of
total maps in stable families. Let f ∶ A → C and g ∶ B → C be total maps
of stable families. Assume A and B have underlying sets A and B. Define
D =def {(a, b) ∈ A ×B ∣ f(a) = g(b)} with projections π1 and π2 to the left and
right components. Define a family of configurations of the pullback to consist of

z ∈ D iff

z is a finite subset of D such that π1z ∈ A & π2z ∈ B,
∀e, e′ ∈ z. e /= e′ ⇒ ∃z′ ⊆ z. π1z

′ ∈ A & π2z
′ ∈ B & (e ∈ z′ ⇐⇒ e′ ∉ z′) .

The extra local injectivity property we needed in the definition of product is not
necessary here; it follows from the definition of D and that f and g are locally
injective.

Just as for products, we obtain the pullback of event structures by first
forming the pullback in stable families of their families of configurations and
then applying Pr.

As a corollary of Lemma 2.18 we obtain a useful way to understand config-
urations of the pullback of total maps on event structures.

Proposition 2.19. When f ∶ A → C and g ∶ B → C are total, maps of event
structures, in their pullback P,Π1,Π2

P
Π1

~~

Π2

A

f

B

g~~
C .

the finite configurations of P correspond to composite bijections

θ ∶ x ≅ fx = gy ≅ y

between finite configurations x of A and y of B such that fx = gy, for which the
transitive relation generated on θ by (a, b) ≤ (a′, b′) if a ≤A a′ or b ≤B b′ forms
a partial order.

Chapter 3

Games and strategies

Very general nondeterministic concurrent games and strategies are presented.
The intention is to formalize distributed games in which both Player (or a
team of players) and Opponent (or a team of opponents) can interact in highly
distributed fashion, without, for instance, enforcing that their moves alter-
nate. Strategies, those nondeterministic plays which compose well with copy-cat
strategies, are characterized.

3.1 Event structures with polarities

We shall represent both a game and a strategy in a game as an event structure
with polarity, comprising an event structure together with a polarity function
pol ∶ E → {+,−} ascribing a polarity + or − to its events E. The events corre-
spond to (occurrences of) moves. The two polarities +/− express the dichotomy:
Player/Opponent; Process/Environment; Prover/Disprover; or Ally/Enemy. Maps
of event structures with polarity are maps of event structures which preserve po-
larity.

3.2 Operations

3.2.1 Dual

The dual, E⊥, of an event structure with polarity E comprises a copy of the
event structure E but with a reversal of polarities. It obviously extends to a
functor.

3.2.2 Simple parallel composition

This operation simply juxtaposes two event structures with polarity. Let (A,≤A
,ConA,polA) and (B,≤B ,ConB ,polB) be event structures with polarity. The
events of A∥B are ({1}×A)∪({2}×B), their polarities unchanged, with: the only

19

20 CHAPTER 3. GAMES AND STRATEGIES

relations of causal dependency given by (1, a) ≤ (1, a′) iff a ≤A a′ and (2, b) ≤
(2, b′) iff b ≤B b′; a subset of events C is consistent in A∥B iff {a ∣ (1, a) ∈ C} ∈
ConA and {b ∣ (2, b) ∈ C} ∈ ConB . The operation extends to a functor—put the
two maps in parallel. The empty event structure with polarity ∅ is the unit
w.r.t. ∥.

3.3 Pre-strategies

Let A be an event structure with polarity, thought of as a game; its events
stand for the possible occurrences of moves of Player and Opponent and its
causal dependency and consistency relations the constraints imposed by the
game. A pre-strategy in A is a total map σ ∶ S → A from an event structure with
polarity S. A pre-strategy represents a nondeterministic play of the game—all
its moves are moves allowed by the game and obey the constraints of the game;
the concept can be refined to that of strategy (and winning strategy.

A map from a pre-strategy σ ∶ S → A to a pre-strategy σ′ ∶ S′ → A is a map
f ∶ S → S′ such that

S

σ
��

f // S′

σ′

��
A

commutes. Accordingly, we regard two pre-strategies σ ∶ S → A and σ′ ∶ S′ → A
as essentially the same when they are isomorphic, and write σ ≅ σ′, i.e. when
there is an isomorphism of event structures θ ∶ S ≅ S′ such that

S

σ
��

≅
θ

S′

σ′

��
A

commutes.
Let A and B be event structures with polarity. Following Joyal [?], a pre-

strategy from A to B is a pre-strategy in A⊥∥B, so a total map σ ∶ S → A⊥∥B.
It thus determines a span

S

σ1

~~

σ2

A⊥ B ,

of event structures with polarity where σ1, σ2 are partial maps. In fact, a pre-
strategy from A to B corresponds to such spans where for all s ∈ S either, but
not both, σ1(s) or σ2(s) is defined. Two pre-strategies σ and τ from A to B
are isomorphic, σ ≅ τ , when their spans are isomorphic.

3.3. PRE-STRATEGIES 21

We write σ ∶ A + //B to express that σ is a pre-strategy from A to B. Note
a pre-strategy in a game A coincides with a pre-strategy from the empty game
σ ∶ ∅ + //A.

3.3.1 Concurrent copy-cat

Identities on games are given by copy-cat strategies—strategies for Player based
on copying the latest moves made by Opponent.

Let A be an event structure with polarity. The copy-cat strategy from A to
A is an instance of a pre-strategy, so a total map γA ∶ CCA → A⊥∥A. It describes
a concurrent, or distributed, strategy based on the idea that Player moves, of
+ve polarity, always copy previous corresponding moves of Opponent, of −ve
polarity.

For c ∈ A⊥∥A we use c to mean the corresponding copy of c, of opposite
polarity, in the alternative component, i.e.

(1, a) = (2, a) and (2, a) = (1, a) .

Proposition 3.1. Let A be an event structure with polarity. There is an event
structure with polarity CCA having the same events and polarity as A⊥∥A but
with causal dependency ≤CCA given as the transitive closure of the relation

≤A⊥∥A ∪ {(c, c) ∣ c ∈ A⊥∥A & polA⊥∥A(c) = +} .

and finite subsets of CCA consistent if their down-closure w.r.t. ≤CCA are con-
sistent in A⊥∥A. Moreover,
(i) c _ c′ in CCA iff

c _ c′ in A⊥∥A or polA⊥∥A(c′) = + & c = c′ ;

(ii) x ∈ C(CCA) iff

x ∈ C(A⊥∥A) & ∀c ∈ x. polA⊥∥A(c) = + Ô⇒ c ∈ x .

Proof. It can first be checked that defining

c ≤CCA c
′ iff (i) c ≤A⊥∥A c′ or

(ii) ∃c0 ∈ A⊥∥A. polA⊥∥A(c0) = + &

c ≤A⊥∥A c0 & c0 ≤A⊥∥A c′ ,

yields a partial order. Note that

c ≤A⊥∥A d iff c ≤A⊥∥A d ,

used in verifying transitivity and antisymmetry. The relation ≤CCA is clearly
the transitive closure of ≤A⊥∥A together with all extra causal dependencies (c, c)
where polA⊥∥A(c) = +. The remaining properties required for CCA to be an event
structure follow routinely.

22 CHAPTER 3. GAMES AND STRATEGIES

(i) From the above characterization of ≤CCA .

(ii) From CCA and A⊥∥A sharing the same consistency relation and the extra
causal dependency adjoined to CCA. ◻

Based on Proposition 3.1, define the copy-cat pre-strategy from A to A to be
the pre-strategy γA ∶ CCA → A⊥∥A where CCA comprises the event structure with
polarity A⊥∥A together with extra causal dependencies c ≤CCA c for all events
c with polA⊥∥A(c) = +, and γA is the identity on the set of events common to
both CCA and A⊥∥A.

3.3.2 Composition

We present the composition of pre-strategies via pullbacks. Given two pre-
strategies σ ∶ S → A⊥∥B and τ ∶ T → B⊥∥C, ignoring polarities we can consider
the maps on the underlying event structures, viz. σ ∶ S → A∥B and τ ∶ T →
B∥C.

T ⊛ S

yy %%
S∥C

σ∥C $$

A∥T

A∥τzz
A∥B∥C .

There is an obvious partial map of event structures A∥B∥C → A∥C undefined
on B and acting as identity on A and C. The partial map from T ⊛ S to A∥C
given by following the diagram (either way round the pullback square)

T ⊛ S

zz $$
S∥C

σ∥C $$

A∥T

A∥τzz
A∥B∥C

��
A∥C

factors through the projection of T ⊛ S to V , those events at which the partial
map is defined:

T ⊛ S → P ↓ V → A∥C .

The resulting total map T⊛S ↓ V → A∥C gives us the composition τ⊙σ ∶ T⊙S →
A⊥∥C once we reinstate polarities.

3.4. STRATEGIES 23

Deconstructing composition

It is helpful to deconstruct the definition of composition of pre-strategies. It is
based on pullbacks of event structures and these in turn on pullbacks of stable
families.

Given pre-strategies σ ∶ S → A⊥∥B and τ ∶ T → B⊥∥C form the pullback in
stable families:

C(T) ⊛ C(S)
π1

xx

π2

''
C(S∥C)

σ∥C ''

C(A∥T)

A∥τxx
C(A∥B∥C) .

The pullback C(T)⊛ C(S) is composition without hiding given as a stable fam-
ily. Composition without hiding as an event structure is given as the pullback
Pr(C(T)⊛C(S)); its projections take a prime to the the appropriate component
of its top element. Composition (with hiding) is given as the projection

Pr(C(T) ⊛ C(S)) ↓ V

to the set of ‘visible’ events V , those with image in the game A or the game C.

3.3.3 Duality

A pre-strategy σ ∶ A + //B corresponds to a dual pre-strategy σ⊥ ∶ B⊥ + //A⊥.
This duality arises from the correspondence

S

σ1

~~

σ2

��
A⊥ B

←→ S

σ2

||

σ1

(B⊥)⊥ A⊥ .

It is easy to check that the dual of copy-cat, γ⊥A, is isomorphic, as a span, to
the copy-cat of the dual, γA⊥ , for A an event structure with polarity. It is also
straightforward, though more involved, to show that the dual of a composition
of pre-strategies (τ⊙σ)⊥ is isomorphic as a span to the composition σ⊥⊙τ⊥.

3.4 Strategies

Two conditions on pre-strategies, receptivity and innocence, are necessary and
sufficient in order for copy-cat to behave as identity w.r.t. the composition of
pre-strategies. It becomes compelling to define a (nondeterministic) concurrent
strategy, in general, as a pre-strategy which is receptive and innocent.

24 CHAPTER 3. GAMES AND STRATEGIES

Receptivity. Say a pre-strategy σ ∶ S → A is receptive when σx
a−Ð⊂ & polA(a) =

− ⇒ ∃!s ∈ S. x s−Ð⊂ & σ(s) = a , for all x ∈ C(S), a ∈ A. Receptivity ensures that
no Opponent move which is possible is disallowed.
Innocence. Say a pre-strategy σ is innocent when it is both +-innocent and
−-innocent:
+-Innocence: If s _ s′ & pol(s) = + then σ(s) _ σ(s′).
−-Innocence: If s _ s′ & pol(s′) = − then σ(s) _ σ(s′).

The definition of a pre-strategy σ ∶ S → A ensures that the moves of Player
and Opponent respect the causal constraints of the game A. Innocence restricts
Player further. Locally, within a configuration, Player may only introduce new
relations of immediate causality of the form ⊖ _ ⊕ . Thus innocence gives Player
the freedom to await Opponent moves before making their move, but prevents
Player having any influence on the moves of Opponent beyond those stipulated
in the game A; more surprisingly, innocence also disallows any immediate causal-
ity of the form ⊕ _ ⊕, purely between Player moves, not already stipulated in
the game A.

Theorem 3.2. Let σ ∶ S → A be a pre-strategy in a game A. Then, γA⊙σ ≅ σ
iff σ is receptive and innocent.

We omit the proof which is quite technical.

3.5 Concurrent strategies

Define a strategy to be a pre-strategy which is receptive and innocent. We obtain
a bicategory, Strat, in which the objects are event structures with polarity—
the games, the arrows from A to B are strategies σ ∶ A + //B, with identities
the copy-cat strategies, and the 2-cells are maps of pre-strategies. The vertical
composition of 2-cells is the usual composition of maps of spans. Horizontal
composition is given by the composition of strategies ⊙ (which extends to a
functor on 2-cells via the universality of pullback and partial-total factorisation).
The bicategory satisfies the conditions expected of a compact-closed bicategory.
(Though, with the addition of extra structure such as winning conditions or
payoff, compact-closure weakens to ∗-autonomy; the isomorphism (A∥B)⊥ ≅
A⊥∥B⊥ of compact-closure disappears.)

3.5.1 Alternative characterizations

Via saturation conditions

An alternative description of concurrent strategies exhibits the correspondence
between innocence and earlier “saturation conditions,” reflecting specific inde-
pendence, in the work of Laird, and Ghica and Murawski.

Proposition 3.3. A strategy S in a game A comprises a total map of event
structures with polarityσ ∶ S → A such that

3.5. CONCURRENT STRATEGIES 25

(i) σx
a−Ð⊂ & polA(a) = − ⇒ ∃!s ∈ S. x s−Ð⊂ & σ(s) = a , for all x ∈ C(S), a ∈ A;

(ii)(+) If x
e−Ð⊂x1

e′−Ð⊂ & polS(e) = + in C(S) and σx
σ(e′)
−Ð⊂ in C(A), then x

e′−Ð⊂
in C(S); and

(ii)(−) If x
e−Ð⊂x1

e′−Ð⊂ & polS(e′) = − in C(S) and σx
σ(e′)
−Ð⊂ in C(A), then x

e′−Ð⊂
in C(S).

Proof. Note that if x
e−Ð⊂x1

e′−Ð⊂ then either e co e′ or e _ e′. Condition (ii) is
a contrapositive reformulation of innocence. ◻

Via lifting conditions

Let x and x′ be configurations of an event structure with polarity. Write x ⊆+ x′
to mean x ⊆ x′ and pol(x′ ∖ x) ⊆ {+}, i.e. the configuration x′ extends the
configuration x solely by events of +ve polarity. With this notation in place we
can give an attractive characterization of concurrent strategies:

Lemma 3.4. A strategy in a game A comprises a total map of event structures
with polarity σ ∶ S → A such that
(i) whenever y ⊆+ σx in C(A) there is a (necessarily unique) x′ ∈ C(S) so that
x′ ⊆ x & σx′ = y , i.e.

x′_

σ

��

⊆ x_

σ

��
y ⊆

+ σx ,

and
(ii) whenever σx ⊆− y in C(A) there is a unique x′ ∈ C(S) so that x ⊆ x′ & σx′ =
y , i.e.

x_

σ

��

⊆ x′_

σ

��
σx ⊆

− y .

Proof. Let σ ∶ S → A be a total map of event structures with polarity. We show
σ is a strategy iff (i) and (ii).
“Only if”: (i) It suffices to show the seemingly weaker property (i)′ that

y
a−Ð⊂σx & pol(a) = + Ô⇒ ∃x′ ∈ C(S). x′−Ð⊂x & σx′ = y

for a ∈ A,x ∈ C(S), y ∈ C(A). Then (i), with y ⊆+ σx, follows by considering a
covering chain y−Ð⊂⋯−Ð⊂σx. (The uniqueness of x is a direct consequence of

σ being a total map of event structures.) To show (i)′, suppose y
a−Ð⊂σx with a

+ve. Then σ(s) = a for some unique s ∈ x with s +ve. Supposing s were not ≤-
maximal in x, then s _ s′ for some s′ ∈ x. By +-innocence a = σ(s) _ σ(s′) ∈ σx
implying a is not ≤-maximal in σx. This contradicts y

a−Ð⊂σx. Hence s is ≤-
maximal and x′ =def x ∖ {s} ∈ C(S) with x′−Ð⊂x and σx′ = y.

26 CHAPTER 3. GAMES AND STRATEGIES

(ii) Assuming σx ⊆− y we can form a covering chain

σx
a1−Ð⊂ y1⋯

an−Ð⊂ yn = y .

By repeated use of receptivity we obtain the existence of x′ where x ⊆ x′ and
σx′ = y. To show the uniqueness of x′ suppose x ⊆ z, z′ and σz = σz′ = y.
Suppose that z /= z′. Then, without loss of generality, suppose there is a ≤S-
minimal s′ ∈ z′ with s′ ∉ z. Then [s′) ⊆ z, with s of −ve polarity. Now σ(s′) ∈ y
so there is s ∈ z for which σ(s) = σ(s′). We have [s), [s′) ⊆ z so [s) ↑ [s′).
We show [s) = [s′). Suppose s1 _ s. Then by −-innocence, σ(s1) _ σ(s).
As σ(s′) = σ(s) and σ is a map of event structures there is s2 < s′ such that
σ(s2) = σ(s1). But s1, s2 both belong to the configuration [s) ∪ [s′) so s1 = s2,
as σ is a map, and s1 < s′. Symmetrically, if s1 _ s′ then s1 < s. It follows that

[s) = [s′). Now both [s) s−Ð⊂ and [s) s′−Ð⊂ with σ(s) = σ(s′) where both s, s′

have −ve polarity. As σ is receptive, s = s′. This implies s′ ∈ z, a contradiction.
Hence, z = z′ and we have established uniqueness of x′.
“If”: Assume σ satisfies (i) and (ii). Clearly σ is receptive by (ii). We establish
innocence via an observation, that in any event structure E,

(∃x,x1 ∈ C(E). x s−Ð⊂x1
s′−Ð⊂) ⇐⇒ s _ s′ or s co s′ .

Suppose s _S s′ and pol(s) = +. Then x
s−Ð⊂x1

s′−Ð⊂x′ for some x,x1, x
′ ∈

C(S). Hence σx
s−Ð⊂σx1

s′−Ð⊂σx′. Either, as required, σ(s) _S σ(s′) or σ(s) co

σ(s′). Assume the latter. Then σx
σ(s′)
−Ð⊂ y2

σ(s)
−Ð⊂σx′ where y2 = x ∪ {σ(s′)}, with

pol(σ(s)) = +. From (i) we obtain a unique x2 ∈ C(S) such that x2 ⊆ x′ and

σx2 = y2. As σ is a total map of event structures, we obtain x2
s−Ð⊂x′ and

subsequently x
s′−Ð⊂x2, contradicting s _S s

′.
Suppose s _S s′ and pol(s′) = −. The case where pol(s) = + is covered

by the previous argument. Suppose pol(s) = −. Then x
s−Ð⊂x1

s′−Ð⊂x′ for some

x,x1, x
′ ∈ C(S). Again, σx

s−Ð⊂σx1
s′−Ð⊂σx′. Assume, to obtain a contradiction,

that σ(s) co σ(s′). Then σx
σ(s′)
−Ð⊂ y2

σ(s)
−Ð⊂σx′ , where y2 = x ∪ {σ(s′)}. As σ is

already known to be receptive, we obtain

x
e′−Ð⊂x2

e−Ð⊂x′′ & σx2 = y2 & σx′′ = σx′ .

From the uniqueness part of (ii) we deduce x′′ = x′. As σ is a total map of event

structures, e = s and e′ = s′. Thus x
s′−Ð⊂ , which contradicts s _S s

′. Via the
observation we conclude that σ(s) _S σ(s′). ◻

Chapter 4

Deterministic strategies

An important special case is that of deterministic concurrent strategies. They
coincide with Melliès and Mimram’s receptive ingenuous strategies.

We say an event structure with polarityS is deterministic iff

∀X ⊆fin S. Neg[X] ∈ ConS Ô⇒ X ∈ ConS ,

where Neg[X] =def {s′ ∈ S ∣ pol(s′) = − & ∃s ∈X. s′ ≤ s}. In other words, S is
deterministic iff any finite set of moves is consistent when it causally depends
only on a consistent set of opponent moves. Say a strategy σ ∶ S → A is
deterministic if S is deterministic.

Lemma 4.1. An event structure with polarityS is deterministic iff

∀s, s′ ∈ S,x ∈ C(S). x
s−Ð⊂ & x

s′−Ð⊂ & pol(s) = + Ô⇒ x ∪ {s, s′} ∈ C(S) .

Proof. “Only if”: Assume S is deterministic, x
s−Ð⊂ , x

s′−Ð⊂ and pol(s) = +. Take
X =def x∪{s, s′}. Then Neg[X] ⊆ x∪{s} so Neg[X] ∈ ConS . As S is determin-
istic, X ∈ ConS and being down-closed X = x ∪ {s, s′} ∈ C(S).
“If”: Assume S satisfies the property stated above in the proposition. Let
X ⊆fin S with Neg[X] ∈ ConS . Then the down-closure [Neg[X]] ∈ C(S). Clearly
[Neg[X]] ⊆ [X] where all events in [X] ∖ [Neg[X]] are necessarily +ve. Sup-
pose, to obtain a contradiction, that X ∉ ConS . Then there is a maximal
z ∈ C(S) such that

[Neg[X]] ⊆ z ⊆ [X]
and some e ∈ [X] ∖ z, necessarily +ve, for which [e) ⊆ z. Take a covering chain

[e) s1−Ð⊂ z1
s2−Ð⊂⋯ sk−Ð⊂ zk = z .

As [e) e−Ð⊂[e] with e +ve, by repeated use of the property of the lemma—

illustrated below—we obtain z
e−Ð⊂ z′ in C(S) with [Neg[X]] ⊆ z′ ⊆ [X] , which

contradicts the maximality of z.

27

28 CHAPTER 4. DETERMINISTIC STRATEGIES

[e] −Ð⊂
s1

z′1 −Ð⊂
s2 ⋯ −Ð⊂

sk
z′k = z′

[e)

−
Ð
⊂

e

−Ð⊂
s1

z1

−
Ð
⊂

e

−Ð⊂
s2 ⋯

⋯

−Ð⊂
sk

zk

−
Ð
⊂

e

= z

So, above, an event structure with polarity can fail to be deterministic in
two ways, either with pol(s) = pol(s′) = + or with pol(s) = + & pol(s′) = −. In
particular, the copy-cat strategy need not be deterministic.

4.1 The bicategory of deterministic strategies

In general for an event structure with polarity A the copy-cat strategy can fail
to be deterministic, illustrated in the examples below.

Example 4.2. (i) Take A to consist of two +ve events and one −ve event, with
any two but not all three events consistent. The construction of CCA is pictured:

⊖ _ ⊕

A⊥ ⊖ _ ⊕ A

⊕ ^ ⊖

Here γA is not deterministic: take x to be the set of all three −ve events in CCA
and s, s′ to be the two +ve events in the A component.
(ii) Take A to consist of two events, one +ve and one −ve event, inconsistent
with each other. The construction CCA:

A⊥ ⊖ _ ⊕ A

⊕ ^ ⊖

To see CCA is not deterministic, take x to be the singleton set consisting e.g. of
the −ve event on the left and s, s′ to be the +ve and −ve events on the right.

Fortunately copy-cat is deterministic iff the underlying game is free of races
between Player and Opponent.

Lemma 4.3. Let A be an event structure with polarity. The copy-cat strategy
γA is deterministic iff A satisfies

∀x ∈ C(A). x a−Ð⊂ & x
a′−Ð⊂ & pol(a) = + & pol(a′) = − Ô⇒ x ∪ {a, a′} ∈ C(A) .

(race-free)

Proof. “Only if”: Suppose x ∈ C(A) with x
a−Ð⊂ and x

a′−Ð⊂ where pol(a) = + and
pol(a′) = −. Construct y =def {(1, b) ∣ b ∈ x} ∪ {(1, a)} ∪ {(2, b) ∣ b ∈ x}. Then

y ∈ C(CCA) with y
(2,a)
−Ð⊂ and y

(2,a′)
−Ð⊂ , by Proposition 3.1(ii). Assuming CCA is

deterministic, we obtain y ∪ {(2, a), (2, a′)} ∈ C(CCA), so y ∪ {(2, a), (2, a′)} ∈
C(A⊥∥A). This entails x ∪ {a, a′} ∈ C(A), as required to show (race-free).

4.1. THE BICATEGORY OF DETERMINISTIC STRATEGIES 29

“If”: Assume A satisfies (race-free). It suffices to show for X ⊆fin CCA, with
X down-closed, that Neg[X] ∈ ConCCA implies X ∈ ConCCA . Recall for Z down-
closed, Z ∈ ConCCA iff Z ∈ ConA⊥∥A.

Let X ⊆fin CCA with X down-closed. Assume Neg[X] ∈ ConCCA . Observe

(i) {c ∣ c ∈X & pol(c) = −} ⊆ Neg[X] and

(ii) {c ∣ c ∈X & pol(c) = +} ⊆ Neg[X] as by Proposition 3.1, X being down-
closed must contain c if it contains c with pol(c) = +.

Consider X2 =def {a ∣ (2, a) ∈X}. Then X2 is a finite down-closed subset of A.
From (i),

X−
2 =def {a ∈X2 ∣ pol(a) = −} ∈ ConA .

From (ii),

X+
2 =def {a ∈X2 ∣ pol(a) = +} ∈ ConA .

We show (race-free) implies X2 ∈ ConA.
Define z− =def [X−

2] and z+ =def [X+
2]. Being down-closures of consistent

sets, z−, z+ ∈ C(A). We show z− ↑ z+ in C(A). First note z− ∩ z+ ∈ C(A). If
a ∈ z− ∖ z− ∩ z+ then pol(a) = −; otherwise, if pol(a) = + then a ∈ z+ a well as
a ∈ z− making a ∈ z− ∩ z+, a contradiction. Similarly, if a ∈ z+ ∖ z− ∩ z+ then
pol(a) = +. We can form covering chains

z− ∩ z+
p1−Ð⊂x1

p2−Ð⊂⋯
pk−Ð⊂xk = z− and z− ∩ z+ n1−Ð⊂ y1

n2−Ð⊂⋯ nl−Ð⊂ yl = z+

where each pi is +ve and each nj is −ve.
Consequently, by repeated use of (race-free), we obtain xk ∪ yl ∈ C(A),

i.e. z+ ∪ z− ∈ C(A), as is illustrated below. But X2 ⊆ z+ ∪ z−, so X2 ∈ ConA.
A similar argument shows X1 =def {a ∈ A⊥ ∣ (1, a) ∈X} ∈ ConA⊥ . It follows that
X ∈ ConA⊥∥A, so X ∈ ConCCA as required.

yl −Ð⊂
p1

x1 ∪ yl −Ð⊂
p2

x2 ∪ yl −Ð⊂
p3 ⋯ −Ð⊂

pk
xk ∪ yl

⋮

−
Ð
⊂nl

⋮

−
Ð
⊂nl

⋮ ⋯

−
Ð
⊂nl

⋯ ⋯ ⋮

−
Ð
⊂nl

y1

−
Ð
⊂n2

−Ð⊂
p1

x1 ∪ y1

−
Ð
⊂n2

−Ð⊂
p2

x2 ∪ y1 −Ð⊂
p3

−
Ð
⊂n2

⋯ −Ð⊂
pk

xk ∪ y1

−
Ð
⊂n2

z− ∩ z+

−
Ð
⊂n1

−Ð⊂
p1

x1

−
Ð
⊂n1

−Ð⊂
p2

x2 −Ð⊂
p3

−
Ð
⊂n1

⋯ −Ð⊂
pk

xk

−
Ð
⊂n1

Via the next lemma, when games satisfy (race-free) we can simplify the
condition for a strategy to be deterministic.

30 CHAPTER 4. DETERMINISTIC STRATEGIES

Lemma 4.4. Let σ ∶ S → A be a strategy. Suppose x
s−Ð⊂ y & x

s′−Ð⊂ y′ & polS(s) =
− . Then, σy ↑ σy′ in C(A) Ô⇒ y ↑ y′ in C(S) . A fortiori, if A satisfies
(race-free) then so does S.

Proof. Assume σy ↑ σy′ in C(A), so σy′
σ(s)
−Ð⊂σy∪σy′ in C(A). As σ(s) is −ve, by

receptivity, there is a unique s′′ ∈ S, necessarily −ve, such that σ(s′′) = σ(s) and

y′
s′′−Ð⊂x ∪ {s′, s′′} in C(S). In particular, x ∪ {s′, s′′} ∈ C(S). By −-innocence,

we cannot have s′ _ s′′, so x ∪ {s′′} ∈ C(S). But now x
s−Ð⊂ and x

s′′−Ð⊂ with
σ(s) = σ(s′′) and both s, s′′ −ve and hence s′′ = s by the uniqueness part of
receptivity. We conclude that x ∪ {s′, s} ∈ C(S) so y ↑ y′.

Corollary 4.5. Assume A satisfies (race-free) of Lemma 4.3. A strategy
σ ∶ S → A is deterministic iff it is weakly-deterministic, i.e. for all +ve events
s, s′ ∈ S and configurations x ∈ C(S),

x
s−Ð⊂ & x

s′−Ð⊂ Ô⇒ x ∪ {s, s′} ∈ C(S) .

Proof. “Only if”: clear. “If”: Let x
s−Ð⊂ and x

s′−Ð⊂ where polS(s) = +. For S to
be deterministic we require x ∪ {s, s′} ∈ C(S). The above assumption ensures

this when polS(s′) = +. Otherwise polS(s′) = − with σx
σ(s)
−Ð⊂ and σx

σ(s′)
−Ð⊂ . As A

satisfies (race-free), σx ∪ σ(s), σ(s′) ∈ C(A). Now by Lemma 4.4, x ∪ {s, s′} ∈
C(S).

Lemma 4.6. The composition τ⊙σ of deterministic strategies σ and τ is de-
terministic.

Proof. (Sketch) Let σ ∶ S → A⊥∥B and τ ∶ T → B⊥∥C be deterministic strategies.
The composition T⊙S is constructed as the projection of T ⊛S to those moves
visible in A⊥∥C. The proof proceeds by first showing that T ⊛S is deterministic
in the following sense:

∀e, e′ ∈ S,x ∈ C(T ⊛S). x e−Ð⊂ & x
e′−Ð⊂ & pol(e) ≠ − Ô⇒ x∪{e, e′} ∈ C(T ⊛S) .

Recall T ⊛ S generally has synchronisation events, regarded as being of neutral
polarity. So its being deterministic forbids immediate conflict between a +ve or
neutral event and any other. That T ⊛S is deterministic can be shown by case
analysis on the form of the events e, e′ using the definition of pullback. From
T ⊛ S being deterministic it follows that T⊙S is deterministic.

We thus obtain a sub-bicategory of concurrent games and strategies: its ob-
jects are (race-free) (cf. Lemma 4.3) and its maps are deterministic strategies.

4.2. A CATEGORY OF DETERMINISTIC STRATEGIES 31

4.2 A category of deterministic strategies

In fact, the bicategory of deterministic strategies is equivalent to a category via
the following lemma.

Lemma 4.7. Let σ ∶ S → A be a deterministic strategy. Then,

σy ⊆ σx Ô⇒ y ⊆ x

for all x, y ∈ C(S). In particular, a deterministic strategy σ is injective on
configurations, i.e., σx = σy implies x = y, for all x, y ∈ C(S) (so is mono as a
map of event structures).

Proof. Let σ ∶ S → A be a deterministic strategy. We show
x ⊇ z−⊂y & σy ⊆ σx Ô⇒ y ⊆ x ,

for x, y, z ∈ C(S), by induction on ∣x ∖ z∣.
Suppose x ⊇ z e−Ð⊂ y and σy ⊆ σx. There are x1 and event e1 ∈ S such that

z
e1−Ð⊂x1 ⊆ x. If σ(e1) = σ(e) then e1, e have the same polarity; if −ve e1 = e, by

receptivity; if +ve e1 = e, by determinacy with the local injectivity of σ. Either
way y ⊆ x. Suppose σ(e1) /= σ(e). We show in all cases y ∪ {e1} ⊆ x, so y ⊆ x.
Case pol(e1) = + or pol(e) = +: As σ is deterministic, e1 and e are concurrent

giving x1
e−Ð⊂ y ∪ {e1}. By induction we obtain y ∪ {e1} ⊆ x.

Case pol(e1) = pol(e) = − : From Lemma 4.4, we deduce that e1 and e are

concurrent yielding x1
e−Ð⊂ y ∪ {e1}, and by induction y ∪ {e1} ⊆ x.

Another, simpler induction on ∣y ∖ z∣ now yields
x ⊇ z ⊆ y & σy ⊆ σx Ô⇒ y ⊆ x ,

for x, y, z ∈ C(S), from which the result follows.

Via the above lemma we can provide an alternative description of determin-
istic strategies in a game A as certain subfamilies of C(A)—see the course slides.
This description shows deterministic strategies to coincide with the receptive in-
genuous strategies of Melliès and Mimram. For deterministic strategies we can
consider composition up to identical families; we obtain a category in place of
a bicategory.

32 CHAPTER 4. DETERMINISTIC STRATEGIES

Chapter 5

Special cases of concurrent
games and strategies

Stable spans, profunctors and stable functions

The sub-bicategory of Strat where the events of games are purely +ve is equiv-
alent to the bicategory of stable spans. In this case, strategies correspond to
stable spans:

S

σ1

~~

σ2

��
A⊥ B

←→ S+

σ−1

~~

σ+2

!!
A B ,

where S+ is the projection of S to its +ve events; σ+2 is the restriction of σ2 to
S+, necessarily a rigid map by innocence; σ−2 is a demand map taking x ∈ C(S+)
to σ−1 (x) = σ1[x] ; here [x] is the down-closure of x in S.

Stable functions

If we further restrict strategies to be deterministic (and, strictly, event structures
to be countable) we obtain a bicategory equivalent to Berry’s dI-domains and
stable functions.

Ingenuous strategies

Deterministic concurrent strategies coincide with the receptive ingenuous strate-
gies of Melliès and Mimram.

Closure operators

Deterministic strategies have been presented as closure operators by Abramsky
and Melliès. A deterministic strategy σ ∶ S → A determines a closure operator

33

34CHAPTER 5. SPECIAL CASES OF CONCURRENTGAMES AND STRATEGIES

ϕ on possibly infinite configurations C∞(S): for x ∈ C∞(S),

ϕ(x) = x ∪ {s ∈ S ∣ pol(s) = + & Neg[{s}] ⊆ x} .

Clearly ϕ preserves intersections of configurations and is continuous. The closure
operator ϕ on C∞(S) induces a partial closure operator ϕp on C∞(A). This in
turn determines a closure operator ϕ⊺p on C∞(A)⊺, where configurations are
extended with a top ⊺, take y ∈ C∞(A)⊺ to the least, fixed point of ϕp above y,
if such exists, and ⊺ otherwise.

Simple games

“Simple games” of game semantics arise when we restrict Strat to objects and
deterministic strategies which are ‘tree-like’—alternating polarities, with con-
flicting branches, beginning with opponent moves. Conway games tree-like, but
where only strategies need alternate and begin with opponent moves.

