Subject 2: Maps of event structures, and natural transformations

to be returned on the 25/10

1 Event structures and stable families

The required definitions for these exercises appear in the slides for lecture 3, available at http: //perso.ens-lyon.fr/pierre.clairambault/enseignement/CR07-slides-lecture3.pdf.

Question 1. Let $f: A \to B$ be a map of event structures. (i) Show f locally reflects causal dependency, in the following sense. Let $e, e' \in x$, a configuration of A. Show if $f(e) \leq_B f(e')$ (with both f(e) and f(e') defined) then $e \leq_A e'$. (ii) Show f preserves the concurrency relation, *i.e.* if $e \cos_A e'$ and f(e) and f(e') are both defined, then $f(e) \cos_B f(e')$.

Question 2. Let $(A, \leq_A, \operatorname{Con}_A), (B, \leq_B, \operatorname{Con}_B)$ be event structures. Let $f : A \to B$ be a partial function. Show f is a map of event structures, $f : (A, \leq_A, \operatorname{Con}_A) \to (B, \leq_B, \operatorname{Con}_B)$, iff

(i)
$$\forall a \in A, b \in B. \ b \leq_B f(a) \implies \exists a' \in A. \ a' \leq_A a \& f(a') = b$$
, and
(ii) $\forall X \in \operatorname{Con}_A. \ fX \in \operatorname{Con}_B \& \forall a_1, a_2 \in X. \ f(a_1) = f(a_2) \implies a_1 = a_2$

Question 3. Verify that the finite configurations of an event structure form a stable family.

Question 4. Say an event structure A is *tree-like* when its concurrency relation is empty (so two distinct events are either causally related or inconsistent).

Suppose B is tree-like and $f : A \to B$ is a total map of event structures (a map of event structures is *total* if the underlying function between events is total). Show A must also be tree-like, and moreover that the map f is rigid, *i.e.* preserves causal dependency.

Question 5. Show a map $f : A \to B$ of event structures is *stable*, *i.e.*

$$x \uparrow y \implies f(x \cap y) = (fx) \cap (fy).$$

Question 6. Let \mathcal{F} be a nonempty family of finite sets satisfying the Completeness axiom in the definition of stable families. Show \mathcal{F} is coincidence-free iff

$$\forall x, y \in \mathcal{F}. \ x \subsetneq y \implies \exists x_1, e_1. \ x \stackrel{e_1}{\longrightarrow} x_1 \subseteq y.$$

By $x \xrightarrow{e_1} x_1$, for configurations x, x_1 and event e_1 , is meant that $e_1 \notin x \& x \cup \{e_1\} = x_1$. [Hint: For 'only if' use induction on the size of $y \setminus x$.]

Question 7. Let $f : \mathcal{F} \to \mathcal{G}$ be a map of stable families. Let $e, e' \in x$, a configuration of \mathcal{F} . Show if $f(e) \leq_{fx} f(e')$ (with both f(e) and f(e') defined) then $e \leq_x e'$.

(the definition of \leq_x for $x \in \mathcal{F}$ in a stable family \mathcal{F} appears on slide 17)

2 Natural transformations and equivalence of categories

Question 8. Which of the following functions correspond to natural transformations?

(a) Is this a natural transformation between functors from Set to Set?

$$fst_A : List(A) \rightarrow A + \{*\} \\ [a_1, \dots, a_n] \mapsto (1, a_1) \\ [] \mapsto (2, *)$$

where $A + B = (\{1\} \times A) \cup (\{2\} \times B)$ is the disjoint union.

(b) Is this a natural transformation between functors from Set to Set?

 $\begin{array}{rcl} \operatorname{equal}_A & : & \operatorname{List}(A) & \to & \mathbb{B} \\ & & l & \mapsto & \operatorname{true} & \text{if all elements of } l \text{ are equal} \\ & & & \operatorname{false} & \operatorname{otherwise} \end{array}$

(note: an object $A \in \mathcal{C}$ may be regarded as the constant functor $\mathcal{C} \to \mathcal{C}$ which to any $X \in \mathcal{C}$ associates A, and to any $f: X \to Y$ associates id_A).

(c) Is this a natural transformation between functors from Set to Set?

$$\begin{array}{rcl} \operatorname{length}_A & : & \operatorname{List}(A) & \to & \mathbb{N} \\ & & & & \\ &$$

(d) Is this a natural transformation between functors from Ford to Set?

$$\operatorname{sort}_A : \operatorname{List}(A) \to \operatorname{List}(A)$$

 $l \mapsto \operatorname{sort}(l)$

where Ford is the category of totally ordered finite sets and order-preserving functions? What if the morphisms in Ford were not required to preserve the order?

Question 9. Let $F, G : \mathcal{C} \to \mathcal{D}$ be functors, and $\eta : F \Rightarrow G$ be a natural transformation. Show that η has an inverse iff for all $A \in \mathcal{C}$, η_A has an inverse.

Question 10. Consider the category Fam having

- Objects: families of sets $(A_i)_{i \in I}$ (where $I \in Set$, and for all $i \in I, A_i \in Set$).
- Morphisms from $(A_i)_{i \in I}$ to $(B_j)_{j \in J}$: pairs $(f, (g_i)_{i \in I})$ where $f: I \to J$, and for all $i \in I$, $g_i: A_i \to B_{f(i)}$.

Show that Fam is equivalent to the presheaf category $[1 \rightarrow 2, Set]$, where $1 \rightarrow 2$ is the category having two objects 1, 2 and only one morphism from 1 to 2 (plus identities).

Question 11. Show that if $F : \mathcal{C} \to D$ is part of an equivalence of categories, then it is full, faithful and essentially surjective on objects. [Hint: prove faithful first]

Question 12. Show that equivalence of categories is an equivalence relation [you may use results in the lecture].