Subject 3: Games, Strategies and Cartesian Closed Categories

to be returned on the 13/12

The questions marked (\star) are optional, some may be more difficult.

1 Games and strategies

Question 1. Let A, B and C be three event structures with a common set of events $\{1, 2, 3\}$. In A, B and C the events are consistent with each other. In C they have the trivial, identity relation as their causal dependency. In A, the only nontrivial causal dependency is $1 \rightarrow 3$ whereas in B the only nontrivial causal dependency is $2 \rightarrow 3$. Let the maps $f : A \rightarrow C$ and $g: B \rightarrow C$ be the maps of event structures whose underlying relation is the identity relation on events. Using the pullback of stable families, derive the pullback of f and g in the category of event structures.

Question 2. For each instance of total map σ of event structures with polarity below say whether σ is a strategy and whether it is deterministic. In each case give a short justification for your answer. (Immediate causal dependency within the event structures is represented by an arrow \rightarrow and inconsistency, or conflict, by a wiggly line $\sim \sim \sim$.)

Question 3. Let E be an event structure. Let $e, e' \in E$. Show

$$\exists y, y_1 \in \mathcal{C}^{\infty}(E). \ y \stackrel{e}{\longrightarrow} y_1 \stackrel{e'}{\longrightarrow} c \iff e \twoheadrightarrow e' \text{ or } e \text{ co } e'.$$

Question 4. Recall, the definition of a strategy as a total map of event structures with polarity which is receptive and courteous/innocent. Let $\sigma : S \to A$ be a total map of event structures. Show that σ is a strategy iff the following three conditions hold:

(i)
$$\sigma x \stackrel{\sim}{\longrightarrow} \& pol_A(a) = - \Rightarrow \exists ! s \in S. x \stackrel{\sim}{\longrightarrow} \& \sigma(s) = a$$
, for all $x \in \mathcal{C}(S)$, $a \in A$,
(ii)(+) If $x \stackrel{e}{\longrightarrow} c x_1 \stackrel{e'}{\longrightarrow} \& pol_S(e) = +$ in $\mathcal{C}(S)$ and $\sigma x \stackrel{\sigma(e')}{\longrightarrow} in \mathcal{C}(A)$, then $x \stackrel{e'}{\longrightarrow} c$ in $\mathcal{C}(S)$, and
(ii)(-) If $x \stackrel{e}{\longrightarrow} c x_1 \stackrel{e'}{\longrightarrow} \& pol_S(e') = -$ in $\mathcal{C}(S)$ and $\sigma x \stackrel{\sigma(e')}{\longrightarrow} in \mathcal{C}(A)$, then $x \stackrel{e'}{\longrightarrow} c$ in $\mathcal{C}(S)$.

Question 5. Let A be an event structure with polarity. Consider the empty map of event structures with polarity $\emptyset \to A$. Is it a strategy in A? Is it a deterministic strategy? Consider now the identity map $id_A : A \to A$ on an event structure with polarity A. Is it a strategy? Is it a deterministic strategy? [Your answer may depend on A. If so specify how.]

Question 6. (*) Say an event structure is *set-like* if its causal dependency relation is the identity relation and all pairs of distinct events are inconsistent. Let A and B be games with underlying event structures which are set-like event structures. In this case, can you see a simpler way to describe deterministic strategies $A \rightarrow B$? What does composition of deterministic strategies between set-like games correspond to? What do strategies in general between set-like games correspond to? [No proofs are required.]

Question 7. (*) Let $\sigma: S \to B$ be a strategy in a game B. Let $f: A \to B$ be a total map of event structures with polarity. Prove that $f^*\sigma$, the pullback of σ along f, is a strategy in A.

[In fact this result also holds when f is partial.]

Deduce that if $\sigma_1 : S_1 \to A$ and $\sigma_2 : S_2 \to A$ are strategies in a game A, then their pullback $\sigma_1 \wedge \sigma_2$ — see the diagram — is also a strategy in A.

The strategy $\sigma_1 \wedge \sigma_2$ is a form of conjunction between strategies. Can you describe its behaviour informally in terms of that of σ_1 and σ_2 ?

2 Cartesian closed categories

2.1 Cartesian structure

For this section, fix a cartesian category C. For each objects $A, B \in C$, we fix a product $(A \times B, \pi_1^{A,B}, \pi_2^{A,B})$ (the A, B annotations on projections are often omitted when they can be recovered from the context). For $f: X \to A$ and $g: X \to B$, we write $\langle f, g \rangle: X \to A \times B$ for the pairing given by the universal property.

Recall also that the functorial action of \times is then defined as

$$f_A \times f_B = \langle f_A \circ \pi_1, f_B \circ \pi_2 \rangle : A_1 \times B_1 \to A_2 \times B_2$$

for $f_A: A_1 \to A_2$ and $f_B: B_1 \to B_2$.

Question 8. Show that:

(a) For all $f: X \to A, g: X \to A$, and $h: Y \to X$, we have the following equation:

$$\langle f,g \rangle \circ h = \langle f \circ h, g \circ h \rangle$$

(b) For all $f: X \to A \times B$, we have the following equation:

$$f = \langle \pi_1 \circ f, \pi_2 \circ f \rangle$$

(c) For all $f_B: A \to B, f_C: A \to C, g_B: B \to B', g_C: C \to C'$, we have the following equation:

$$(g_B \times g_C) \circ \langle f_B, f_C \rangle = \langle g_B \circ f_B, g_C \circ f_C \rangle$$

Question 9. Show that there is a unique $\delta_A : A \to A \times A$ (the **diagonal**) such that $\pi_1 \circ \delta_A = \operatorname{id}_A$ and $\pi_2 \circ \delta_A = \operatorname{id}_A$. Show that for any $f_B : A \to B$, $f_C : A \to C$, the following diagram commutes:

Deduce that δ_A is natural in A.

Question 10. Show that the projections yield natural transformations:

$$\pi_1^{-,B}: (-) \times B \to (-) \qquad \pi_2^{A,-}: A \times (-) \to (-)$$

between functors $\mathcal{C} \to \mathcal{C}$.

2.2 Cartesian closed structure

Question 11. Let C be a cartesian category. Recall that an **exponential** of A to B is a pair (E, ev) such that $E \in C$ and $ev \in C[E \times A, B]$, satisfying the following universal property: for all object C and morphism $f : C \times A \to B$, there is a unique $h : C \to E$ such that the following diagram commutes:

Show that the exponentials of A to B are unique up to isomorphism, *i.e.* if (E, ev) and (E', ev') are two exponentials of A to B, then there is an isomorphism $\phi : E \to E'$ such that the following diagram commutes:

From now on, we assume that C is cartesian closed, and we fix, for any two objects A, B, an exponential of A to B $(A \Rightarrow B, ev_{A,B})$. For $f : B \times A \to C$, write $\Lambda(f) : B \to A \Rightarrow C$ the morphism given by universal property.

Question 12. Show that for all $f: B_2 \times A \to C$, for all $g: B_1 \to B_2$, we have:

$$\Lambda(f) \circ g = \Lambda(f \circ (g \times A))$$

Question 13. Assume we have typed terms:

$$\overline{\Gamma, x : A \vdash M : B} \qquad \qquad \overline{\Gamma \vdash N : A}$$

Recall from the lecture that:

$$[\![\Gamma \vdash M \, N : B]\!] = \mathsf{ev}_{[\![A]\!], [\![B]\!]} \circ \langle \Lambda([\![M]\!]), [\![N]\!] \rangle : [\![\Gamma]\!] \to [\![B]\!]$$

(note that since we assume here that x is the last variable in the typing context of M, there is no need to reorder the context via a γ isomorphism when computing $[\![\lambda x. M]\!]$)

Show that:

 $\llbracket (\lambda x. M) N \rrbracket = \llbracket M \llbracket N/x \rrbracket$

using the substitution lemma seen in the lecture.

2.3 Optional: isomorphisms in cartesian closed categories

Question 14. (*) Let C be a category, and A, B be objects. (a) Show that for all $h: A \to B$, the function

$$\begin{array}{rcl} \varphi_X & : & \mathcal{C}[X,A] & \rightarrow & \mathcal{C}[X,B] \\ & f & \mapsto & h \circ f \end{array}$$

is natural in X.

(b) Show that reciprocally, any natural transformation

$$\varphi : \mathcal{C}[-,A] \rightarrow \mathcal{C}[-,B]$$

has the form $\varphi_X(f) = h \circ f$ (for some $h : A \to B$). (c) Deduce that for any $A, B \in \mathcal{C}, A \cong B$ iff the functors $\mathcal{C}[-, A]$ and $\mathcal{C}[-, B]$ are naturally isomorphic.

Question 15. (\star) Show that for any A, B, C, we have the following isomorphisms:

$$A \Rightarrow 1 \cong 1$$

$$1 \Rightarrow A \cong A$$

$$(A \times B) \Rightarrow C \cong A \Rightarrow (B \Rightarrow C)$$

$$A \Rightarrow (B \times C) \cong (A \Rightarrow B) \times (A \Rightarrow C)$$

If \mathcal{V} is a set of variables, we consider the following arithmetic expressions on \mathcal{V} :

$$e, e' \coloneqq x \mid e \cdot e' \mid e^{e'} \mid 1$$

where $x \in \mathcal{V}$. Given a valuation, *i.e.* some $v : \mathcal{V} \to \mathbb{N}$, we define $\langle e \rangle_v \in \mathbb{N}$ by $\langle x \rangle_v = v(x)$, $\langle 1 \rangle_v = 1$, $\langle e \cdot e' \rangle_v = \langle e \rangle_v \times \langle e' \rangle_v$, and $\langle e^{e'} \rangle_v = \langle e \rangle_v^{\langle e' \rangle_v}$. We say that

$$\mathbb{N} \models e = e' \quad \Leftrightarrow \quad \forall v : \mathcal{V} \to \mathbb{N}, \ \langle e \rangle_v = \langle e' \rangle_v$$

We recall the following theorem:

Theorem 1 (Martin, 1972). For e, e' arithmetic expressions as above, we have $\mathbb{N} \models e = e'$ iff e and e' are convertible using the following "high school algebra" equations:

$$1 \cdot x = x \qquad 1^x = 1$$

$$x^1 = x \qquad x \cdot y = y \cdot x$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z) \qquad x^{y \cdot z} = (x^y)^z$$

$$(x \cdot y)^z = x^z \cdot y^z$$

But we may also, given a valuation $\rho: \mathcal{V} \to \mathcal{C}_0$, interpret arithmetic expressions as objects in a cartesian closed category \mathcal{C} , with $[\![1]\!]_{\rho} = 1, [\![x]\!]_{\rho} = \rho(x), [\![e \cdot e']\!]_{\rho} = [\![e']\!]_{\rho} \times [\![e']\!]_{\rho} = [\![e']\!]_{\rho} \Rightarrow [\![e]\!]_{\rho}$.

Question 16. (**) Using Martin's theorem, show that for all arithmetic expressions $e, e', \mathbb{N} \models e = e'$ iff for all cartesian closed category \mathcal{C} , for all valuation $\rho : \mathcal{V} \to \mathcal{C}_0$, we have $\llbracket e \rrbracket_{\rho} \cong \llbracket e' \rrbracket_{\rho}$.