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I. INTRODUCTION
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The simply-typed A-calculus

Basic prototypal programming language.

Definition (Types)
Ai=0|A—=A

Definition (Terms)

Mx:AFM:B rMN-=M:A—-B TEFN:A

LxtAEX:A Ly M:ASB FFMN:B

Definition (Reductions)
(A.M)N ~p5 M[N/x]
AX.Mx ~p M (x & fv(M))




4/32

Bounds on reduction for simply typed A-calculus

Theorem (Beckmann 2001)

h(M)

M| < 2gmy 11

|M| is the longuest [3n-reduction sequence on M,

h(M) is the height of M, defined by h(x) =0,

h(Ax.M) =1+ h(M) and h(MN) = max(h(M), h(N)) + 1,
20=pand2) ;= 2%,

g(M) is the highest degree of types of subterms of M, where
the degree of a type is d(o) = 0 and

d(A — B) = max(d(A) + 1,d(B)).

Moreover, this bound is optimal.

However, S-reduction is not the notion of execution used in
practice.
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Abstract machines

A more practically meaningful notion of execution on A-terms.

Definition (Krivine Abstract Machine)
@ Closures. Pairs M?, where M is an open term and for
x € fv(M), o(x) is a closure.
o States. Pairs M? x m where M? is a closure and 7 is a stack
of closures.
o Transitions.
(MiMp)? % — M{ * Mg -m (push)
(AXMPx N - — MOYNY o (pop)
x7xm = o(x)*m (call)

Computationally sound with respect to S-reduction.
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Head linear reduction

The KAM performs head linear reduction [Danos-Regnier 2003].
Definition (Head linear reduction)

CL[(Ax.Go[x M]) N] ~ Gi[(Ax.Go[N M]) N]

When x is the head (leftmost) occurrence of a variable.

@ Not canonical on terms but canonical in proof nets,
@ No straightforward way to good bounds from those for 57,

De Bruijn has bounds for his similar minireduction: iterate of the
diagonal of an Ackermann-like function!
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Equivalent formulations (Danos - Herbelin - Regnier)

fGoI «—»HLRX

Games Abstract Machines

‘\» Traversals/

Common combinatorics: pure pointer structures
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II. COMPLEXITY AND PURE POINTER STRUCTURES

II.1 ARENA GAMES
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Arenas, plays

Two players: Player (P) and Opponent (O)

Definition
An arena is a tree A = (Ma, A\a,ba,ia)

Definition

A legal play on A is a pointing string on A which is:
o Alternating,
@ Respects -4 and i4.

The set of legal plays on A is denoted by L4

Definition
A strategy o : A is a non-empty set of even-length legal plays
closed by even-length prefix.
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Arrow, composition

Given arenas A and B, we define A = B:
A= B

B

Giveno:A=Bandt:B=C,weformo;7: A= C

This builds a category of arenas and strategies.
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Notions of view
Terms of the A-calculus only access to part of the history.

Definition (P-view/O-view)

The Player view, or P-view, is defined as follows:

sop! = Tso'p
Fs1 P52 07 = Tsiplo
si' = |

The (long) Opponent view, or O-view, is defined as follows:

PO, = [SP,©
L1 02 P, = s10p




P-views

P-views are abstract representations of branches of Bohm trees.

M. F(Ax.f(Ay.x)) : ((o 0) 0) o
// OAf

f

A ///////’
/o

So the length of P-views correspond roughly to the size of terms.

12/32
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Innocence/Visibility

Definition J

A strategy is innocent if it only depends on its P-view.

Definition J

A strategy is P-visible if it always point inside its P-view.

@ Innocent strategies correspond to terms of PCF

@ P-visible strategies correspond to terms of PCF with
non-determinism and ground type references

Our results will hold as long as visibility holds.
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I11.2 FINITENESS OF INTERACTIONS
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Size of strategies, termination

Definition
If o : Ais P-visible, its size is

) ||—5_|‘
size(o) = sup{T |seo}

If the size of o : A is finite, we say that o is bounded.

Theorem (APAL09)

Ifo: A= B and 7 : B = C are bounded, then any passive
interaction (only one move by the external Opponent) u € o||T is
finite.

Corollary

If o : A= B and 7 : B = C are total and bounded, then so is
o;7: A= C.
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Length of interactions

Theorem

If P-visible 0 : A= B and 7 : B = C both have finite size, then
any passive u € ol||T is finite.

Hence by Konig's lemma (or the fan theorem):

Corollary

For all n,p € N, there is N(n, p) € N such that for all P-visible
o:A= B and1:B = C such that size(c) < n and size(1) < p,
for all passive u € o||T,

lul < N(n, p)

Our goal is to estimate N(n, p).
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Strategy-free formulation
Definition
A play s € L4 is visible if, whenever s; point to s;,
)\A(Sj) =P & s € '_SJ'—l
)\A(Sj) =0 & s ¢ LSy

Definition
A visible play s € L4 has:
e P-size niff for all s’ C s, |"s"| < 2n

o O-size piffforall s Cs, | s’ | <2p+1

Proposition

N(n, p) is the maximal length of a visible play of P-size n and
O-size p.
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Pure pointer structures

Here, only pointers matter, not the identity of moves.

(B=—=B)=—o0

7 |

i |
q ~ fo
(tt l
q fe
iff i

We get the notion of pure pointer structures.
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III. AGENTS AND REWRITING

IT1.1 AGENTS, INTUITIVELY



Abstract machines

The PAM connects pure pointer structures with HLR.

/\
\\
//

/s
\o

© N R wWN O

(M.f(Ax.fF(Ay.x)))(\g.g(Az.g(Aw.z2)))
(M. F(Ax.f(Ay.x)))(\g.g(Az.g(Aw.z2)))
(A fF(Ax.fF(Ay.x)))(A\g.g(Az.g(Aw.2)))
(M. F(Ax.f(Ay.x)))(Ag.g(Az.g(Aw.2)))
(M.F(Ax.f(Ay.x)))(Ag.g(Az.g(Aw.2)))
(M.f(Ax.fF(Ay.x)))(Ag.g(Az.g(Aw.z)))
(M. F(Ax.f(Ay.x)))(Ag.g(Az.g(Aw.2)))
(M. F(Ax.F(Ay.x)))(\g.g(Az.g(Aw.2)))
(M.f(Ax.fF(Ay.x)))(Ag.g(Az.g(Aw.z2)))
(M. F(Ax.f(Ay.x)))(N\g.g(Az.g(A\w.2)))

Head occurrence — argument subterm

20/32
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Abstract machines

Let us give names to the subterms of this A-term:

(Af A Ax A Ay.x))Ag.g(Az.g(Aw.z)))
M; Ny
Mo N
M3 Ns

Where indices correspond to the size of the subterm.



The Krivine Abstract Machine

The PAM also relates to some states of the KAM.

M F(Ax.f
ML F(Ax.f
A fF(x.f
ML F(Ax.f

(AfAf(
(Af.1(
(AMf1(

\ | ( (

5 // (MF.F(Ox.F

. (M.F(OOx.f

° (Af1(
(AMf.1(
(AfF(
(Af.1(

A

ML F(Ax.f
ML F(Ax.f
M. F(Ax.f
M F(Ax.f

© ® N ok w = o
A~ N N S N S N~

Ag.g(Az.g(Aw.z
Ag.g(Az.g(Aw.z
Ag.g(Az.g(Aw.z
Ag.g(Az.g(Aw.z

Az.g(Aw.z
Ag.g(Az.g(Aw.z
Ag.g(Az.g(Aw.z
Ag.g(Az.g(Aw.z

~— v N e N e N e N
~— N N e N N N e N
N N N N N N N N N
AN AN N AN AN AN N AN /S A/~

Ag.g(Az.g(Aw.z
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The Krivine Abstract Machine

The PAM also relates to some states of the KAM.

© o N kWb BEOo

M3 x N3
(M.F(Ax.fF(Ay.x)))(Ag.g(Az.g(Aw.z)))
(M.F(Ax.f(Ay.x)))(Ag.g(Az.g(Aw.z2)))
(A F(Ax.F(Ay.x)))(\g.g(Az.g(Aw.z)))
(M.F(Ax.f(Ay.x)))(Ag.g(Az.g(Aw.z2)))
(M. F(Ax.f(Ay.x)))(Ag.g(Az.g(Aw.2)))
(A f(Ax.fF(Ay.x)))(A\g.g(Az.g(Aw.2)))
(M.F(Ax.F(Ay.x)))(Ag.g(Az.g(Aw.z)))
(A F(Ax.fF(Ay.x)))(A\g.g(Az.g(Aw.2)))
(A F(Ax.fF(Ay.x)))(A\g.g(Az.g(Aw.2)))
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The Krivine Abstract Machine

The PAM also relates to some states of the KAM.

© o N @ kWb = O

N
/)
/s

\

\
o

M3 % N3

N3 x ME—Ns
M .f
M .f
M .f

( Ax.f
(

(
(NF.f
(

(

(

(

Ax.f
Ax.f
Ax.f
Ax.f
Ax.f
Ax.f
Ax.f

Ay.x)))(Ag-g(Az.g(Aw.z)))
Ay.x)))(N\g.g(Az.g(Aw.z)))
Ay x)))(A\g.g(Az.g(Aw.z)))
Ayx)))(Ag.g(Az.g(Aw.z)))
AL F Ay.x)))(Ag.g(Az.g(Aw.z)))
Af.f N)(Ag-g(Az.g(Aw.z)))
Aff ))(Ag-g(Az.g(Aw.z)))
))(Ag-g(Az.g(Aw .2)))

M .f

Ay.x)))(\g.g(Az.g(Aw.z

Ay.x))(Ag.g(Az.g(Aw.z

Ay.x)))(Ag.g(Az.g(Aw.z

~ o~ o~ o~ o~ o~ o~ o~
~ o~ o~ o~ o~ o~ o~ o~

)
)
)
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The Krivine Abstract Machine

The PAM also relates to some states of the KAM.
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Agents

..which collapses to an operation on integers.

0. 3% 3
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Rewriting on agents

All steps are instances of the following reduction

An agent is a finite tree of natural numbers.

Definition J
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Simulation

Proposition (Simulation)

For all pure pointer structure s, there is a labelling of moves
S0, S1,--- by agents:

dp ™ dl ™~ adx a3 ...

Remark
n
If s has P-size n and O-size p, we can choose ap = | .
p
Corollary
n
N(n,p) < N(|)+1
p

where N(a) is the length of the longuest reduction sequence of a.

v




Typed variant
Definition
Ng4(n, p) is the maximal size of a passive interaction between

o0 : A= B ofsize nand 7 : B = C of size p where B has depth
d—1.

Definition
A typed agent is a tree of natural numbers, whose edges are
labelled be natural numbers. Their reduction is, for n, d; > 1:

26/32
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II1.2 BOUNDS FOR REDUCTION OF AGENTS
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Beckmann’'s method
For a, p € N, define an inductive predicate I% a.

“a has size a with cuts of degree less than p"

The derivation tree for |% a has aspects of both syntax tree and
explicit reduction tree.

Lemma (Syntax)

For any typed agent a of maximum degree d, maximum label m
and size s, we have ImT'S a.

Lemma (Cut elimination)

IfES a with a > 1, then 5 a.

Lemma (Bound lemma)

Ifl% a, then N(a) < a.
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Results

Theorem

For any typed agent a of maximum degree d, maximum label m
and size s, we have:
N(a) <275t

Theorem

1
22, < Ny(n, p) < 20

v

The construction of the lower bound is standard (it only makes use
of innocent behaviour).
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Application: head linear reduction

Theorem (Game situation)

LetTEM:A— BandT = N: A be B-normal n-long \-terms,

then: h(M)-(h(N)-+1)
~ 4+
IMN| < 2000

Theorem (General case)
Let =M : A, then:

(h(M) +£(M)+1)-(g(M)+1)
IMI < 20

Bounds for B-reduction on closed terms: 22((’,\\/’/,))+g (M)

The price of linearity is not as high as expected!
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IV. CONCLUSIONS
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Conclusions

Achievements
@ Bounds for the length of plays in game semantics

@ Also holds for HLR, abstract machines, traversals . ..

@ Holds for models of non determinism, ground type references,
but also call-by-value, restricted concurrent languages. . .

Questions & further work
@ Could agents be used to study languages with restricted
complexity (e.g. light linear logics)?
o Could we optimise these tools (especially on small types), to
statically generate useful bounds for programming languages? )
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