
1/32

Isomorphisms of types
in the presence of higher-order references

Pierre Clairambault

University of Bath

LICS 2011

2/32

I. Short overview on isomorphisms of types

3/32

Isomorphisms of types

Let L be a typed programming language, its operational semantics
defines an equational theory =L on its terms.

Definition
An isomorphism between types A and B consists of two programs
` M : A→ B and ` N : B → A such that M ◦ N =L idB and
N ◦M =L idA.

Problem
Characterize the isomorphisms of types in L.

4/32

Syntactic approach

Theorem (Dezani-Ciancaglini, 1976)

The normal forms of the untyped λ-calculus possessing an inverse are the
finite hereditary permutators.

Bruce and Longo (1985): finite hereditary permutators can be
simply typed by T → T ′, when T and T ′ only differ with
applications of swap:

A→ (B → C) ' B → (A→ C)

Later extended to richer types and constructors (Balat, Bruce, Di
Cosmo, Fiore, Longo, . . .).

5/32

Some results – typed call-by-name λ-calculi

A→ (B → C) ' B → (A→ C)

A× B ' B × A

A× (B × C) ' (A× B)× C

(A× B)→ C ' A→ (B → C)

A→ (B × C) ' (A→ B)× (A→ C)

A× 1 ' A

A→ 1 ' 1

1→ A ' A

∀X .∀Y .A ' ∀Y .∀X .A

∀X .A ' ∀Y .A[Y /X]

∀X .(A→ B) ' A→ ∀X .B

∀X .A× B ' ∀X .A× ∀X .B

∀X .1 ' 1

6/32

Semantic approach

An analysis of isomorphisms in game semantics yields:

Theorem (Laurent, 2005)

In innocent game semantics, two arenas are isomorphic if and only if they
are identical, up to the renaming of moves.

Using this, Laurent could find the isomorphisms of types for LLP
and the CBN and CBV λµ-calculi.

De Lataillade (2007) later extended these tools to characterize
isomorphisms for classical System F and Curry-style System F.

Laurent’s proof relies on visibility. He conjectures that it is not necessary.

7/32

Application: software modularity

Type isomorphisms are a useful tool for modularity.

Rittri, 1991: Search functions in libraries using their type modulo
isomorphism as a key,

Extensions: matching and unification of types modulo isomorphism.

Isomorphisms can also be used inside the language:

Wadler, 1987: Use isomorphisms as intermediate between an
internal hidden implementation of a data type and an external one,

Nipkow, 1990: Incorporate them directly in the type system,

Di Cosmo, 1986: Automatically correct typing errors, when the
coercion is unique.

There were several implementations of these ideas.

8/32

Isomorphisms in the presence of references

Motivation for isomorphisms of types in the presence of references:

The mentionned works apply isomorphisms for pure languages
(λ-calculus, System F. . .) to languages with effect (ML).

The theory of isomorphisms without effects is still sound in the
presence of references, but it may not be complete.

In this work:

We prove Laurent’s conjecture for finitary types,

We characterize isomorphisms in a language with finite types and
higher-order store,

We refute Laurent’s conjecture in the presence of natural numbers.

9/32

II. A language L2 with higher-order store

10/32

Types and terms of L2

Definition (Types)

A ::= unit | bool | A× B | A→ B | var[A]

Definition (Terms)

M ::= x | λx .M | M M | 〈M,M〉 | fst M | snd M (λ-calculus)

| true | false | if M M M (booleans)

| newA | M := M | !M | mkvar M M | skip (references)

11/32

Typing rules

Usual rules for λ-calculus and booleans, plus:

Γ ` newA : var[A]

Γ ` M : var[A]

Γ `!M : A

Γ ` M : var[A] Γ ` N : A

Γ ` M := N : unit

Γ ` M : A→ unit Γ ` N : unit→ A

Γ ` mkvar M N : var[A]

Note the presence of bad variables.

12/32

Equality on terms and isomorphisms

We equip L2 with its standard call-by-value operational semantics.

Definition (Observational equivalence)

If M and N are two terms, then M ∼= N if and only if for all context C [−]
such that C [M] and C [N] are closed,

C [M] ⇓ ⇔ C [N] ⇓

Definition (Isomorphisms of types)

Two types A and B are isomorphic (A 'L2 B) if there are terms
x : A ` M : B and y : B ` N : A such that

(λy .N) M ∼= x

(λx .M) N ∼= y

13/32

Our main result

Theorem
Isomorphisms in L2 are given by the following equational theory:

A× B =E B × A

A× (B × C) =E (A× B)× C

A× unit =E A

bool× A→ B =E (A→ B)× (A→ B)

var[A] =E (A→ unit)× (unit→ A)

Note that A→ (B → C) ' B → (A→ C) is not satisfied, because of the
CBV setting (the η-rule only applies on values).

14/32

III. Game semantics for L2

15/32

Interpretation of types: arenas

Following Abramsky, Honda & McCusker, 1998.

Definition

An arena is a tuple A = 〈MA, λA, IA,`A〉 where

MA is a set of moves,

λA : MA → {O,P} × {Q,A} is a labelling function,

IA ⊆ λA−1({OQ}) is a set of initial moves,

`A⊆ M2
A is a relation called enabling.

For the purposes of this work, we additionally require A to be:

Complete: for each question q ∈ MA, there should be an answer
a ∈ MA such that q `A a,

Finitely branching: any m ∈ MA justifies finitely many moves.

For each type constructor, there is a corresponding arena construction.

16/32

Legal plays and strategies

Definition
A legal play on A is a pointing string on MA abiding with `A and IA.
Moreover, it is

Alternating: O and P alternate,

Well-bracketed: each answer points to the pending question.

If s only satisfies well-bracketing, it is a pre-legal play. Let LA denote
the set of legal plays on A, and L′A the set of pre-legal plays on A.

Definition
A strategy σ : A is a subset σ ⊆ LA which satisfies:

All plays in σ are P-ending, and σ is closed under P-ending prefix,

σ is deterministic: ∀sab, sab′ ∈ σ, b = b′.

17/32

Composition and the category Gam

Definition
Let σ : A⇒ B and τ : B ⇒ C , then we define:

σ; τ =

 u�A,B ∈ σ
u�A,C u�B,C ∈ τ

u�A,C ∈ LA⇒C

 : A⇒ C

Theorem
This operation defines a category Gam, in which one can interpret L2

(not straightforward).

18/32

IV. Isomorphisms in Gam

19/32

Paths and path isomorphisms

Definition
A path on A is a play p ∈ LA such that each move points to the previous
move. We write p ∈ PA. A path morphism from A to B is a function
φ : PA → PB which:

Preserves sequentiality: φ(ε) = ε and φ(sa) = φ(s)b for some b.

Preserves labelling: if φ(sa) = φ(s)b, λA(a) = λB(b).

Remark
If A and B are forests, they are path-isomorphic if and only if they are
identical up to renaming of moves.

Definition
We have a category Path of arenas and path morphisms

Our goal is to relate isomorphisms in Gam with isomorphisms in Path.

20/32

Weaker notions of morphisms

Definition

A sequential play morphism from A to B is φ : L′A → L′B such that:

It preserves sequentiality:

φ(ε) = ε

φ(sa) = φ(s)b for some move b in B

It preserves labelling:

If φ(sa) = φ(s)b, then λA(a) = λB(b)

There is a category Seq of arenas and sequential play morphisms,

◦ ◦
• • λ(◦) = O

◦ � φ // ◦
• • λ(•) = P

• •

21/32

Relating isos in Gam with isos in Seq

Isomorphisms must be zig-zag:

Definition
A play s ∈ LA⇒B is zig-zag if:

1. Each P-move following a O-move in A is in B,

2. Each P-move following a O-move in B is in A.

Definition
A strategy σ : A⇒ B is zig-zag if all its plays are.

Proposition

Isomorphisms in Gam are zig-zag strategies.

22/32

From zig-zag isomorphisms to play isomorphisms
Take the relation φσ = Rel(σ) (Hyland and Schalk’s relational functor)

A
σ // B

s ′1
s1
s2

s ′2

s ′3
s3

sn

s ′n

L′A
φσ // L′B

s1 s ′1

s2 s ′2

s3 s ′3

sn s ′n

When σ is iso, φσ is in fact a function, and a sequential play morphism.

Proposition

S(σ) = φσ yields an isomorphism of groupoids between Gami and Seqi .

(where Ci denotes the groupoid of isomorphisms in a category C)

23/32

Possible extensions of a play

How many ways are there to extend s ∈ L′A?

If a ∈ MA, its arity is ar(a) = |{b ∈ MA | a `A b}|
An extension of s ∈ L′A corresponds to a move and the choice of its
justifier:

ext(s) = {(i , b) | b ∈ MA ∧ si `A b}

Thus for all s ∈ L′A, there are

|ext(s)| = |{(i , b) | b ∈ MA ∧ si `A b}|
= |

⋃
i≤|s|

{(i , b) | si `A b}|

=

|s|∑
i=1

ar(si)

ways to extend s to sa.

24/32

Actions of sequential isomorphisms on extensions of plays

Suppose φ : A→ B is an iso in Seq. Then:

For all s ∈ L′A, φ induces an isomorphism

φs : ext(s)→ ext(φ(s))

Thus we always have |ext(s)| = |ext(φ(s))|
For all φ(sa) = φ(s)b,

|ext(sa)| = |ext(φ(s)b)|
|ext(s)|+ ar(a) = |ext(φ(s))|+ ar(b)

ar(a) = ar(b)

So sequential isomorphisms preserve the arity of moves.

Generalization: Sequential isomorphisms associate to each move a move
with a k-isomorphic subtree, for all k ∈ N.

25/32

Laurent’s conjecture is true

Theorem
If A and B are isomorphic in Gam, then they are isomorphic in Path.

Proof.
We have built in fact a family of functions:

GA,B : Gami (A,B)→ Pathi (A,B)

The extraction function GA,B can be made natural in A and B, but (we
conjecture) not functorial.

It is crucial that A and B are finitely branching.

26/32

Corollary: isomorphisms in L2

Theorem
Isomorphisms in L2 are given by the following equational theory:

A× B =E B × A

A× (B × C) =E (A× B)× C

A× unit =E A

bool× A→ B =E (A→ B)× (A→ B)

var[A] =E (A→ unit)× (unit→ A)

27/32

V. Isomorphisms with infinite data types

28/32

Laurent’s conjecture is false

The following arenas are isomorphic in Gam∞:

q

q1 q2 a

a a q′

q1 q2 a

a a

q

q1 q2 a

a a q′

q a

a

On one side there are 2N choices, on the other side N + 1.

In general, if q′ has been played n times, we need a bijection
between (n + 1)N and N + n.

So in the general case, Laurent’s conjecture is false.

29/32

(nat→ unit)→ (nat→ unit)→ unit

'L (nat→ unit)→ (unit→ unit)→ unit.

f : (nat→ unit)→ (nat→ unit)→ unit `
new count := 0, func := ⊥ in

λg : nat→ unit.
let x = f (λn. g(n ∗ (!count+ 1))) in
λh : unit→ unit.
count := !count+ 1;
let c = !count in

func := λn. if n =!count
then h
else !func n;

x (λn. if n = 0 then !func c () else
g((n − 1) ∗ (!count+ 1) + c))

f : (nat→ unit)→ (unit→ unit)→ unit `
new count := 0, func := ⊥ in

λg : nat→ unit.
let x = f (λn.
let (q, r) = div n (!count+ 1) in
if r = 0 then g q else !func r (q + 1))

in

λh : nat→ unit.
count :=!count+ 1;
func := λn. if n =!count then h

else !func n;
let c =!count in x (λ . !func c 0)

These two terms are inverses of one another!

30/32

More examples

Some more isomorphisms in L:

nat× nat ' nat

(nat→ unit)→ (nat→ unit)→ unit ' (nat→ unit)→ (unit→ unit)→ unit

nat→ (nat→ unit) ' nat→ unit

nat→ (nat→ unit) ' (nat× nat)→ unit

Some non-isomorphisms:

(nat→ unit)→ (nat→ bool)→ unit 6' (nat→ unit)→ (unit→ bool)→ unit

nat→ (nat→ bool) 6' (nat× nat)→ bool

31/32

VI. Conclusion

32/32

Conclusion

The game-theoretic theorem also directly applies:

To L2 extended with sums and empty type,

To var-free isomorphisms in a language without bad variables.

It should extend as well:

To L2 with call/cc,

To call-by-name L with nat but without call/cc.

In CBN, building a non-trivial isomorphism requires call/cc.

