Estimation of the length of interactions in arena game semantics

Pierre Clairambault

Department of Computer Science University of Bath

FoSSaCS 2011 30/03/2011

I. Introduction

The simply-typed λ -calculus

Basic prototypal programming language.

Definition (Types)

$$A ::= o \mid A \rightarrow A$$

Definition (Terms)

$$\frac{\Gamma, x : A \vdash x : A}{\Gamma \vdash \lambda x . M : A \rightarrow B} \qquad \frac{\Gamma \vdash M : A \rightarrow B \qquad \Gamma \vdash N : A}{\Gamma \vdash \lambda x . M : A \rightarrow B}$$

Definition (Reductions)

$$(\lambda x.M)N \sim_{\beta} M[N/x]$$

 $\lambda x.Mx \sim_{\eta} M(x \notin fv(M))$

Bounds on reduction for simply typed λ -calculus

Theorem (Beckmann 2001)

$$|M| \le 2_{g(M)+1}^{h(M)}$$

- |M| is the longuest $\beta\eta$ -reduction sequence on M,
- h(M) is the height of M, defined by h(x) = 0, $h(\lambda x.M) = 1 + h(M)$ and $h(MN) = \max(h(M), h(N)) + 1$,
- $2_0^p = p$ and $2_{n+1}^p = 2_{n+1}^{2^p}$,
- g(M) is the highest degree of types of subterms of M, where the degree of a type is d(o) = 0 and $d(A \rightarrow B) = \max(d(A) + 1, d(B))$.

Moreover, this bound is optimal.

However, β -reduction is **not** the notion of execution used in practice.

Abstract machines

A more practically meaningful notion of execution on λ -terms.

Definition (Krivine Abstract Machine)

- Closures. Pairs M^{σ} , where M is an open term and for $x \in fv(M)$, $\sigma(x)$ is a closure.
- States. Pairs $M^{\sigma} \star \pi$ where M^{σ} is a closure and π is a stack of closures.
- Transitions.

$$\begin{array}{cccc} (M_1M_2)^{\sigma}\star\pi & \to & M_1^{\sigma}\star M_2^{\sigma}\cdot\pi & \text{(push)} \\ (\lambda x.M)^{\sigma}\star N^{\tau}\cdot\pi & \to & M^{\sigma\cup\{x\mapsto N^{\tau}\}}\star\pi & \text{(pop)} \\ x_i^{\sigma}\star\pi & \to & \sigma(x_i)\star\pi & \text{(call)} \end{array}$$

Computationally sound with respect to β -reduction.

Head linear reduction

The KAM performs **head linear reduction** [Danos-Regnier 2003].

Definition (Head linear reduction)

$$C_1[(\lambda x.C_2[x\ M])\ N] \rightsquigarrow C_1[(\lambda x.C_2[N\ M])\ N]$$

When x is the head (leftmost) occurrence of a variable.

- Not canonical on terms but canonical in proof nets,
- ullet No straightforward way to good bounds from those for $eta\eta$,

De Bruijn has bounds for his similar **minireduction**: iterate of the diagonal of an Ackermann-like function!

Equivalent formulations (Danos - Herbelin - Regnier)

Common combinatorics: pure pointer structures

II. COMPLEXITY AND PURE POINTER STRUCTURES

II.1 Arena games

Arenas, plays

Two players: Player (P) and Opponent (O)

Definition

An **arena** is a tree $A = (M_A, \lambda_A, \vdash_A, i_A)$

Definition

A **legal play** on A is a **pointing string** on A which is:

- Alternating,
- Respects \vdash_A and i_A .

The set of legal plays on A is denoted by \mathcal{L}_A

Definition

A **strategy** σ : A is a non-empty set of even-length legal plays closed by even-length prefix.

Arrow, composition

Given arenas A and B, we define $A \Rightarrow B$:

Given $\sigma: A \Rightarrow B$ and $\tau: B \Rightarrow C$, we form $\sigma; \tau: A \Rightarrow C$

This builds a category of arenas and strategies.

Notions of view

Terms of the λ -calculus only access to part of the history.

Definition (P-view/O-view)

The **Player view**, or P-view, is defined as follows:

$$\lceil sop \rceil = \lceil so \rceil p$$

$$\lceil s_1 \ p \ \widehat{s_2} \ o \rceil = \lceil s_1 p \rceil o$$

$$\lceil si \rceil = i$$

The (long) **Opponent view**, or O-view, is defined as follows:

$$\lfloor spo_{\rfloor} = \lfloor sp_{\rfloor}o$$

 $\lfloor s_1 \ o \ \widehat{s_2} \ p_{\rfloor} = \lfloor s_1o_{\rfloor}p$

P-views

P-views are abstract representations of branches of **Böhm trees**.

$$\lambda f. f(\lambda x. f(\lambda y. x)) : ((o \longrightarrow o) \longrightarrow o) \longrightarrow o$$

$$\circ^{\lambda f}$$

$$\circ^{\lambda x}$$

$$\circ^{\lambda y}$$

So the length of P-views correspond roughly to the size of terms.

Innocence/Visibility

Definition

A strategy is **innocent** if it only depends on its *P*-view.

Definition

A strategy is *P*-**visible** if it always point inside its *P*-view.

- Innocent strategies correspond to terms of PCF
- P-visible strategies correspond to terms of PCF with non-determinism and ground type references

Our results will hold as long as visibility holds.

II.2 FINITENESS OF INTERACTIONS

Size of strategies, termination

Definition

If σ : A is P-visible, its **size** is

$$size(\sigma) = sup\{\frac{|\lceil s\rceil|}{2} \mid s \in \sigma\}$$

If the size of σ : A is finite, we say that σ is **bounded**.

Theorem (APAL09)

If $\sigma: A \Rightarrow B$ and $\tau: B \Rightarrow C$ are bounded, then any **passive** interaction (only one move by the external Opponent) $u \in \sigma || \tau|$ is finite.

Corollary

If $\sigma: A \Rightarrow B$ and $\tau: B \Rightarrow C$ are total and bounded, then so is $\sigma: \tau: A \Rightarrow C$.

Length of interactions

Theorem

If P-visible $\sigma: A \Rightarrow B$ and $\tau: B \Rightarrow C$ both have finite size, then any passive $u \in \sigma||\tau|$ is finite.

Hence by König's lemma (or the fan theorem):

Corollary

For all $n, p \in \mathbb{N}$, there is $N(n, p) \in \mathbb{N}$ such that for all P-visible $\sigma : A \Rightarrow B$ and $\tau : B \Rightarrow C$ such that $size(\sigma) \le n$ and $size(\tau) \le p$, for all passive $u \in \sigma || \tau$,

$$|u| \leq N(n,p)$$

Our goal is to estimate N(n, p).

Strategy-free formulation

Definition

A play $s \in \mathcal{L}_{\mathcal{A}}$ is **visible** if, whenever s_j point to s_i ,

$$\lambda_A(s_j) = P \Leftrightarrow s_i \in \lceil s_j \rceil$$

 $\lambda_A(s_j) = O \Leftrightarrow s_i \in \lfloor s_j \rfloor$

Definition

A visible play $s \in \mathcal{L}_A$ has:

- *P*-size *n* iff for all $s' \sqsubseteq s$, $|\lceil s' \rceil| \le 2n$
- *O*-size p iff for all $s' \sqsubseteq s$, $| \lfloor s' \rfloor | \leq 2p + 1$

Proposition

N(n,p) is the maximal length of a visible play of P-size n and O-size p.

Pure pointer structures

Here, only pointers matter, not the identity of moves.

We get the notion of **pure pointer structures**.

III. AGENTS AND REWRITING

III.1 AGENTS, INTUITIVELY

Abstract machines

The PAM connects pure pointer structures with HLR.

0.
$$(\lambda f.f(\lambda x.f(\lambda y.x)))(\lambda g.g(\lambda z.g(\lambda w.z)))$$
1.
$$(\lambda f.f(\lambda x.f(\lambda y.x)))(\lambda g.g(\lambda z.g(\lambda w.z)))$$
2.
$$(\lambda f.f(\lambda x.f(\lambda y.x)))(\lambda g.g(\lambda z.g(\lambda w.z)))$$
3.
$$(\lambda f.f(\lambda x.f(\lambda y.x)))(\lambda g.g(\lambda z.g(\lambda w.z)))$$
4.
$$(\lambda f.f(\lambda x.f(\lambda y.x)))(\lambda g.g(\lambda z.g(\lambda w.z)))$$
5.
$$(\lambda f.f(\lambda x.f(\lambda y.x)))(\lambda g.g(\lambda z.g(\lambda w.z)))$$
6.
$$(\lambda f.f(\lambda x.f(\lambda y.x)))(\lambda g.g(\lambda z.g(\lambda w.z)))$$
7.
$$(\lambda f.f(\lambda x.f(\lambda y.x)))(\lambda g.g(\lambda z.g(\lambda w.z)))$$
8.
$$(\lambda f.f(\lambda x.f(\lambda y.x)))(\lambda g.g(\lambda z.g(\lambda w.z)))$$
9.
$$(\lambda f.f(\lambda x.f(\lambda y.x)))(\lambda g.g(\lambda z.g(\lambda w.z)))$$

Head occurrence – argument subterm

Abstract machines

Let us give names to the subterms of this λ -term:

Where indices correspond to the size of the subterm.

0.
$$(\lambda f.f(\lambda x.f(\lambda y.x)))(\lambda g.g(\lambda z.g(\lambda w.z)))$$
1.
$$(\lambda f.f(\lambda x.f(\lambda y.x)))(\lambda g.g(\lambda z.g(\lambda w.z)))$$
2.
$$(\lambda f.f(\lambda x.f(\lambda y.x)))(\lambda g.g(\lambda z.g(\lambda w.z)))$$
3.
$$(\lambda f.f(\lambda x.f(\lambda y.x)))(\lambda g.g(\lambda z.g(\lambda w.z)))$$
4.
$$(\lambda f.f(\lambda x.f(\lambda y.x)))(\lambda g.g(\lambda z.g(\lambda w.z)))$$
5.
$$(\lambda f.f(\lambda x.f(\lambda y.x)))(\lambda g.g(\lambda z.g(\lambda w.z)))$$
6.
$$(\lambda f.f(\lambda x.f(\lambda y.x)))(\lambda g.g(\lambda z.g(\lambda w.z)))$$
7.
$$(\lambda f.f(\lambda x.f(\lambda y.x)))(\lambda g.g(\lambda z.g(\lambda w.z)))$$
8.
$$(\lambda f.f(\lambda x.f(\lambda y.x)))(\lambda g.g(\lambda z.g(\lambda w.z)))$$
9.
$$(\lambda f.f(\lambda x.f(\lambda y.x)))(\lambda g.g(\lambda z.g(\lambda w.z)))$$

0.
$$M_{3} \star N_{3}$$
1.
$$(\lambda f.f(\lambda x.f(\lambda y.x)))(\lambda g.g(\lambda z.g(\lambda w.z)))$$
2.
$$(\lambda f.f(\lambda x.f(\lambda y.x)))(\lambda g.g(\lambda z.g(\lambda w.z)))$$
3.
$$(\lambda f.f(\lambda x.f(\lambda y.x)))(\lambda g.g(\lambda z.g(\lambda w.z)))$$
4.
$$(\lambda f.f(\lambda x.f(\lambda y.x)))(\lambda g.g(\lambda z.g(\lambda w.z)))$$
5.
$$(\lambda f.f(\lambda x.f(\lambda y.x)))(\lambda g.g(\lambda z.g(\lambda w.z)))$$
6.
$$(\lambda f.f(\lambda x.f(\lambda y.x)))(\lambda g.g(\lambda z.g(\lambda w.z)))$$
7.
$$(\lambda f.f(\lambda x.f(\lambda y.x)))(\lambda g.g(\lambda z.g(\lambda w.z)))$$
8.
$$(\lambda f.f(\lambda x.f(\lambda y.x)))(\lambda g.g(\lambda z.g(\lambda w.z)))$$
9.
$$(\lambda f.f(\lambda x.f(\lambda y.x)))(\lambda g.g(\lambda z.g(\lambda w.z)))$$

0.
$$M_{3} \star N_{3}$$
1.
$$N_{3} \star M_{2}^{f \mapsto N_{3}}$$
2.
$$(\lambda f. f(\lambda x. f(\lambda y. x)))(\lambda g. g(\lambda z. g(\lambda w. z)))$$
3.
$$(\lambda f. f(\lambda x. f(\lambda y. x)))(\lambda g. g(\lambda z. g(\lambda w. z)))$$
4.
$$(\lambda f. f(\lambda x. f(\lambda y. x)))(\lambda g. g(\lambda z. g(\lambda w. z)))$$
5.
$$(\lambda f. f(\lambda x. f(\lambda y. x)))(\lambda g. g(\lambda z. g(\lambda w. z)))$$
6.
$$(\lambda f. f(\lambda x. f(\lambda y. x)))(\lambda g. g(\lambda z. g(\lambda w. z)))$$
7.
$$(\lambda f. f(\lambda x. f(\lambda y. x)))(\lambda g. g(\lambda z. g(\lambda w. z)))$$
8.
$$(\lambda f. f(\lambda x. f(\lambda y. x)))(\lambda g. g(\lambda z. g(\lambda w. z)))$$
9.
$$(\lambda f. f(\lambda x. f(\lambda y. x)))(\lambda g. g(\lambda z. g(\lambda w. z)))$$

Agents

... which collapses to an operation on integers.

Rewriting on agents

All steps are instances of the following reduction

Definition

An agent is a finite tree of natural numbers.

Simulation

Proposition (Simulation)

For all pure pointer structure s, there is a labelling of moves s_0, s_1, \ldots by agents:

$$a_0 \rightsquigarrow a_1 \rightsquigarrow a_2 \rightsquigarrow a_3 \rightsquigarrow \dots$$

Remark

If s has P-size n and O-size p, we can choose $a_0 = \begin{bmatrix} n \\ p \end{bmatrix}$.

Corollary

$$N(n,p) \leq N({n \atop p}) + 1$$

where N(a) is the length of the longuest reduction sequence of a.

Typed variant

Definition

 $N_d(n,p)$ is the maximal size of a passive interaction between $\sigma:A\Rightarrow B$ of size n and $\tau:B\Rightarrow C$ of size p where B has depth d-1.

Definition

A **typed agent** is a tree of natural numbers, whose edges are labelled be natural numbers. Their reduction is, for $n, d_i \ge 1$:

Proposition

$$N_d(n,p) \leq N({n \atop d}) + 1$$

III.2 Bounds for reduction of agents

Beckmann's method

For $\alpha, \rho \in \mathbb{N}$, define an inductive predicate $\frac{|\alpha|}{\rho}$ a.

"a has size α with cuts of degree less than ρ "

The derivation tree for $\frac{|\alpha|}{\rho}$ a has aspects of both syntax tree and explicit reduction tree.

Lemma (Syntax)

For any typed agent a of maximum degree d, maximum label m and size s, we have $\frac{|m \cdot s|}{d}$ a.

Lemma (Cut elimination)

If
$$\frac{\alpha}{\rho+1}$$
 a with $\alpha \geq 1$, then $\frac{2^{\alpha-1}}{\rho}$ a.

Lemma (Bound lemma)

If
$$\frac{\alpha}{0}$$
 a, then $N(a) \leq \alpha$.

Theorem

For any typed agent a of maximum degree d, maximum label m and size s, we have:

$$N(a) \leq 2_{d-1}^{m \cdot s-1}$$

Theorem

$$2_{d-2}^2 \le N_d(n,p) \le 2_{d-2}^{n(p+1)}$$

The construction of the lower bound is standard (it only makes use of innocent behaviour).

Application: head linear reduction

Theorem (Game situation)

Let $\Gamma \vdash M : A \rightarrow B$ and $\Gamma \vdash N : A$ be β -normal η -long λ -terms, then:

$$|MN| \leq 2_{d(A)-1}^{h(M)\cdot(h(N)+1)}$$

Theorem (General case)

Let $\Gamma \vdash M : A$, then:

$$|M| \le 2_{g(M)}^{(h(M)+g(M)+1)\cdot(g(M)+1)}$$

Bounds for β -reduction on closed terms: $2_{g(M)}^{h(M)+g(M)}$

The price of linearity is not as high as expected!

IV. Conclusions

Conclusions

Achievements

- Bounds for the length of plays in game semantics
- Also holds for HLR, abstract machines, traversals . . .
- Holds for models of non determinism, ground type references, but also call-by-value, restricted concurrent languages...

Questions & further work

- Could agents be used to study languages with restricted complexity (e.g. light linear logics)?
- Could we optimise these tools (especially on small types), to statically generate useful bounds for programming languages?