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STRONG FUNCTORS AND INTERLEAVING FIXPOINTS

IN GAME SEMANTICS ∗

Pierre Clairambault1

Abstract. We describe a sequent calculus µLJ with primitives for
inductive and co-inductive datatypes and equip it with reduction rules
allowing a sound translation of Gödel’s system T. We introduce the
notion of a µ-closed category, relying on a uniform interpretation of
open µLJ formulas as strong functors. We show that any µ-closed cat-
egory is a sound model for µLJ . We then turn to the construction of a
concrete µ-closed category based on Hyland-Ong game semantics. The
model relies on three main ingredients: the construction of a general
class of strong functors called open functors acting on the category of
games and strategies, the solution of recursive arena equations by ex-
ploiting cycles in arenas, and the adaptation of the winning conditions
of parity games to build initial algebras and terminal coalgebras for
many open functors. We also prove a weak completeness result for this
model, yielding a normalisation proof for µLJ .

1991 Mathematics Subject Classification. 18C50, 03F05, 68Q55, 91A40.

1. Introduction

The idea of enriching proof systems or total programming languages with syn-
tactic constructions for induction and co-induction is nowadays very common:
inductive and co-inductive types and their generalisations have been studied ex-
tensively in dependent type theory [29] but were also considered in a lot of other
settings, including the λµ-calculus [1] and µMALL [4]. Motivations are multiple,
but often amount to increasing the expressive power of a language without paying
the price of exponential modalities (as in [4]) or impredicativity (as in [1] or [16]).
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Such constructions also appear in the µ-calculus [3], a modal logic used in verifica-
tion to specify complex properties of infinite graphs. Terms in the µ-calculus can
in turn be represented by parity games, a standard tool in the theory of automata
recognising infinite objects [37]. In parity games, one can express inductive and
co-inductive behaviour by considering cyclic games along with winning conditions
on infinite plays: in an inductive structure, it is a loss for the first player (Player,
Eve, . . . ) if the play loops infinitely often. In a co-inductive structure, it is the
responsibility of the other player (Opponent, Adam, . . . ) to prevent this infinite
looping from happening (see for instance [36]). A natural question is then: can
these games serve as a basis for a model of a total programming language with
induction and co-induction? Our answer is: not directly, since although one can
define a category of parity games and strategies (as is implicit in [6]), this category
lacks the appropriate structure to interpret the main components of a program-
ming language, in particular it is not closed. In this paper we show that although
parity games cannot be directly applied to model a total programming language
with induction and co-induction, this can be done by importing the winning condi-
tions described above in the framework of Hyland-Ong game semantics [23]. The
target language of our study will be µLJ , an intuitionistic sequent calculus ob-
tained by enriching LJ with induction and co-induction. The construction of this
model however requires us to address a number of issues.

Loops and open functors. First, we need to introduce the loop construction on
arenas, which in the absence of winning conditions should relate to McCusker’s
model of recursive types [31] in the sense that it should provide minimal invariants
[17–19]. To formalise it, we are brought to consider open arenas, i.e. arenas
with special moves called holes representing free variables. From open arenas
we build open functors, which contain all the functors built using the base type
constructors, and for which the loop constructions allow to define (parametrised)
minimal invariants. In the presence of winning conditions, these minimal invariants
split into initial algebras and terminal coalgebras for open functors.

µ-closed categories. Second, we need to spell out what is a categorical model of
µLJ , since unfortunately the usual categories of games and strategies are not al-
gebraically complete [17]. The idea is to require a cartesian closed category (ccc) C
with a set of endofunctors with enough initial algebras and terminal coalgebras. In
order to model the deduction rules in the presence of a non-empty context Γ these
endofunctors need to be strong [13] (or, equivalently, enriched with respect to the
enriched structure that C has over itself). These strengths can be defined by in-
duction on types (although the case of parametrised fixpoints requires special care,
see [34]). Instead, we rely here on the fact that open functors are automatically
strong: we assume that the category C comes with a set of strong functors, and we
give axioms ensuring that the strengths do correspond to those generated induc-
tively. We then define µ-closed categories as categories whose strong endofunctors
have initial algebras and terminal coalgebras.

Outline. In Section 2, we introduce the logic µLJ and examine some of its proof-
theoretical aspects. In Section 3 we introduce µ-closed categories, and prove they
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are sound models for µLJ . In Section 4, we build a concrete µ-closed category of
games and strategies. We first describe the construction of open functors along
with the corresponding strengths. Then we enrich the category of arenas and
innocent strategies with winning conditions, and prove that the resulting category
is µ-closed. Finally we study completeness properties of the resulting model.

Remark. The present paper serves as a long version for both [9] (in which we mod-
eled the weak fragment of µLJ , where fixpoints and functor rules are only allowed
in an empty context) and [8] (where we described the categorical structure needed
to extend the model to the general rules). Let us mention some restrictions in the
present work: first, loops can only be introduced in arenas when free variables do
not appear in root position. Thus, representing fixpoints by loops has the effect of
restricting the model to strict formulas, where (co)induction is guarded. Second,
we were unfortunately unable to carry out the construction of open functors in
the most general case and were forced to assume that holes (in open arenas) could
not enable other moves. As a result, we only interpret the fragment of µLJ in
which free variables never appear at the right hand side of an implication, dubbed
the pseudo-polynomial fragment. However note that the other parts of the model
are presented in full generality, thus a successful construction of all open functors
would immediately yield a model of all strict formulas of µLJ .

Related work. On the game semantics side, the closest work to the present paper
is the model of recursive types by McCusker [31]. The main difference is that µLJ
is a total programming language so its terms are interpreted by total strategies,
which has the effect of splitting recursive types into inductive and co-inductive
types. On the categorical side, µ-closed categories are closely related to the strong
categorical datatypes of Cockett and Spencer [13,14], used as the basis of the pro-
gramming language Charity [12] (with inductive and co-inductive types). However
µ-closed categories are more general: they include a notion of contravariant strong
functor which allows us to support the implication connective, where strong cat-
egorical datatypes are based on (non-closed) distributive categories. Moreover we
also suppose parametrised initial algebras and terminal coalgebras to be strong
which allows us to support interleaving inductive and co-inductive types, whereas
Charity does not support mutually defined fixpoints.

2. The logic µLJ

The interest of µLJ is that it is a hybrid object, which can be seen either as
a basic logic allowing reasoning by induction and co-induction or as an idealized
total programming language with inductive and co-inductive datatypes, as will be
justified by a translation of Gödel’s system T .
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fv+(S ⇒ T ) = fv−(S) ∪ fv+(T ) fv−(S ⇒ T ) = fv+(S) ∪ fv−(T )
fv+(S + T ) = fv+(S) ∪ fv+(T ) fv−(S + T ) = fv−(S) ∪ fv−(T )
fv+(S × T ) = fv+(S) ∪ fv+(T ) fv−(S × T ) = fv−(S) ∪ fv−(T )
fv+(µX.T ) = fv+(T ) \ {X} fv−(µX.T ) = fv−(T )
fv+(νX.T ) = fv+(T ) \ {X} fv−(νX.T ) = fv−(T )

fv+(X) = {X} fv−(X) = ∅
fv+(1) = ∅ fv−(1) = ∅
fv+(0) = ∅ fv−(0) = ∅

Figure 1. Negative and positive free variables

2.1. Definitions

Definition 2.1 (Pre-formulas). Let V be a countable set of variables. The set of
pre-formulas is defined by the following grammar, with X ∈ V.

S ::= S ⇒ T | S + T | S × T | µX.T | νX.T | X | 1 | 0

On pre-formulas, we define by mutual induction the notions of free positive
variables and free negative variables, as described in Figure 2.1. We say that F
is a formula if for every subformula of F of the form µX.F ′ or νX.F ′, we have
X 6∈ fv−(F ′). In other words, bound variables always appear in positive position.
Note that unlike most works in (co)inductive types, we do not require here that
the occurrences of bound variables appear only in strictly positive position (i.e.,
that no occurrence of a bound variable appears at the left side of an implication).
This is because our model is not set-theoretical, and hence accommodates perfectly
inductive types of the form µX.(X ⇒ 2)⇒ 2.

Definition 2.2 (Functor). A formula F is a positive functor if fv−(F ) = ∅ and
fv+(F ) is a singleton1. We take the convention that positive functors will be
denoted by P . When this causes no ambiguity, their possible free variable will be
denoted by X, and we write P (A) for P [A/X]. Similarly, F is a negative functor
if fv+(F ) = ∅ and fv−(F ) is a singleton. Negative functors will be denoted by
N , and we will often write N(A) instead of N [A/X].

Definition 2.3 (µLJ). A sequent is an expression Γ ` A, where Γ is a list of
formulas and A is a formula. The deduction rules of µLJ are given in Figure 2.

2.2. Dynamical behaviour

2.2.1. Cut reduction and functor expansion

The question of which reduction rules to equip µLJ with is a delicate one.
The reduction rules should hopefully always terminate, yet be powerful enough to

1This does not mean that F has only one occurrence of a free variable, as there may be several

occurrences of the same free variable.
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Identity Group

ax
A ` A

Γ ` A ∆, A ` B
Cut

Γ,∆ ` B
Structural Group

Γ, A,A,∆ ` B
C

Γ, A,∆ ` B

Γ,∆ ` B
W

Γ, A,∆ ` B

Γ, A,B,∆ ` C
γ

Γ, B,A,∆ ` C

Logical Group

Γ, A ` B
⇒r

Γ ` A⇒ B

Γ ` A ∆, B ` C
⇒l

Γ,∆, A⇒ B ` C

0l
0 ` A

1r
` 1

Γ ` A ∆ ` B
×r

Γ,∆ ` A×B

Γ, A,B ` C
×l

Γ, A×B ` C
Γ ` A ←−

+r
Γ ` A+B

Γ ` B −→
+r

Γ ` A+B

Γ, A ` C Γ, B ` C
+l

Γ, A+B ` C

Fixpoints

Γ ` P (µX.P )
µr

Γ ` µX.P

Γ, P (A) ` A
µl

Γ, µX.P ` A

Γ, P (νX.P ) ` B
νl

Γ, νX.P ` B

Γ, A ` P (A)
νr

Γ, A ` νX.P

Functors

Γ, A ` B
[P ]

Γ, P (A) ` P (B)

Γ, A ` B
[N ]

Γ, N(B) ` N(A)

Figure 2. Deduction rules for µLJ

allow the translation of Gödel’s system T (or another programming language with
induction or co-induction). Another difficulty is the fact that as a sequent calculus,
the syntax of µLJ is extremely expressive; it can be thought as a programming
language with explicit substitutions, weakening and contraction, and such systems
must be handled with care, or they lose the normalization property [32]. Since in
this paper we focus on the models of µLJ rather than on its syntax, we will not
give here the (quite large) full set of reduction rules, which can be found in [10]. In
this section, we just mention and illustrate the different groups of reduction rules.

Logical cuts. This group describes the usual reduction of cuts between left and
right introduction rules of the logical connectives ×, + and ⇒.
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π1

Γ ` P [µX.P/X]
µr

Γ ` µX.P

π2

∆, P [A/X] ` A
µl

∆, µX.P ` A
Cut

Γ,∆ ` A

 

π1

Γ ` P [µX.P/X]

π2

∆, P [A/X] ` A
µl

∆, µX.P ` A
[P ]

∆, P [µX.P/X] ` P [A/X]
Cut

Γ,∆ ` P [A/X]

π2

∆, P [A/X] ` A
Cut

Γ,∆,∆ ` A
========= S

Γ,∆ ` A

Figure 3. Reduction of a µ cut

Fixed points. This group describes the cut reduction between left and right intro-
duction rules of µ and ν. The case for µ is displayed in Figure 3, in which the rule
S denotes a straightforward succession of structural rules. Readers familiar with
the categorical models of induction may recognize here a 2-cell in the diagram of
initial algebras. This reduction introduces an occurrence of the functor rule, which
explains why it must be included in µLJ .

Functors. This group describes the expansion laws for functors. We give in Figure
4 the case of a functor built by taking the product of two other functors. It
can be shown rather easily [10] that these expansion rules suffice to eliminate
all occurrences of functor rules, hence as expected functors have no impact on
provability.

Commutations. This group deals with all the other cases, ensuring all necessary
commutations to get back to the above key cases.

2.2.2. Irreducible cuts

This reduction system is not complete, since some cuts cannot be eliminated.
For instance, consider the following situation:

π1

Γ, T (A) ` A
µl

Γ, µX.T ` A

π2

∆, A ` B
Cut

Γ, µX.T,∆ ` B
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π

Γ, A ` B
[P1 × P2]

Γ, (P1 × P2)(A) ` (P1 × P2)(B)

 

π

Γ, A ` B
[P1]

Γ, P1(A) ` P1(B)
=================== S
Γ, P1(A), P2(A) ` P1(B)

×l
Γ, P1(A)× P2(A) ` P1(B)

π

Γ, A ` B
[P2]

Γ, P2(A) ` P2(B)
=================== S
Γ, P1(A), P2(A) ` P2(B)

×l
Γ, P1(A)× P2(A) ` P2(B)

×r

Γ, P1(A)× P2(A),Γ, P1(A)× P2(A) ` P1(B)× P2(B)
========================================== S

Γ, P1(A)× P2(A) ` P1(B)× P2(B)

Figure 4. Expansion rule for positive functor product

There is no hope of reducing this cut while preserving termination. Indeed, π2

should somehow commute with the µl rule to reach π1, where the right introduc-
tion rule (or an axiom) for the main connective of A is found. However, this is
impossible without first expanding the left premise along the lines of the diagram
of initial algebras, and allowing this would yield a non-terminating system. Be-
cause of this situation, some authors [4] choose to inline this cut into the rule for
µl thus yielding a system which does eliminate cuts, but whose cut-free proofs do
not enjoy the subformula property. Hence consistency of this logic cannot be easily
deduced from a cut-elimination theorem in the style of Gentzen [20], however it
will be a corollary of our games model. Note that there is also the dual situation:

π1

Γ ` A

π2

∆, A ` T (A)
νr

∆, A ` νX.T
Cut

Γ,∆ ` B

Here, a useful intuition is that of laziness : evaluation of co-inductive data must
be demand-driven, not output-driven, or we have an immediate non-termination.

Let us emphasize that even if we conjecture that the reduction system on µLJ
terminates we do not aim here to prove such a theorem, which for the reasons
above would not yield a cut elimination result. Instead we focus on the game
semantics which, as discussed in Section 4.4, will allow us to normalise µLJ proofs
to potentially infinite, but cut-free, proofs.
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2.3. Translation of system T

In this section, we illustrate the dynamical behaviour of µLJ and justify the
reduction rules described above by encoding Gödel’s System T inside. Let us begin
by defining the variant of System T that we will be using here.

Definition 2.4. The set of types of System T is defined by the following grammar:

A,B ::= int | bool | A⇒ B | A×B

The set of terms is given as follows:

M,N,P ::= x | λx.M |MN | 0 | S M | tt | ff | if M N P | 〈M,N〉 |
π1 M | π2 M | rec M N P

We consider first the usual rules of simply-typed λ-calculus with products to
which we add the following:

Γ ` 0 : int Γ ` tt : bool Γ ` ff : bool

Γ `M : int

Γ ` S M : int

Γ ` B : bool Γ `M : A Γ ` N : A

Γ ` if B M N : A

Γ ` T : A Γ `M : A⇒ A Γ ` N : int

Γ ` rec T M N : A

These terms are then equipped with the usual reduction rules. To embed it into
µLJ , we give the following translation of types:

int? = µX.1 +X

bool? = 1 + 1

(T1 ⇒ T2)? = T ?1 ⇒ T ?2

(T1 × T2)? = T ?1 × T ?2

The interpretation of terms is essentially straightforward. As an example, the
translation of rec is given in Figure 5. The validity of this translation is then a
rather unsurprising induction on terms, since the reductions on both sides essen-
tially coincide. We will not say more on this subject, but the interested reader
will find all necessary details in [10].
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(rec T M N)? =
N?

Γ ` nat

T ?

Γ ` A
1l

Γ, 1 ` A

M?

Γ ` A⇒ A

ax
A ` A

ax
A ` A

⇒l
A,A⇒ A ` A

Cut
Γ, A ` A

+l
Γ,Γ, 1 +A ` A

µl
Γ,Γ, nat ` A

Cut
Γ,Γ,Γ ` A
======== S

Γ ` A

Figure 5. Translation of the recursor

3. µ-closed categories

In this section, we will introduce a categorical structure sufficient to interpret
µLJ in a sound way. First we will describe the basic components of the model,
i.e. a cartesian closed category C equipped with weak coproducts. Then, we will
describe how the syntactic rules for functors and fixpoints can be dealt with by
requiring the functors interpreting open types to be strong in an uniform way,
yielding a structure of strong types. Finally, µ-closed categories will be defined as
those categories with strong types which have enough initial algebras and terminal
coalgebras.

3.1. Cartesian closed structure and weak coproducts

If C is a category, let us denote by C0 its underlying set of objects and C(A,B)
the set of morphisms from A to B. It seems useless here to recall the definition of
a cartesian closed category, a reference book for that is [26]. The specific notations
we use here are rather standard, let us recall them briefly. The composition of
morphisms f : A→ B and g : B → C will be denoted f ; g : A→ C. If f : A→ B
and g : A → C are two morphisms, their pairing will be denoted by 〈f, g〉. A
cartesian closed category C has also a terminal object, which we will denote by 1.
If f : A × B → C, its currying will be denoted Λ(f) : B → A ⇒ C. Let us turn
now to the definition of the sum.

Definition 3.1. A category C has functorial weak coproducts if it has:

• For all objects A and B, an object A + B and two injection morphisms
in1 : A→ A+B and in2 : B → A+B

• For all morphisms f : A → C and g : B → C, a copairing morphism
[f |g] : A+B → C

• A weak initial object 0. For every object A, we write ¡A : 0→ A.
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Additionally, these data must satisfy the following equations:

in1; [f |g] = f

in2; [f |g] = g

[in1|in2] = id

[f ; in1|g; in2]; [f ′|g′] = [f ; f ′|g; g′]

These equations do not ensure that we have a coproduct, only a weak coproduct.
However, a direct calculation shows that they suffice to build from + a bifunctor
−+− : C × C → C.
Distributivity. As is the case with coproducts [26], the closed structure of C allows
to build a distributivity law of the product over the sum. Thus we get a natural
transformation γΓ,A,B : Γ× (A+B)→ Γ×A+ Γ×B
Weak coproduct. In order to interpret the sums of programming languages, it would
be natural to require that the model has coproducts, over which the product
distributes. However our games model of induction and co-induction will rely
on the category of games used by McCusker [31], which has fixpoint operators.
Therefore, as is well known, it cannot have coproducts. However it has a natural
notion of weak coproducts, which will be sufficient to interpret µLJ .

3.2. Functorial extensions

Let us begin this subsection by having a close look at the strong rule for the
action of a positive functor in µLJ .

Γ, A ` B
[P ]

Γ, P (A) ` P (B)

It is obvious that P is not acting on the base category C. Instead, its action is
on the category CΓ over a context Γ, which can be defined as the Kleisli category
over the comonad Γ × −. Thus, the interpretation of this rule asks the question
of how to compute a functorial extension of T : C → C to CΓ.

3.2.1. Covariant case

A functorial extension of an endofunctor T of C to the Kleisli category CS over
a comonad (S, δ, ε) is an endofunctor TS : CS → CS such that for all f : A →
B, TS(εA; f) = εT (A);T (f). It is folklore that the functorial extensions of an
endofunctor T : C → C to the Kleisli category over a comonad (S, δ, ε) correspond

to distributive laws of S over T , that is natural transformations λ : ST
•→ TS

satisfying usual coherence conditions. The case we are concerned with in this
paper is when the comonad S is Γ × −, with the constraint that the functorial
extension must be stable under substitution γ : ∆ → Γ. In this case, the notion
of distributive law specializes to the notion of strength, introduced by Kock [25],
also used in a very similar way as we do here by Cockett and Spencer [13,14].



TITLE WILL BE SET BY THE PUBLISHER 11

3.2.2. Contravariant case

The rule [N ] of µLJ requires us to give as well a notion of functorial extension
for a contravariant endofunctor N : Cop → C. Suppose that we have a comonad
(S, δ, ε) on C. A functorial extension of N to the Kleisli category over S is a
contravariant functor NS : CopS → CS such that for all f : A → B, NS(εA; f) =
SN(f); εNA. To build such an extension, we propose the following contravariant
cousins to distributive laws. We include the full definitions and the corresponding
developments as they are, to our knowledge, new.

Definition 3.2 (Contradistributive law). A contradistributive law for a comonad
(S, δ, ε) over a contravariant endofunctor N : Cop → C is a natural transformation

λ : SNS
•→ N satisfying the coherence diagrams below.

SNSS
δNSS //

SNδ
��

SSNSS
SλS // SNS

λ
��

SNS
λ

// N

SN
SNε //

εN
��

SNS

λ{{
N

As for the case of distributive laws, contradistributive laws characterise functo-
rial extensions of functors N : Cop → C to CS .

Proposition 3.3. Let (S, δ, ε) a comonad on a category C and N : Cop → C.

There is an isomorphism between contradistributive laws λ : SNS
•→ N of S over

N and functorial extensions of N on the Kleisli category CS.

Proof. Let us first show how a contradistributive law induces a functorial exten-
sion. We define the functor NS : CopS → CS as follows:

• On objects, NS(A) = N(A);
• If f : SB → A is a morphism in CopS (A,B), we define NS(f) by:

SN(A)
SN(f)// SNS(B)

λB // N(B)

It is immediate to verify that this does define a functor. If NS : CopS → CS is
a functorial extension of N to CS , we can define a family of morphisms λA :
SNSA→ NA by λA = NS(idSA). The fact that λ is natural and coherence with
respect to the co-multiplication of S are easy consequences of the functoriality of
NS and the definition of composition in CS . Coherence with respect to the co-unit
of S corresponds exactly to the equation of the definition of functorial extension,
thus λ is a contradistributive law. Finally, these two constructions are inverses of
one another: this boils down two the two following equations, for all f : SB → A.

SN(idSB);λB = λB

SN(f);NS(idSB) = NS(f)

The first one is trivial, the second uses the comonad structure of S, the fact that
NS is a functorial extension of N and the definition of composition in CS . �
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Contrastrengths. Let us now examine the particular case of interest for us, when
S = Γ × − with the constraint of stability under substitution γ : ∆ → Γ, which
corresponds to the following contravariant cousin of strengths.

Definition 3.4 (Contrastrength). Suppose that C is cartesian and let N : Cop →
C. A contrastrength for N is a family ρNA,B : A×N(A×B)→ N(B) dinatural in
A and natural in B, such that the following diagrams commute:

1×N(A)

1×N(π2)

��

π2

&&
1×N(1×A)

ρN1,A

// N(A)

B × (A×N((A×B)× C))

B×(A×N(α−1
A,B,C))

))
(B ×A)×N((A×B)× C))

αB,A,N((A×B)×C)

55

B × (A×N(A× (B × C)))

B×ρNA,B×C
��

(A×B)×N((A×B)× C)

sA,B×N((A×B)×C)

OO

ρNA×B,C ))

B ×N(B × C)

ρNB,Cuu
N(C)

A functor N : Cop → C is strong when it is equipped with a contrastrength ρ.

Proposition 3.5. Suppose that C is cartesian, let N : Cop → C and ρNΓ,A a

contrastrength for N . Then for each Γ ∈ C0, (ρNΓ,A)A is a contradistributive law
for Γ×− over N .

Proof. It is trivial that ρ is natural in A. Coherence with respect to the co-unit
π2 : Γ×A→ A of Γ×− follows from the coherence of ρ with respect to the neutral
element 1 for × and from the dinaturality of ρNΓ,A in Γ. Coherence with respect to
the comultiplication follows also from dinaturality of ρ in Γ, and from the second
coherence diagram of the definition of contrastrength. �

As a consequence, a contrastrength ρNΓ,A allows to compute a functorial exten-

sion of contravariant N over CS which provides an interpretation of the rule [N ]
of µLJ for negative functors.

3.3. Extension of fixpoints

We now know how to extend functors to CΓ, but to interpret the fixpoint rules
of µLJ we also want these extensions to preserve the initial algebras and terminal
coalgebras that the original functors possibly had.
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Initial algebras. We shall see first that extensions preserve initial algebras, at least
when the comonad (S, δ, ε) has a right adjoint U .

Proposition 3.6. Let (S, δ, ε) be a comonad on C, let T : C → C with an initial

algebra (µT, χT ) and let λ : ST
•→ TS be a distributive law of S over T . Suppose

as well that there is U : C → C such that S a U . Then TS has also an initial
algebra in CS.

Proof. The initial algebra of TS is given by the pair (µT, χ′T ) where χ′T = εT (µT );χT .
Let us denote by φA,B : C(SA,B)→ C(A,UB) the isomorphism of the adjunction
S a U . The proof is the following: for any algebra f : STA → A of TS in CS , we

build an algebra f̂ : T (UA) → UA of T in C, such that each of the two diagrams
below commutes if and only if the other commutes, for all g : µT → UA.

T (µT )
T (g) //

χT

��
C

T (UA)

f̂

��
µT

g
// UA

TS(µT )
TS(φ−1(g)) //

χ′T
��

CS

TS(A)

f

��
µT

φ−1(g)

// A

We define f̂ by φ(h), where h is obtained by the following composition:

STUA
δTUA // SSTUA

SλUA // STSUA
STε′A // STA

f // A

where ε′A : SUA→ A is the co-unit of the adjunction S a U . A direct calculation
then show the upper paths of these two diagrams are connected by the isomorphism
φ, and the lower paths are connected in the same way. This proves that one
diagram commutes if and only if the other commutes. But the initiality of (µT, χT )
ensures uniqueness of g : µT → UA making the left diagram commute, hence we
must as well have uniqueness of φ−1(g) making the right diagram commute. �

In particular, if C is cartesian closed and T : C → C is a strong functor, then
Γ×− has a right adjoint Γ⇒ − and any initial algebra of T extends to an initial
algebra of TΓ.

Terminal coalgebras. The situation for terminal coalgebras is slightly simpler, there
is no need to require that S has a right adjoint.

Proposition 3.7. Let (S, δ, ε) be a comonad on C, T : C → C with a terminal

coalgebra (νT, χT ) and λ : ST
•→ TS a distributive law for S over T . Then TS

also has a terminal coalgebra in CS.

Proof. The terminal coalgebra of TS is given by the pair (νT, χ′T ) where χ′T =

ενT ;χT . For any coalgebra f : SA → TA of TS in CS , we build f̂ : SA → T (SA)
by:

SA
δA // SSA

Sf // STA
λA // TSA
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Then, the definition of the extension of T allows to show that each of the two
following diagrams commutes if and only if the other commutes, for each g :
SA→ νT .

SA
g //

f̂
��

C

νT

χT

��
T (SA)

T (g)
// T (νT )

A
g //

f

��
CS

νT

χ′T
��

TS(A)
TS(g)

// TS(νT )

From this we directly deduce that (νT, χ′T ) is a terminal coalgebra for TS . �

3.4. Uniformity of the extension

In the forthcoming games model open formulas are interpreted by open functors
which, as we will show, come automatically equipped with a strength. However
these strengths come from an independent construction and are in particular not
built by induction on types, so it is not obvious that they satisfy the equations
required to interpret the expansion rules for functors. We give here an axiomatic
notion of a uniform set of strong functors (on a ccc with functorial weak coprod-
ucts) of which open functors will be a very natural instance, then show that these
axioms suffice to ensure that strengths coincide with those generated inductively.

Definition 3.8 (Strong types). A category C has strong types if C is cartesian
closed, has functorial weak coproducts and if it is equipped with a class of functors
F of the form T : (Cop)k × Cn → C such that

• F contains the identity functor, all constant functors and base functors
−1 +−2, −1 ×−2 and −1 ⇒ −2;

• F is stable under composition (in the operadic sense [28]);
• F is stable under contraction : if F (−1,−2,−3) : C × C × D → C is in F ,

then F (−1,−1,−3) : C × D → C also is; and the same condition is valid
with Cop instead of C in the left hand side.

Moreover, unary functors in F are strong: they have either a strength or a con-
trastrength. These data must satisfy the following uniformity conditions. Let us
denote by P covariant endofunctors and by N contravariant endofunctors.

• Both families θTΓ,A and ρTΓ,A are also natural in T ;
• Compatibility with identity and constants:

θIdΓ,A = idΓ×A

θBΓ,A = π2

ρBΓ,A = π2
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• Compatibility with contraction and composition:

θP1P2

Γ,A = θP1

Γ,P2(A);P1(θP2

Γ,A)

ρPNΓ,A = θPΓ,N(Γ×A);P (ρNΓ,A)

ρNPΓ,A = Γ×N(θPΓ,A); ρNΓ,P (A)

θN1N2

Γ,A = Γ×N1(ρN2

Γ,A); ρN1

Γ,N2(Γ×A)

θ
P (−,−)
Γ,A = 〈π1, θ

P (−,A)
Γ,A 〉; θP (Γ×A,−)

Γ,A

ρ
N(−,−)
Γ,A = 〈π1, ρ

N(−,Γ×A)〉; ρN(A,−)
Γ,A

• Compatibility with the sums and the closed structure:

θ−+−
Γ,A = γΓ,A,A

ρ−⇒CΓ,A = Λ(〈〈π2;π1, π1〉, π2;π2〉; ev)

θC⇒−Γ,A = Λ(〈π2;π1, 〈π1, π2;π2〉; ev〉)

Let us recall that γΓ,A,A is the distributive law of product over sum.

Remark. This axiomatic definition of strengths is complete, in the sense that for
any functor generated from the base constructors it effectively forces its strength
to coincide with the inductively generated one; this will follow from the decom-
positions of strengths proved below. However it may not be sound, in the sense
that there could be cartesian closed categories with functorial weak coproducts
such that the set of functors generated by the base constructors does not yield a
strong types structure. This is because the strengths θTΓ,A (resp. contrastrengths

ρNΓ,A) are required here to be natural in T (resp. in N) and not just with respect
to the natural transformations definable from the term constructors. However we
do not consider that a defect: first because the model we are interested in will
satisfy this property, second because our aim is to give a class of models of µLJ ,
not to characterise all models of µLJ . In fact the term model of µLJ itself has no
chance to form a µ-closed category as its reduction rules only correspond to weak
initial algebras and weak terminal coalgebras.

Lemma 3.9. Let C be a category with strong types. We have the following decom-
positions:

θP×P
′

Γ,A = 〈Γ× π1; θPΓ,A,Γ× π2; θP
′

Γ,A〉

θP+P ′

Γ,A = γΓ,P (A),P ′(A); θ
P
Γ,A + θP

′

Γ,A

θN⇒PΓ,A = Λ(〈π2;π1, 〈〈π2;π1, π1〉; ρNΓ,A, π2;π2〉; ev〉; θPΓ,A)

ρP⇒NΓ,A = Λ(〈π2;π1, 〈〈π2;π1, π1〉; θPΓ,A, π2;π2〉; ev〉; ρNΓ,A)

along with identical decompositions for ρN×N
′

Γ,A and ρN+N ′

Γ,A .
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Proof. Direct calculations. For the product, we use naturality of θP×P
′

Γ,A in P ×P ′
and the naturality of the projections π1 and π2. For the sum, we use compatibil-
ity of strengths with composition and the distributivity law. For the arrow, we
use compatibility of strengths with respect to contraction, composition and the
cartesian closed structure. �

Proposition 3.10. Let C a category with strong types. We have the following
equations:

(P × P ′)Γ = PΓ × P ′Γ
(N ×N ′)Γ = NΓ ×N ′Γ
(P + P ′)Γ = PΓ + P ′Γ

(N +N ′)Γ = NΓ +N ′Γ

(N ⇒ P )Γ = NΓ ⇒ PΓ

(P ⇒ N)Γ = PΓ ⇒ NΓ

Proof. Obtained directly from the decompositions of Lemma 3.9. �

Higher extensions. If C is a category with strong types, the only functors in F
which are natively equipped with strengths are unary ones. We show now that
these suffice to build extensions of arbitrary functors in F , which fact relies on the
following lemma:

Lemma 3.11 (Commutations). Let C be a category with strong types and let
T ∈ F . We have the following commutation rules:

(1) If T : C × C → C:

〈π1, θ
T (A,−)
Γ,B 〉; θT (−,Γ×B)

Γ,A = 〈π1, θ
T (−,B)
Γ,A 〉; θT (Γ×A,−)

Γ,B

(2) If T : Cop × C → C:

〈π1, θ
T (Γ×A,−)
Γ,B 〉; ρT (−,Γ×B) = 〈π1, ρ

T (−,B)
Γ,A 〉; θT (A,−)

Γ,B

(3) If T : Cop × Cop → C:

〈π1, ρ
T (Γ×A,−)
Γ,B 〉; ρT (−,B)

Γ,A = 〈π1, ρ
T (−,Γ×B)
Γ,A 〉; ρT (A,−)

Γ,B

Proof. Let us give the details of the proof of (1), the others are similar. We
first remark that by functoriality of T , the family (T (A, f))A is natural in A. By
naturality of θ in T , this allows us to deduce that the following diagram commutes,
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for all f :

Γ× T (A,B)
Γ×T (A,f) //

θ
T (−,B)
Γ,A

��

Γ× T (A,C)

θ
T (−,C)
Γ,A

��
T (Γ×A,B)

T (Γ×A,f)
// T (Γ×A,C)

But this diagram exactly states that the following family is a natural transforma-
tion: (

θ
T (−,B)
Γ,A

)
B

: Γ× T (A,−)
•−→ T (Γ×A,−)

Hence, another use of the naturality of θ in T gives the following equality:

θ
Γ×T (A,−)
Γ,B ; θ

T (−,Γ×B)
Γ,A = Γ× θT (−,B)

Γ,A ; θ
T (Γ×A,−)
Γ,B

from which we deduce the required equation, thanks to the decomposition of
Lemma 3.9. �

Proposition 3.12. Let us consider a functor T : (Cop)k × Cn → C in F . Then
there is an unique functor TΓ : (CopΓ )k×CnΓ → CΓ such that for all i ∈ {1, . . . , p, p+
1, . . . , p+ k}, for all A1, . . . , Ak+p−1 in C0,

(T (A1, A2, . . . ,−i, . . . , Ak+n))Γ = TΓ(A1, A2, . . . ,−i, . . . , Ak+n)

Proof. The definition of TΓ is componentwise. The fact that it does define a
functor are immediate consequences of Lemma 3.11. �

3.5. µ-closed categories

3.5.1. Definition and properties

Partial interpretation. Let us suppose that the destination category C has strong
types. If X is a set of free variables, let us denote by CX the cartesian product of
|X | copies of C. We interpret any formula F of LJ , with free variables in X as an
endofunctor:

JF K : (Cop × C)X → C
in the set F of strong types. This interpretation depends on the chosen set of
variables X . Formally, we should thus write JF KX but we will keep this annotation
implicit whenever it can be recovered from the context. If F is a closed formula, we
will identify the constant functor JF K∅ with its image JF K∅() ∈ C0. Let us underline
that this interpretation of open formulas by functors is just an intermediate step,
as we are only interested in the interpretation of closed formulas, on which the
rules of µLJ are defined.

The above total interpretation of open LJ formulas extends to a partial inter-
pretation of open µLJ formulas, as follows.
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Definition 3.13 (Partial interpretation). Let C be a category with strong types.
We define by induction the interpretation of open µLJ formulas in the set F of
strong functors for C.

• J0KX is the constant functor whose image is the weak initial object 0;
• J1KX is the constant functor whose image is the terminal object 1;
• JS × T KX = JSKX × JT KX ;
• JS + T KX = JSKX + JT KX ;
• JS ⇒ T KX = JSKX ⇒ JT KX
• JµX.T KX\{X} is, if defined, the parametrised initial algebra of JT KX ;
• JνX.T KX\{X} is, if defined, the parametrised terminal coalgebra of JT KX .

Note that in these two last cases, the formula µX.T is only valid whenX 6∈ fv−(T ),
thus JT KX can be regarded as a functor with domain C × (Cop × C)X\{X}. It is
with respect to this domain that we take the possible parametrised initial algebra
or terminal coalgebra.

Then, following the definition of µ-bicomplete categories [36], we say that C
is µ-closed if it has strong types and has enough initial algebras and terminal
coalgebras to interpret the rules of µLJ .

Definition 3.14 (µ-closed category). A category C is µ-closed if it has strong
types, and if the interpretation function J−K is total.

Examples. There are a lot of µ-closed categories. For an example, McCusker’s
games model of the language FPC [31] forms a µ-closed category, where initial
algebras and terminal coalgebras both correspond to minimal invariants [17–19].
More generally, any category of domains with minimal invariants forms a µ-closed
category, but degenerate in the sense that initial algebras and terminal coalgebras
coincide. It is more difficult to build a non-degenerate µ-closed category where
least and greatest fixpoints no longer coincide, and this was our work in [9].

Set theory. Let us note in passing that Set is not a µ-closed category. Indeed,
if we define 2 = 1 + 1, any µ-closed category will have an interpretation of the
formula µX.(X → 2) → 2. In Set, its interpretation would be a set E satisfying
the isomorphism (E ⇒ {0, 1}) ⇒ {0, 1} ∼= E, which means P(P(E)) ∼= E: this is
impossible for evident cardinality reasons. This is why numerous authors restrict
to strictly positive formulas, i.e. formulas such that in µX.T , no occurrence of X
can appear at the left of an arrow (even if it is in positive position).

Before going on to the interpretation of µLJ , we need to prove equations similar
to Proposition 3.10 for parametrised initial algebras and terminal coalgebras.

Proposition 3.15. Suppose C is a µ-closed category with class F of strong func-
tors. Let D be a category of the form (Cop)k × Cn. We use the notation DΓ to
denote (CopΓ )k × (CΓ)n. Let T : C × D → C in F . If T has a parametrised ini-
tial algebra Tµ : D → C in C, then TΓ also has a parametrised initial algebra
(TΓ)µ : DΓ → CΓ. Moreover,

(Tµ)Γ = (TΓ)µ

Parametrised terminal coalgebras behave in the same way.
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Proof. Let us give the proof for the case of parametrised initial algebras. The fact
that TΓ still has a parametrised initial algebra is an immediate consequence of
Proposition 3.6, by definition of parametrised initial algebras. We must now show
the announced equality. For the simplicity of presentation, we just detail the case
when T : C × C → C, but the other cases are either similar or can be deduced
from it. We recall that for all f : Γ × A → B, (TΓ)µ(f) is defined as the unique
morphism h such that:

T (Tµ(A), A)
TΓ(−,A)(h) //

χΓ
TΓ(−,A)

��

CΓ

T (Tµ(B), A)

(TΓ(TµΓ (B),−))(f)
��

T (Tµ(B), B)

iΓTΓ(−,B)��
Tµ(A)

h
// Tµ(B)

commutes. Thus to prove that (Tµ)Γ(f) = (TΓ)µ, it suffices to prove that h =
(Tµ)Γ(f) makes this diagram commute, which is ensured by a tedious calculation
using naturality of θ in T , naturality of χ and compatibility of θ with contraction
and composition. �

3.5.2. Interpretation of µLJ

As usual, the interpretation of a sequent Γ1, . . . ,Γn ` A will be interpreted as
a morphism JΓ1K × · · · × JΓnK → JAK (let us say that this n-fold product is left-
bracketed). For any proof π of a sequent Γ ` A, we define JπK by induction. The
interpretation of most connectives is usual, and the interpretation of the rules for
fixpoints and functors precisely uses the structure we introduced above, thus we
will not give here the details of the interpretation nor of its correctness, however
they can be found in [10]. We get the following theorem:

Theorem 3.16. Every µ-closed category is a sound model of µLJ .

3.5.3. Strict and pseudo-polynomial case

As announced in the introduction, limitations in the games model will require
us to restrict the domain of our interpretation.

Pseudo-polynomial formulas. The first restriction comes from the fact that the
construction of open functors could only be carried out when holes (free type
variables) do not enable anything. Syntactically speaking this means that type
variables must not appear directly at the right of an arrow, thus A ⇒ X is not
allowed, but A⇒ (0 +X) is. As this is not a natural fragment of µLJ we restrict
instead to the (smaller) set of pseudo-polynomial formulas: those are formulas F
such that for all subformulas S ⇒ T of F , we always have fv(T ) = ∅. This class
is still sufficiently large to be interesting, it includes for example fixpoints for all
polynomial functors and other exotic functors like (X ⇒ 2)⇒ 2.
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Strict fixpoints. The second restriction comes from the fact that we will generate
fixpoints in the game semantics by a loop construction, which will erase the hole
(i.e. the free variable) and replace it with links to the roots of the arena. As
this operation does not seem to make any sense whenever a hole is itself initial in
the arena, we will restrict to strict fixpoints, which means that whenever we form
µX.T or νX.T , we require that X must not appear at the root of T : there must
be at least a + or a ⇒ in the path from the root of T to X.

It is easy to check that all previous work on µ-closed categories adapts smoothly
to this strict and pseudo-polynomial setting [10]. A category C is µ-closed for strict
and pseudo-polynomial formulas whenever it admits a total interpretation of strict
and pseudo-polynomial formulas. Then, any category which is µ-closed for strict
and pseudo-polynomial formulas is a model of the strict and pseudo-polynomial
fragment of µLJ .

4. Game semantics

In this section, we progressively build a µ-closed category (for strict, pseudo-
polynomial formulas) of games and total strategies. First of all, we will recall
briefly the main definitions of the (Hyland-Ong-Nickau) category of arenas and
innocent strategies. Then we turn to the description of one of the novelties of
our model, the construction of strong functors from open arenas, i.e. arenas with
free variables, and the related loop construction for recursive types. Then we will
show how to enrich the games structure with winning conditions, and in particular
the winning conditions on loops inspired from parity games : this will achieve the
construction of a µ-closed (for pseudo-polynomial, strict formulas) category.

4.1. The base category

We briefly recall the now usual definitions of arena games, introduced in [23].
We are interested in games with two participants: Opponent (O, the environment)
and Player (P, the program). Possible plays are generated by directed graphs
called arenas, which are semantic versions of types or formulas. Hence, a play is
a sequence of moves of the ambient arena, each of them being annotated by a
pointer to an earlier move — these pointers being required to comply with the
structure of the arena.

4.1.1. Arenas and Plays

Formally, an arena is a structure A = (MA, λA, IA,`A) where:

• MA is a set of moves,
• λA : MA → {O,P} × {Q,A} is a labelling function indicating whether a

move is an Opponent or Player move, and whether it is a question (Q) or

an answer (A). We write λOPA for the projection of λA to {O,P} and λQAA
for its projection on {Q,A}. λA will denote λA where the {O,P} part has
been reversed.
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• IA ⊆ λ−1
A (OQ) is a set of initial moves.

• `A⊂MA ×MA is a relation called enabling, satisfying:

– If m `A n ∧ λQAA (n) = A, then λQAA (m) = Q;
– If m `A n, then λOPA (m) 6= λOPA (n).

In other terms, an arena is a directed bipartite graph, with a set of distinguished
initial moves (necessarily Opponent questions) and a set of answers (m such that

λQAA = A) such that no answer points to another answer. We now define plays as
justified sequences over A: these are sequences s of moves of A, each non-initial
move m in s being equipped with a pointer to an earlier move n in s, satisfying
n `A m. In other words, a justified sequence s over A is such that each reversed
pointer chain sφ(0) ← sφ(1) ← . . .← sφ(n) in s is a path on A (viewed as a directed
bipartite graph).

The role of pointers is to allow reopenings in plays. Indeed, a path on A may be
(slightly naively) understood as a linear play on A, and a justified sequence as an
interleaving of paths, with possible duplications of some of them. This intuition
is made precise in [21]. When writing justified sequences, we will often omit the
justification information if this does not cause any ambiguity. v will denote the
prefix ordering on justified sequences, and s1 vP s2 will mean that s1 is a P -ending
prefix of s2. If s is a justified sequence on A, |s| will denote its length.

Given a justified sequence s on A, it has two subsequences of particular interest:
the P-view and O-view. The view for P (resp. O) may be understood as the
subsequence of the play where P (resp. O) only sees his own duplications. In a
P-view, O never points more than once to a given P-move, thus he must always
point to the previous move. Concretely, P-views correspond to branches of Böhm
trees [23]. Practically, the P-view psq of s is computed by forgetting everything
under Opponent’s pointers, in the following recursive way:

• psmq = psqm if λOPA (m) = P ;
• psmq = m if m ∈ IA and m has no justification pointer;
• ps1ms2nq = psqmn if λOPA (n) = O and n points to m.

The O-view xsy of s is defined dually. The legal sequences over A, denoted by LA,
are the justified sequences s on A satisfying the following conditions:

• Alternation. If tmn v s, then λOPA (m) 6= λOPA (n);
• Bracketing. A question q is answered by a if a is an answer and a points

to q. A question q is open in s if it has not yet been answered. We
require that each answer points to the pending question, i.e. the last open
question.

• Visibility. If tm v s and m is not initial, then if λOPA (m) = P the justifier
of m appears in ptq, otherwise its justifier appears in xty.

Visibility and bracketing are flexible conditions, in the sense that they can either
be required on plays or on strategies. It is in general considered more elegant to
have them required on strategies rather than on plays, since it simplifies some of the
proofs and does not unnecessarily restrict the behaviour of Opponent. However,
it is sometimes convenient to have them required on plays for technical purposes,
as is the case here. Anyway, both approaches build exactly the same category.
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4.1.2. The cartesian closed category of innocent strategies

A strategy σ on A is a non-empty even prefix closed set of even-length legal plays
on A. A strategy is deterministic if only Opponent branches, i.e. ∀smn, smn′ ∈
σ, n = n′. Of course, if A represents a type (or formula), there are often many
more strategies on A than programs (or proofs) on this type. To address this issue
we need innocence. An innocent strategy is a strategy σ such that

sab ∈ σ ∧ t ∈ σ ∧ ta ∈ LA ∧ psaq = ptaq =⇒ tab ∈ σ

Intuitively, an innocent strategy only takes its P -view into account to determine its
next move. We now recall how arenas and innocent strategies organize themselves
into a cartesian closed category. First, we build the product A× B of two arenas
A and B:

MA×B = MA +MB

λA×B = [λA, λB ]

IA×B = IA + IB

`A×B = `A + `B

We mention the empty arena 1 = (∅, ∅, ∅, ∅), which will be terminal for the
category of arenas and innocent strategies. We mention as well the arena 0 =
(•, • 7→ OQ, {•}, ∅) with only one initial move, which will be a weak initial object.
We define the arrow A⇒ B as follows:

MA⇒B = MA +MB

λA⇒B = [λA, λB ]

IA⇒B = IB

`A⇒B = `A + `B +IB × IA

We define composition of strategies by the usual parallel interaction plus hiding
mechanism. If A, B and C are arenas, we define the set of interactions I(A,B,C)
as the set of justified sequences u over (A ⇒ B) ⇒ C such that u�A,B ∈ LA⇒B ,
u�B,C ∈ LB⇒C and u�A,C ∈ LA⇒C . Then, if σ : A⇒ B and τ : B ⇒ C, we define
parallel interaction:

σ || τ = {u ∈ I(A,B,C) | u�A,B ∈ σ ∧ u�B,C ∈ τ}

Composition is then defined as σ; τ = {u�A,C | u ∈ σ||τ}. It is associative and
preserves innocence [23]. For each arena A there is an identity strategy, the copycat
strategy defined by idA = {s ∈ LA1⇒A2

| ∀s′ vP s, s′�A1
= s′�A2

}. Thus, there is
a category Inn which has arenas as objects and innocent strategies on A⇒ B as
morphisms from A to B. In fact, this category is cartesian closed, the cartesian
structure given by the arena product above and the exponential closure given by
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the arrow construction. This category is also equipped with a sum operation A+B,
constructed as follows:

MA+B = MA +MB + {q, L,R}
λA+B = [λA, λB , q 7→ OQ,L 7→ PA,R 7→ PA]

IA+B = {q}
`A+B = `A + `B +{(q, L), (q,R)}+ {L} × IA + {R} × IB

Injections are just copycat strategies, and if σ : A → C and τ : B → C, the
action of their copairing [σ|τ ] can be described as follows : on any initial move on
C, it immediately plays the initial move of A+ B, then Opponent either chooses
A or B. According to Opponent’s choice, it either plays as σ or as τ . We can
check easily that this sum defines a functorial weak coproduct, hence we have
accomplished the first step in our construction of a category with strong types.

4.2. Open functors

It is very common in the literature to interpret types with free variables as
functors, and often polymorphic terms as (di)natural transformations [5]. The
construction of a functor from an open formula is naturally done by induction on
the formula. However this approach is in conflict with the idea we defend here
of building (parametrised) fixpoints by adding loops in the arenas, for which we
need access to the intermediate concrete structure of open arenas. Of course, this
raises the question of relating open arenas to their corresponding functors: this is
the purpose of this section.

The intuition for open functors is really simple. Imagine you have an arena T
with special moves (for simplicity, suppose for the moment that these are always
Opponent moves) called holes, denoted by �. Replacing occurrences of this move
in T by an arena A yields the arena T [A]. Suppose also that we have a strategy
σ : A⇒ B. We want to use it to define a strategy T [σ] : T [A]⇒ T [B], then show
that this defines a functor (called the corresponding open functor). This is rather
straightforward: it basically suffices to append plays of σ on plays of the identity
on T . However in this paper we face a bigger challenge: we need to equip Inn
with a structure of strong types, and thus to study the natural transformations
between open functors. It turns out that they correspond to the similar notion of
an open natural transformation ηA : S[A]→ T [A], whose components are obtained
by appending plays of idA on plays of η : S ⇒ T .

In fact, both constructions are covered by a notion of vertical composition: given
η : S ⇒ T satisfying certain conditions and σ : A⇒ B, we want to combine them
into a strategy η[σ] : S[A] ⇒ T [B]. However, formalizing this construction is far
more difficult than for the basic case of open functors. In fact, the restriction to
pseudo-polynomial formulas comes from here: we could not carry out the construc-
tion in general, but only in the case where holes do not enable anything. Even
in the pseudo-polynomial case, the details of this construction remain intricate
but once one has the right definitions, most of the proofs consist of long routine
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(C +3 �X)[A] // �X [B]

qB

qA

qC

qA

Figure 6. Dealing with non pseudo-polynomial open arenas

verifications (with the notable exception of Theorem 4.8) that seem mostly irrel-
evant for the purpose of this paper. Hence we will give here the main definitions
and properties, but we will skip a lot of proofs. The complete details are already
available in [10] and will be the subject of a future paper, hopefully overcoming
the pseudo-polynomial restriction.

Before proceeding to these constructions, let us give a hint of the difficulties
encountered in formalising vertical composition of strategies without the pseudo-
polynomial restriction. As illustrated in Figure 6, once a play on S[A] ⇒ T [B]
reaches A ⇒ B, Opponent can interrupt it at any moment (even in a P -view)
and return to S ⇒ T , causing (among other possible problems) the restriction to
A⇒ B to be non-alternating. Dealing with this is probably possible, but requires
a different approach to the construction of vertical composition.

4.2.1. Open arenas

Note that for all the arena constructions that we have considered, the new set
of moves is obtained by taking the binary disjoint sum of the previous sets (except
for the sum operation, where some new moves are added). So any move in an
arena obtained by the interpretation of a formula must have the form addr(a),
where addr is a sequence of injections (composed of in1, in2) and a is an atom
in A = {◦, q, L,R}. We will restrict from now on to arenas where all moves
necessarily have this shape, although we will generalise the set of atoms to allow
for the definition of open arenas.

Let us fix a set X of variable names. An open arena is an arena in the usual
sense, except that it is built on the set of atoms A∪{�X | X ∈ X}, where moves of
the form addr(�X) are called holes, carrying both an address and a variable name.
We add the constraint that no hole can justify anything (hence the restriction to
pseudo-polynomial formulas):

∀m,n ∈MA, m `A n⇒ ∀X ∈ X ,∀addr, m 6= addr(�X)

An open arena A can have multiple holes, possibly annotated by different variables.
Most of the time, we will be interested in only one free variable : we will then
write A[X] to emphasize that A is considered as an open arena with respect to X.
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Definition 4.1 (Arena substitution). Let A be an open arena with only one hole
addr(�X). If B is an arena we define A[B/X] (or simply A[B] when X is clear
from the context) as follows.

MA[B] = (MA \ {addr(�X)}) ∪ addr(MB)

λA[B](m) =


λA(m) if m ∈MA
λB(m′) if m = addr(m′) where m′ ∈MB ∩ λOPB

−1
({O})

λB(m′) if m = addr(m′) where m′ ∈MB ∩ λOPB
−1

({P})

IA[B] =

{
IA if addr(�X) 6∈ IA
(IA \ {addr(�X)}) ∪ addr(IB) otherwise

m `A[B] n ⇔ ∨

 m `A n
m′ `B n′ ∧m = addr(m′) ∧ n = addr(n′)
m `A addr(�X) ∧ n = addr(n′) where n′ ∈ IB

Whenever �Y does not appear in B we have A[B/X][C/Y ] = A[C/Y ][B/X],
hence the construction generalizes immediately to the simultaneous substitution
of multiple occurrences of �X by successive substitutions. Note that if an open
arena S has both negative (Player) and positive (Opponent) occurrences of �X ,
we will use the notation S[A,B] for the substitution of negative occurrences of �X
by A and positives occurrences by B.

4.2.2. Vertical composition

We will define both open functors and open natural transformations through
the unifying notion of vertical composition2. Its definition requires us to be able
to restrict plays on S[A] ⇒ T [B] on S ⇒ T and A ⇒ B. This restriction can be
difficult to do in general because it might produce non-legal plays. However, it is
well-behaved on the following set of plays.

Definition 4.2 (Functorial plays). Let C = S[B,A] ⇒ T [A,B] be an arena. A
play s ∈ LC is functorial for the decomposition C = (S ⇒ T )[A,B] if it is of the
form s1s2, where s1 only plays in S, T and s2 starts with a move in B, then only
plays in A,B. Moreover, all Player moves in s2 which are initial in A (they cannot
be initial in B) have the same justifier move. Likewise, all Opponent moves in s2

which are initial in B (they cannot be initial in A) share the same justifier move.

Whenever it is clear from the context, we will speak of a functorial play without
mentioning the decomposition for which it is functorial.

Definition 4.3 (Vertical restriction). Let s ∈ LS[B,A]⇒T [A,B] be a functorial
play. By definition it has the form s1s2 described above. We define its functorial
restriction s�S[X]⇒T [X] as:

2Vertical composition, which as its name does not suggest, is related to horizontal composition
in 2-categories. This mismatch follows from the fact that it seems more natural to consider usual

composition of strategies to be horizontal.
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• s1 if s2 is empty;
• s1�X if s2 only plays in B. Since s is functorial, all initial moves in B

have the same justifier move and we can set it as be the justifier of �X .
• s1�X�X if s2 reaches both A and B. The justifier moves of the occur-

rences of �X are defined as those of the initial moves in B and A. Note
that even if s contains several moves that are initial in B, those will be
replaced by only one occurrence of �X .

Likewise, the argument restriction s�A⇒B is s2 where moves which are initial in B
lose their pointers and moves which are initial in A have their pointer redirected
to the unique initial move of B which is in their P -view.

Definition 4.4 (Natural strategies). Let S, T be open arenas and η : S ⇒ T . We
say that η is natural in X (or just natural if X is clear from the context) if η is
innocent, and if for all sab ∈ η, a is an occurrence of �X if and only if b is an
occurrence of �X . Moreover, η must have a response to any occurrence of �X .

Because of the unrestrained behaviour of Opponent, the strategies we aim to de-
fine by vertical composition can have non-functorial plays. However their P -views
will always be functorial and we can exploit this to define vertical composition of
innocent strategies as follows.

Definition 4.5 (Vertical composition). Let η : S ⇒ T be a natural strategy and
σ : A⇒ B be innocent. Then we define the set of P -views of η[σ] as:

{s ∈ LS[B,A]⇒T [A,B] | s�S[X]⇒T [X] ∈ pηq ∧ s�A⇒B ∈ pσq}

A direct verification ensures that this construction preserves innocence and total-
ity. As for the case of arena substitution, if S, T has several types of holes �X and
�Y and if η is natural both in X and Y , we disambiguate by specifying η[σ/X]
or η[σ/Y ].

Before moving to the actual construction of open functors (and open natural
transformations), let us mention some algebraic properties of vertical composition.

Lemma 4.6. If η : S ⇒ T , σ : A ⇒ B and τ : C ⇒ D, we have the following
equations:

• Successive vertical compositions: (η[σ/X])[τ/Y ] = (η[τ/Y ])[σ[τ/Y ]/X]
• Preservation of identities: idT [idA] = idT (A)

4.2.3. Open functors

The validity of both open functors and open natural transformations will rely
on the following lemma:

Lemma 4.7 (Interchange law). Let S, T and U be open arenas. Let also η : S ⇒ T
and ε : T ⇒ U be natural strategies, and σ : A ⇒ B and τ : B ⇒ C be innocent
strategies. Then, if X appears only positively (Opponent move) in S, T and U :

(η; ε)[σ; τ ] = η[σ]; ε[τ ]
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bool + bool
swap[neg] // bool + bool

swap[neg] // bool + bool

q

q

q

L

R

L

�X/q

�X/q

�X/q

t

f

t

Figure 7. Interactions and vertical composition

Likewise, if X appears only negatively (Player move) in S, T and U :

(η; ε)[σ; τ ] = η[τ ]; ε[σ]

Proof idea. As usual when relating static properties of strategies with composi-
tion, we generalize the notion of functorial play to functorial interactions, and
the notions of vertical restriction to these functorial interactions. The interchange
laws then follow from the fact that vertical restrictions on functorial interactions
coincide with vertical restrictions on functorial plays.

As an illustration, consider the (natural) strategy swap : �X +�X ⇒ �X +�X
which swaps the two components, and the negation neg : bool ⇒ bool. Figure
7 presents an interaction u between swap[neg] and itself. However it can also be
regarded as an interaction between swap and itself appended with an interaction
between neg and itself (identifying occurrences of �X and initial moves in bool).
Hence, applying the hiding operation yields a play in (swap; swap)[neg; neg]. There-
fore, u witnesses the fact that swap[neg]; swap[neg] = (swap; swap)[neg; neg]. �

Open functors. By the interchange law and the equations of Lemma 4.6, any pos-
itive3 open arena S gives rise to an open functor S : Inn → Inn defined by
S(σ) = (idS)[σ]. Any negative open arena defines similarly an open functor
S : Innop → Inn by the negative interchange law, and an open arena with

3An open arena is positive when all occurrences of �X are Opponent moves. Likewise, it is

negative if all occurrences of �X are Player moves.
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mixed variance defines an open functor S : Innop × Inn → Inn, defined by
S(σ, τ) = (idS)[σ/X−][τ/X+]. Open functors generalize then to open arenas
with multiple variable names by the first equation of Lemma 4.6.

Open natural transformations. When S and T have the same fixed variance, any

η : S ⇒ T gives rise to an open natural transformation η : S
•→ T defined for all

arena A by ηA = η[idA].

Factorisation. Open functors and open natural transformation enjoy very rich
properties. In particular, we have the following powerful factorisation theorem.

Theorem 4.8 (Factorisation). Let S, T be open arenas with the same fixed vari-

ance, and let η : S
•→ T be a natural transformation. Then, for all A:

ηA = η�X [idA]

In other words, every natural transformation between open functors is an open
natural transformation.

Proof idea. The proof [10] is rather intricate, and proceeds in two parts:

(1) First, we prove that any natural transformation ι : Id
•→ Id from the

identity functor to itself is the identity natural transformation. This is
rather easy to prove by induction for finite, acyclic open arenas, then
we generalise to infinite arenas by taking the limit and to cyclic ones by
relating them to their acyclic infinite expansion.

(2) Then, given any natural transformation η : S
•→ T between open functors,

we prove that for all A, the strategy ηA always restricts on S ⇒ T to the
same natural strategy η�X : S ⇒ T , and we apply the argument of (1) to
demonstrate that its restriction to A⇒ A must always be the identity.

�

Note that even (1) is not necessarily true in an arbitrary category: see for
example the case of ribbon categories [24] where the twisting of a ribbon is a
polymorphic operation from the identity to itself. Let us also mention that the
proof is sufficiently generic to apply without any change to the category of games
and winning strategies to be introduced in the next section.

4.2.4. Dinatural case

Let us now analyse the case of vertical composition where the open arenas S and
T may have mixed variance, i.e. occurrences of �X both as Player and Opponent
moves. In this case, we prove that natural strategies give rise to dinatural trans-
formation. The main lemma is the following dinatural variation of the interchange
law.

Lemma 4.9 (Dinatural interchange). Let η : S ⇒ T be a natural strategy, and let
σ : A⇒ B, δ : B ⇒ C and τ : C ⇒ D innocent strategies. Then:

η[σ; δ; τ ] = S(τ, σ); η[δ];T (σ, τ)
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This lemma immediately allows to deduce that natural strategies give rise to
dinatural transformations. To prove that the family (η[idA])A is dinatural in A,
one requires two applications of the dinatural interchange law, as made explicit by
the diagram below.

S(A,A)
η[idA] // T (A,A)

T (A,σ)

%%
S(B,A)

S(σ,A)
99

η[σ] //

S(B,σ) %%

T (A,B)

S(B,B)
η[idB ]

// T (B,B)

T (σ,B)

99

The fact that we get dinatural transformations is enough to provide to Inn a
strong (pseudo-polynomial) types structure, however let us mention that unlike
the general case, the composition of two open dinatural transformations is still
an open dinatural transformation. Hence, it gives some hope to get an elegant
model of polymorphism, especially if we manage to prove a factorisation theorem
for dinatural transformations. Of course, such a model would also require us first
to generalize the construction of open functors to all open arenas.

4.2.5. Strong types

Let F be the set of open functors in Inn. It is a simple verification to show that
F contains all usual functors. The identity is generated by the arena �X , constant
functors are generated by arenas without free variables, product is generated by
�X×�Y , sum is generated by �X+�Y , and exponentiation by �X ⇒ A for every
arena A4. It is also easy to check that open functors are stable under composition
(substitution of open arenas) and by contraction (identify �X and �Y ).

Strengths. For each covariant open functor T : Inn → Inn, we define a strategy
θT : �X × T (�Y )→ T (�X ×�Y ) natural in X and Y as follows:

θT = {s ∈ L�X×T (�Y )⇒T (�X×�Y ) | ∀s′ vP s, s′�L ' s′�R}

Where by s ' s′, we mean that they are equal up to the pointers of occurrences
of �X . The various laws for the algebraic manipulation of open natural transfor-
mations suffice to prove that this defines a strength.

Contrastrengths. For each contravariant functor N : Innop → Inn, we define a
strategy ρN : �X ×N(�X ×�Y )→ N(�Y ) by:

ρN = idN(�Y ) ∪ {s�X�X ∈ L�X×N(�X×�Y )→N(�Y ) | s ∈ idN(�Y )}

In other words, ρN behaves as the identity on N(�Y ) until Opponent plays �X ,
in which cases it responds by the other occurrence of �X . As above, the available

4We do not have an open functor for − ⇒ − due to the enabling restriction on holes.
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algebraic manipulations on vertical composition make it easy to check that this is
a contrastrength.

Uniformity. Thus open functors are always strong, it remains to show that these
strengths satisfy the required uniformity conditions.

Theorem 4.10. The category Inn has strong (pseudo-polynomial) types.

Proof. The required equalities follow from the properties of vertical composition.

• Naturality in T and N . Let us detail the covariant case. Suppose we
have two open functors T1, T2 : Inn→ Inn and a natural transformation

η : T1
•→ T2. The naturality of θ in T means that for all Γ, A the following

diagram must commute.

Γ× T1(A)
θ
T1
Γ,A //

Γ×ηA
��

T1(Γ×A)

ηΓ×A

��
Γ× T2(A)

θ
T2
Γ,A

// T2(Γ×A)

By the factorisation theorem, we have ηA = η[idA] where η = η�X . Thus
if we can prove the equality for Γ = �X and A = �Y , the general case
will follow by the algebraic manipulations on vertical composition. But
this particular case is obvious by definition of the strategies θT1 and θT2 .

• Compatibility with identity and constant functors. Straightforward.
• Compatibility with contraction and composition. As above, we first prove

the necessary equalities for Γ = �X and A = �Y , then conclude by the
algebraic manipulations on vertical composition.

• Compatibility with sums. The family γΓ,A,A : Γ× (A+A)→ Γ×A+Γ×A
is natural in Γ and A, so it is an open natural transformation by the
factorisation theorem. So once again the necessary equality boils down to
the special case where Γ = �X and A = �Y and algebraic reasoning on
vertical composition.

• Compatibility with the closed structure. Same as above, except that ρ−⇒CΓ,A

is dinatural (and not natural) in Γ, hence the factorisation theorem does

not apply. So, we apply instead the reasoning above to Λ(ρ−⇒CΓ,A ), which
is natural both in Γ and A.

�

4.2.6. Loops and recursive types

Before we move on to the last section of this paper, let us mention how this work
allows us to revisit McCusker’s model of recursive types. We recall the inclusion
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order AEB on arenas, defined by:

MA ⊆ MB

λA = λB�MA

IA = IB ∩MA

`A = `B ∩ M2
A

The set of arenas, ordered by E, is a cpo. As for strong functors, it is easy to
prove that open functors are continuous and preserve injection and projection
strategies. Moreover, they are closed in the sense of McCusker, i.e. they are
enriched functors w.r.t. the enrichment of Inn over itself given by the closed
structure. Hence, for any open functor T : Inn → Inn, McCusker’s theorem [31]
states that the following infinite iteration of T defines a minimal invariant [17–19]
for T , hence an adequate model of recursive types.

Tω =
∞⊔
i=0

T i(1)

The novelty here is that we have access to the intermediate step of the open
arena, which permits the following construction:

Definition 4.11 (Loop construction). Let T be an open arena. For each name
X such that T is strict in X (no hole �X is initial), we define a new arena ρX.T :

MρX.T = MT \ {addr(�X) | addr ∈ A}
λρX.T = λT �MρX.T

m `ρX.T n ⇔ ∨
{
m `T n
∃addr ∈ A, m `T addr(�X) ∧ n ∈ IT

IρX.T = IT

The loop construction has the effect of generating cycles in arenas, as illustrated
in Figure 8. Even if the arenas Tω and ρX.T are distinct, they have the same paths
thus the same legal plays. More formally, there is a straightforward isomorphism
φT : LρX.T → LTω which to any play in LρX.T associates a play in LTω just
by renaming moves. By Laurent’s theorem on isomorphisms [27], φT corresponds
canonically to an isomorphism in Inn (for which, by abuse of notation, we will
keep the same notation) φT : ρX.T ⇒ Tω, which simply behaves as the identity.
The immediate consequence is that since Tω is a minimal invariant for T , this is
also the case for ρX.T , hence loops in arenas indeed model recursive types.

Recursive types are a feature of partial (i.e. not all programs terminate) pro-
gramming languages, whereas inductive and co-inductive types are a feature of
total programming languages. To be able to model programs as total strategies
and ban the non-terminating aspects of recursive types, we will now enrich the
loops described above with winning conditions.
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Figure 8. Loop construction

4.3. Induction and co-induction in games

Here comes the final step of the model construction, which consists of ensuring
preservation of totality by composition. In the case of acyclic, either finite or well-
founded arenas, a general solution of this problem can be found [11]. However
when arenas are possibly infinite or cyclic, it requires the notion of winning. To
the author’s knowledge, the use of winning in game semantics originates in the
early work of Blass [7]. It has subsequently been used several times for the purpose
of ensuring finiteness of interactions, see [2, 22] for an introduction. The precise
formulation that we use here is inspired from [22]. In this section, we use this
notion of winning familiar to game semanticists and we mix it with the usual
winning conditions for least and greatest fixpoints in parity games [35].

4.3.1. Winning games

For the purpose of this section, we need to temporarily allow infinite plays,
hence we take the following conventions. If A is an arena, let us denote by LωA the
set of possibly infinite legal plays over A and L∞A the set of infinite legal plays.
Likewise, let us denote by ThωA and Th∞A the sets of, respectively, possibly infinite
threads5 and actually infinite threads. If s ∈ LωA, we will need to isolate its threads.
If i is the index of an initial move in s, let us denote by s�i the subplay of s having
si as unique initial move : s�i can be seen as the equivalence class of si for the
reflexive, symmetric and transitive closure of the justification relation. We also
then define the set of threads of s ∈ LωA by the set VsW of all plays s�i such that si
has no justification pointer in s.

Definition 4.12. Let A be an arena. A winning function on A is a function

G : LωA → {W,L}

stating if a play s is a Win or a Loss for Player, and satisfying the following
properties:

5Let us recall that a thread is a legal play with only one initial move.
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(1) ∀s ∈ LωA, G(s) = W ⇔ ∀t ∈ VsW, G(t) = W ;
(2) If s is finite and of even length, G(s) = W ;
(3) If s is finite and of odd length, G(s) = L.

A win-game A is a pair (A,GA), where A is an arena and GA is a winning function
on A.

We then extend all the arena constructions to win-games. There is only one
way to extend the base arenas 0 and 1 to win-games 0 and 1, since they admit
only finite plays. Let us suppose that A and B are win-games. We define GA×B,
GA+B and GA⇒B by associating with them the following winning functions.

• If s ∈ LωA×B , GA×B(s) = W if and only if GA(s�A) = W and GB(s�B) =
W .

• If s ∈ LωA+B , then by well-bracketing each thread t ∈ VsW is either of
the form qLs′ where s′ ∈ LωA or in qRs′ where s′ ∈ LωB . We say that
GA+B(s) = W if each of its threads is winning for GA and GB, in the
corresponding component.

• If s ∈ LωA⇒B , then GA⇒B(s) = W if and only if for each thread t ∈ VsW,
if GA(t�A) = W , then GB(t�B) = W .

It is simple to check that these constructions satisfy all the requirements for a
winning function. To prove that winning strategies are stable under composition,
we will need the following modus ponens lemma:

Lemma 4.13. Let A = (A,GA) and B = (B,GB) be two win-games, and s ∈
L∞A⇒B. Suppose that GA⇒B(s) = W . Then we have : if GA(s�A) = W , then
GB(s�B) = W .

Proof. We suppose that GA⇒B(s) = W and GA(s�A) = W . Let us take an
arbitrary t ∈ Vs�BW. Then there is an initial move i of s�B such that t = (s�B)�i.
This move (s�B)i must also be in s, with a possibly different index i′, thus we have
(s�B)�i = (s�i′)�B . Thus:

V(s�i′)�AW ⊂ Vs�AW ⊂ G−1
A ({W})

The last inclusion being true because s is supposed to be winning on A. But as a
thread of winning s, s�i′ must be winning, hence by definition of winning on A ⇒ B
we have (s�i′)�B winning on B, but (s�i′)�B = (s�B)�i = t and t is winning. �

Winning strategies. We will now define the category Win of win-game and total
winning strategies. If σ : A is a strategy, we define σω = {s ∈ LωA | ∀s′ vP s, s′ ∈
σ} the set of possibly infinite plays of σ.

Definition 4.14. Let A = (A,GA) be a win-game and σ : A a strategy. We say
that σ is winning on A if for all s ∈ σω, GA(s) = W .

Proposition 4.15. Let A,B and C be win-games. If σ : A ⇒ B and τ : B ⇒ C
are winning strategies, then so is σ; τ : A ⇒ C.
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Proof. It suffices to prove that all threads of (σ; τ)ω are winning, so let t be such
a thread. If t is finite it has even length (because t ∈ σ) and we must have
GA⇒C(t) = W by definition of winning functions. If t is infinite, it has an infinite
interaction witness u ∈ σ || τ . By definition of GA⇒C , we have to prove that
if GA(t�A) = W , then GC(t�C) = W . Let us suppose that GA(t�A) = W , or
equivalently GA(u�A) = W . Since σ is winning, we can apply Lemma 4.13 and
deduce that GB(u�B) = W . Thus, again by Lemma 4.13 and the fact that τ is
winning, we have GC(u�C) = W , i.e. GC(t�C) = W which concludes the proof. �

Proposition 4.16. Let A,B and C be win-games. If σ : A ⇒ B and τ : B ⇒ C
are winning and total, then σ; τ : A ⇒ C is total.

Proof. It is known that if total σ : A ⇒ B and τ : B ⇒ C yield by composition
a partial σ; τ : A ⇒ C, it implies the existence of an infinite chattering, i.e.
an interaction u ∈ σ || τ which is finite in A and C, but infinite in B. See for
example [11], where this is explained thoroughly. A simple analysis of polarities
in the interaction show that we necessarily have u�A even-length and u�C odd-
length, hence GA(u�A) = W and GC(u�C) = L. But σ is winning, hence because
of Lemma 4.13 we must have GB(s�B) = W . And τ is winning, thus because of
Lemma 4.13 we must have GC(s�C) = W : contradiction. Thus no such infinite
interaction is possible, and σ; τ is total. �

Thus we have a category Win of win-games and total winning strategies. It
is straightforward to verify that the cartesian closed structure and the functorial
weak coproducts of Inn extend immediately to Win, hence we still have a cartesian
closed category with functorial weak coproducts. Note also that the cpo on arenas
can be extended to a cpo on win-games by setting AEB if and only if AEB and
if for all s ∈ LA, GA(s) = GB(s).

4.3.2. Strong types

To prepare the construction of a µ-closed category, we must extend the notion of
open functor to the category Win. The basic idea is that an open win-functor must
be a functor T : Win → Win whose action on arenas is given by an underlying
open functor T : Inn→ Inn. We also want to ensure that T is strong, for which
we simply require that the strength of T given by the structure of strong types of
Inn must be winning.

Definition 4.17. An open win-functor is a functor

T : (Winop ×Win)n →Win

which is continuous for E in all its arguments and whose action on arenas is
given by an open functor T . Moreover, we require that T is strong in each of
its arguments. More precisely, for each factorisation (Winop ×Win)n = C × D
where C = Win or C = Winop, and where D is a product of copies of Win and

Winop, for any object D of D, the strength θ
T (−,D)
Γ,A (or contrastrength ρ

T (−,D)
Γ,A ,
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if C = Winop) given by the structure of strong types in Inn is winning for all Γ
and A in Win.

Proposition 4.18. The category Win equipped with the class F of open win-
functors has a structure of strong (pseudo-polynomial) types.

Proof. It is easy to verify that F contains the necessary functors, and all equations
follow from strong types in Inn. Naturality of θTΓ,A and ρNΓ,A is a bit subtle to prove,

because it requires us first to generalize the factorisation theorem (Theorem 4.8)
to Win. However, it works easily because the proof only exploits commutation
with morphisms of the cartesian closed structure, hence total winning strategies,
see [10] for more details. �

4.3.3. Winning for loops

Let us now consider an arena ρX.T built by a loop construction, and let s ∈
LωρX.T . To decide which player wins s, we must first of all look at the depth
of s, which is the number of times the loop has been taken. Let us recall the
isomorphism φT , which associates to each play on ρX.T the corresponding play
φT (s) on Tω. The depth of s is, if it exists, the smallest n ∈ N such that φT (s) ∈
LωTn(1). If there is no such integer we say that s has infinite depth.

Definition 4.19 (Least fixpoint). Let T : Win →Win be an open win-functor
such that the open arena T is strict. We define a new win-game µX.T as follows.
Its underlying arena is ρX.T , and if s ∈ LωρX.T we define its winning function G

as follows: If s has infinite depth, then G(s) = L. Otherwise let n be its depth,
and set G(s) = GT n(1)(φT (s)).

Definition 4.20 (Greatest fixpoint). Let T : Win → Win be an open win-
functor such that the open arena T is strict. We define a new win-game νX.T
as follows. Its underlying arena is ρX.T , and if s ∈ LωρX.T we define its winning

function G as follows: If s has infinite depth, then G(s) = W . Otherwise let n be
its depth, and set G(s) = GT n(1)(φT (s)).

Remark. In other words if a play s ∈ LωρX.T takes the external loop an infinite
number of times, it is immediately losing on µX.T and winning on νX.T . However
if it only takes this loop a finite number of times (but may yet be infinite), the
winner on both games is decided by considering it on a finite expansion T n(1).
Since T is continuous the number n does not matter, as long as it is higher than
the depth of s. As hinted by the use of this finite expansion, the use of loops is in
fact not mandatory: one could define µX.T and νX.T respectively as least and
greatest fixpoints of T with respect to E and get isomorphic games. The interest
of loops resides in the fact that they preserve finiteness of arenas, and allow us
to present our model as a conservative extension of parity games. Note however
that whereas in parity games the winning conditions can be expressed concisely
by assigning numerical priorities to moves (expressing the level of imbrication of
loops), the presence of branching in plays unfortunately makes this representation
inapplicable here. The problem of finding a finite representation of those winning
conditions (and a completeness result at the level of games) remains open.
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There is a strategy χT : T (ρX.T ) ⇒ ρX.T in Inn generated by the obvious
path isomorphism between T (ρX.T ) and ρX.T . This isomorphism satisfies that
χT : T (µX.T )⇒ µX.T and χ−1

T : νX.T ⇒ T (νX.T ) are both winning strategies,
as follows easily from the continuity hypothesis on T .

Proposition 4.21 (Initial algebras). Let T : Win→Win be an open win-functor
with a strict underlying open arena. Then (µX.T , χT ) is an initial algebra for T .

Proof. Let (B, σ) be another algebra for T . We have to check that there is an
unique total winning strategy σ† : µX.T ⇒ B such that

T (µX.T )
T (σ†) //

χT
��

T (B)

σ
��

µX.T
σ†

// B

commutes. Intuitively, we only want to iterate σ:

. . .
T 3(σ)// T 3(B)

T 2(σ) // T 2(B)
T (σ) // T (B)

σ // B

and somehow take the limit. However, no general property of Win directly ensures
that this limit exists. We can however build it by using the cpo-enriched structure
of Inn. Let us begin by defining the partial iterations of σ by:

σ(1) = σ

σ(n+1) = T n(σ);σ(n)

In general, we do not have σ(n) ⊆ σ(n+1), which prevents us from concluding
immediately. However, we do have for all n:

σ
(n)
�Tω⇒B ⊆ σ

(n+1)
�Tω⇒B

And all the strategies of this chain are (possibly partial) strategies on Tω ⇒ B.
We can then define, by completeness of the inclusion order on strategies in Inn:

σ(ω) =
⋃
i∈N∗

σ
(i)
�Tω⇒B

This strategy σ(ω) is the one we are looking for, but we have to bring it back to
the arena ρX.T ⇒ B. For this purpose, note that that we have a straightforward
play isomorphism φ′ : LωρX.T⇒B → LωTω⇒B , thus we can define σ† = φ′−1(σ(ω)).

Clearly σ† is innocent, since it is in direct correspondence with innocent σ(ω).
The strategy σ† is also total; it suffices to prove it for σ(ω). Let s ∈ σ(ω) and

sa ∈ LTω⇒B . We want to prove that σ(ω) has some response to a. Since s is finite,



TITLE WILL BE SET BY THE PUBLISHER 37

there is some n ∈ N such that s ∈ σ(n)
�Tω⇒B . As a composition of total strategies

σ(n) is total, but on Tn(B)⇒ B, and maybe the response of σ(n) to a would have

been in the left copy of B. But we also have s ∈ σ(n+1)
�Tω⇒B where σ(n+1) is also total

so there must be some move b such that sab ∈ σ(n+1). But then sab ∈ σ(n+1)
�Tω⇒B ,

because T is strict and b cannot reach directly the left occurrence of B. Thus
sab ∈ σ(ω) and σ† is total.

Let us also prove that σ† is winning. Let t be a possibly infinite thread in σ†

such that t′ = t�ρX.T is winning on µX.T . By definition of winning on µX.T this
means that t′ has a finite depth n, and that φT (t′) is winning on T n(1). But in
this case, we have in fact φ′(t) ∈ σ(n) and σ(n) is winning as the composition of
winning strategies, thus t is winning.

Finally, we have to prove that there is no other strategy f : µX.T ⇒ B such
that the above diagram commutes. Let us suppose that there is such an f , then
we would have T (f);σ = χT ; f . In other words:

f = χ−1
T ; T (f);σ

By abuse of notation, let us also denote by φ the isomorphism in Inn φ : ρX.T →
Tω generated by the play isomorphism φ : LωρX.T → LωTω . Then we have :

φ−1; f = φ−1;χ−1
T ; T (f);σ

= T (φ−1; f);σ

We use the equality φ−1;χ−1
T = T (φ−1), which is trivial by definition of these

strategies. After n substitutions of this expression in itself, we get:

φ−1; f = T n+1(φ−1; f); T n(σ); . . . ; T (σ);σ

Thus for all n ∈ N, we have T n+1(φ−1; f);σ(n) = φ−1; f . Let us now take s ∈
φ−1; f and let n be the depth of s�Tω . Such an n exists, because s is finite. We

have s ∈ T n+1(φ−1; f);σ(n), but s has depth n so s ∈ σ(n), thus s ∈ σ(ω). We
have proved φ−1; f ⊆ σ(ω), but since both strategies are total it suffices to prove
an inclusion to get the equality [10], thus f = φ;σ(ω) = σ†. �

Proposition 4.22. Let T : Win → Win be an open win-functor with a strict
underlying open arena. Then (νX.T , χ−1

T ) is a terminal coalgebra for T .

Proof. Let (B, σ) be another coalgebra for T . We have to check that there is an
unique total winning strategy σ‡ : B ⇒ νX.T such that the following diagram
commutes.

T (νX.T ) oo
T (σ‡)

OO
χT

T (B)
OO
σ

νX.T oo
σ‡

B
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As for the previous case, we first give a direct definition of σ(ω):

σ(1) = σ

σ(n+1) = σ(n); T n(σ)

σ(ω) =
⋃
i∈N

σ
(n)
�B⇒Tω

Then, if we consider the obvious play isomorphism φ′ : LωρX.T → LωTω :

σ‡ = φ′−1(σ(ω))

For the same reasons as for initial algebras, we get that σ‡ is total and innocent.
Let us detail the proof that it is also winning. Let t be a possibly infinite thread
in σ‡, such that t�B is winning on B. Let us now consider t′ = t�νX.T . Either it
has infinite depth and t is immediately winning, or it has finite depth n. Then
we have φ(t) ∈ σ(n) which is winning as a composition of winning strategies, so
φ(t) is winning on B ⇒ T n(1), thus t is winning on B ⇒ νX.T by definition of
winning on νX.T . The proof that σ‡ is the unique such total winning strategy is
very similar to the case of initial algebras, and will not be repeated. �

As shown in Section 4.2.6, the loop construction ρX.T in Inn yields a minimal
invariant to the corresponding open functor T ; it is also both an initial algebra
and a terminal coalgebra for T . The two different natural winning conditions on
loops are able to separate these two roles: µX.T is the initial algebra, and νX.T
is the terminal coalgebra.

At this point we almost have a µ-closed category, but we still have to prove
that parametrised initial algebras and parametrised terminal coalgebras are open
win-functors.

Proposition 4.23. Let T : Win ×D → Win be an open win-functor, where D
is a product of copies of Win and Winop. Then the parametrised initial algebra:

T µ : D→Win

is an open win-functor.

Proof. For simplicity, let us detail the case where D = Win, so that T µ : Win→
Win. The first step is to provide an open arena for the action of T µ on strategies,
unsurprisingly this open arena will be ρX.T , which still holes has labelled �Y . In
the vocabulary we used for the proof of Proposition 4.21, we have (by definition
of parametrised initial algebras) for all σ : A→ B:

T µ(σ) = (T (T µ(B), σ);χB)†

We must prove that T µ(σ) = (ρX.T )[σ/Y ], thus let us take s ∈ T µ(σ) a P -view.
Up to an isomorphism of plays φ, there is n ∈ N such that s ∈ (T (T µ(B), σ);χB)(n).
By immediate induction on n, we prove that (1) s is functorial, (2) s�ρX.T⇒ρX.T ∈
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idρX.T , (3) s�A⇒B ∈ σ, hence we have an inclusion between two total strategies,
which implies the equality.

It is obvious that T µ is continuous for E. As needed, its action is given by an

open arena but we still have to check that its strength θµX.TΓ,A : Γ× (µX.T )(A)→
(µX.T )(Γ × A) is winning. Let t be a possibly infinite thread of θµX.TΓ,A , and
suppose that t�Γ×(µX.T )(A) is winning. In particular, t�(µX.T )(A) is winning so t
has finite depth n. But in this case we see immediately that (with an abuse of

notation for the iteration of T ) φ(t) ∈ θT
n(1,−)

Γ,A which is winning since T n(1,−) is
a composition of open win-functors. Hence t is winning. The cases of contravariant
strengths and of functors T with higher arity are similar. �

Proposition 4.24. Let T : Win×D→Win be an open win-functor, where D is
a product of copies of Win and Winop. Then the parametrised terminal coalgebra:

T ν : D→Win

is an open win-functor.

Proof. The proof that the action of T ν on strategies is that of ρX.T is identical
to the case of a parametrised initial algebra. As above, we detail the case where
D = Win. Once again it is obvious that T ν is continuous for E, thus it only
remains to show that θνX.TΓ,A : Γ× (νX.T )(A)→ (νX.T )(Γ×A) is winning. Let t

be a possibly infinite thread in θνX.TΓ,A . If t�(νX.T )(Γ×A) is winning, there is nothing
to do. Otherwise it is a loss for Player, which implies in particular that t has finite
depth n. As for the case of parametrised initial algebras, t is then a thread of the
strength of an iteration of T , which is winning, thus t is winning. �

Theorem 4.25. The category Win is µ-closed (for pseudo-polynomial and strict
formulas), hence is a sound model of (the pseudo-polynomial, strict fragment of)
µLJ .

An immediate corollary is that µLJ is consistent, since the pseudo-polynomial
and strict formula 0 is not inhabited by any total strategy.

4.4. Completeness and faithfulness

Game semantics is known for its tight connection to syntax, hence for its ten-
dency to provide fully complete models. In this section, we are concerned with this
completeness problem : does our model characterise proofs in µLJ , or do we get
additional objects? Also, does the equality in Win coincide with the equivalence
relation on proofs generated by the reduction rules? To both questions the answer
will be no, although we will try to say precisely where and why it fails.

4.4.1. Completeness and normalisation

Let Γ ` A be a sequent, then unfortunately there are in general far more total
winning strategies in JΓK⇒ JAK than there are µLJ proofs in Γ ` A. The reason
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for this is that total winning strategies are not required to be regular in any
sense, nor even recursive. For an example, we do have a total winning strategy
κ : nat ⇒ bool which solves the halting problem for the n-th Turing machine.
There can also be strategies which compute legal recursive functions, but which
as a set of plays are not recursive. For an example, consider the function on
nat ⇒ nat which, given an input number n, calls its argument BB(n) additional
times (where BB is the busy beaver function) then returns the result of the final
call. Extensionally it just computes the identity function, but as a set of plays it
is not recursive.

However, nothing prevents us from applying the usual definability algorithm
[30], although it will not always terminate. For each strategy σ, we will get a
potentially infinite cut-free “proof” π such that JπK = σ. Thus we will be able to
eliminate cuts in µLJ , the price for this being the extension to infinite proofs.

Infinite proofs. Formulas of µLJω are those of µLJ and “proofs” are potentially
infinite trees made of rules from the identity group (without cut), the logical group,
and rules µr and νl.

Proposition 4.26. Let π be an infinite “proof” in µLJω of a sequent Γ ` A, then
the strategy JπK is innocent and total.

Proof. All prefixes of π give rise to innocent partial strategies and JπK is obtained
by taking the supremum. This strategy is still innocent, and it is also total, as
there are no cuts in π. �

Remark. Of course, this construction does not necessarily produce winning strate-
gies. For an example, nothing prevents us from forming the following “proof”.

π =

π

` nat −→
+r

` 1 + nat
µr

` nat
This is the infinite “integer”, which is always the successor of itself. Its inter-

pretation is an innocent total strategy, however it clearly cannot be winning.

Definability. Let now be Γ ` A a sequent, and σ : JΓK → JAK a total winning
strategy. For each finite6 subset σ′ of σ, we get by definability a partial proof
(σ′)•. If we have σ′ ⊂ σ′′ two finite subsets of σ, then (σ′)• is clearly a prefix of
(σ′′)•. Hence we can once again take the supremum, which yields a “proof” σ• in
µLJω which such that Jσ•K = σ by construction.

Consequences. Let us state an immediate corollary of this construction : µLJ does
enjoy cut elimination modulo the extension to the infinite syntax. Let us note that
this cut elimination process will not be up to reduction in the syntax, but with
respect to the equivalence relation generated by the model:

π 'Win π
′ ⇔ JπK = Jπ′K

6Here, finite means that it has a finite number of P -views, not a finite number of plays.
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Corollary 4.27. Let π be a proof in µLJ of a sequent Γ ` A. Then, there is a
possibly infinite cut-free “proof” π′ of Γ ` A, such that π 'Win π

′.

Of course, if neither Γ nor A contains fixpoints, the definability operation on
JπK yields a winning strategy on a finite arena, and these (see details in [10]) can
be proved to be in fact finite. Hence in this case, this cut elimination procedure
yields a finite µLJ proof. Moreover this cut elimination result is effective, since
the interpretation of π by an innocent strategy amounts to the computation of a
normal form of π by a notion of linear head reduction [15].

4.4.2. Faithfulness

The model is not faithful, as will be shown by the following counter-example.
As the syntax of µLJ is not so intuitive, let us present it in a ML-like syntax.
First consider the two terms below:

let rec iter f n b =

if n = 0 then b

else iter f (n-1) (f b)

let rec iter’ f n b =

if n = 0 then b

else iter’ f (n-1) (not (f (not b)))

It is immediate to check (by induction on n) that on every input f, n and
b, not (iter f n (not b)) and iter’ f n b return the same result. In fact,
these two functions (regarded as µLJ proof terms) have the same infinite unfolding
in µLJω: the unfolding of iter’ reveals sequences of the form not (not (-))

which immediately simplify, not being involutive. Thus these two terms have
the same interpretation in Win, whereas they cannot be convertible since a let

rec subterm would correspond to a µl rule, and subproofs beginning by µl are
preserved by reduction.

Note that if the intended model of induction and co-induction is initial algebras
and terminal coalgebras then the reduction rules of µLJ are incomplete since they
only correspond to weak initial algebras and terminal coalgebras: the uniqueness
condition of the universal property does not hold (however, any “complete” set
of rules in this sense would give rise to an undecidable equivalence relation [33]).
On the other hand, our games model should exactly implement the equivalence
relation generated by the interpretation of proofs with initial algebras and terminal
coalgebras: we believe (but leave it open for the time being) that for any two proofs
π1 and π2, we have π1 'Γ π2 if and only if they have the same interpretation in
any µ-closed category.

5. Conclusion

The main contributions of this paper are a notion of µ-closed categories as cate-
gorical models of total programming languages with fixpoints, and the construction
of a µ-closed (for the restricted fragment of strict and pseudo-polynomial types)
category of games and total winning strategies, yielding a consistency result for
an intuitionistic sequent calculus µLJ with inductive and co-inductive datatypes,
and a normalisation proof (for its strict and pseudo-polynomial fragment).
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Overall, many technical difficulties follow from the choice of representing fix-
points with loops: one is brought to consider open functors, which unfortunately
(at least for now) do not cover all types. An alternative approach would be to rely
on the same category of games, but build strong functors directly by induction
on types and build initial algebras and terminal coalgebras as least and greatest
fixpoints for the cpo E on win-games. This would yield the same interpretation
of proofs as strategies but would lift the pseudo-polynomial restriction and sim-
plify parts of the presentation. However, the current approach also has its merits:
making explicit the proximity to parity games might be a starting point for future
work. Moreover, we think the construction of open functors is interesting in itself:
they could be useful for other purposes, such as modelling polymorphism.

Let us mention two research perspectives opened by this model. First, one
could study the equivalence relation on proofs generated by the model, comparing
it with the equality generated by the interpretation of proofs in arbitrary µ-closed
categories. One could then try to isolate subsystems of µLJ for which this equiv-
alence relation is decidable, for instance by applying automata-theoretic tools.
Another avenue of investigation is the decidability of our winning conditions: it is
in general undecidable to know if a term given by general recursion (say, a term of
FPC) gives rise to a winning strategy. However, isolating subsystems where this is
decidable may prove worthwhile to guide the construction of termination checkers.
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[3] A. Arnold and D. Niwiński. Rudiments of µ-calculus. North-Holland, 2001.
[4] D. Baelde and D. Miller. Least and greatest fixed points in linear logic. In N. Dershowitz

and A. Voronkov, editors, LPAR, volume 4790 of LNCS, pages 92–106. Springer, 2007.

[5] E.S. Bainbridge, P.J. Freyd, A. Scedrov, and P.J. Scott. Functorial polymorphism. Theoret-
ical Computer Science, 70(1):35–64, 1990.

[6] W. Belkhir and L. Santocanale. The variable hierarchy for the lattice µ-calculus. In Iliano

Cervesato, Helmut Veith, and Andrei Voronkov, editors, LPAR, volume 5330 of LNCS,
pages 605–620. Springer, 2008.

[7] A. Blass. A game semantics for linear logic. Ann. Pure Appl. Logic, 56(1-3):183–220, 1992.
[8] P. Clairambault. Least and greatest fixpoints in game semantics 2 : strong functors and in-

terleaving types. Informal proceedings of the workshop on Fixed Points in Computer Science,

Coimbra, Portugal, September 2009.

[9] P. Clairambault. Least and greatest fixpoints in game semantics. In Luca de Alfaro, editor,
FOSSACS, volume 5504 of LNCS, pages 16–31. Springer, 2009.



TITLE WILL BE SET BY THE PUBLISHER 43

[10] P. Clairambault. Logique et Interaction : une Étude Sémantique de la Totalité. PhD thesis,
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