1/32

Isomorphisms of types
in the presence of higher-order references

Pierre CLAIRAMBAULT

University of Bath

LICS 2011

2/32

I. SHORT OVERVIEW ON ISOMORPHISMS OF TYPES

3/32

Isomorphisms of types

Let £ be a typed programming language, its operational semantics
defines an equational theory =, on its terms.

Definition
An isomorphism between types A and B consists of two programs

FM:A— Band k- N:B — Asuch that Mo N =, idg and
NOMzﬁidA.

AmB Mo N = idg

N 7 NoM =ida

Problem

Characterize the isomorphisms of types in L.

4/32

Syntactic approach

Theorem (Dezani-Ciancaglini, 1976)

The normal forms of the untyped \-calculus possessing an inverse are the
finite hereditary permutators.

@ Bruce and Longo (1985): finite hereditary permutators can be
simply typed by T — T’, when T and T’ only differ with
applications of swap:

A-(B—=C)~B— (A= ()

o Later extended to richer types and constructors (Balat, Bruce, Di
Cosmo, Fiore, Longo, ...).

Some results — typed call-by-name A-calculi

A= (B—=C)
Ax B

Ax (B x ()
(AxB)—C
A— (BxC)
Ax1
A—=1
1—-A
VX.VY.A
VX.A
vX.(A— B)
VX.Ax B
vX.1

1

1

1R

1

1R

B—(A— ()
BxA
(AxB)x C
A—(B—C)
(A=B)x (A= (C)
A

1

A

VY VX.A
VY.A[Y/X]
A—VX.B
VX.AxVX.B
1

5/32

6/32

Semantic approach

An analysis of isomorphisms in game semantics yields:

Theorem (Laurent, 2005)

In innocent game semantics, two arenas are isomorphic if and only if they
are identical, up to the renaming of moves.

@ Using this, Laurent could find the isomorphisms of types for LLP
and the CBN and CBV Ap-calculi.

@ De Lataillade (2007) later extended these tools to characterize
isomorphisms for classical System F and Curry-style System F.

Laurent’s proof relies on visibility. He conjectures that it is not necessary.

7/32

Application: software modularity

Type isomorphisms are a useful tool for modularity.

@ Rittri, 1991: Search functions in libraries using their type modulo
isomorphism as a key,

@ Extensions: matching and unification of types modulo isomorphism.

Isomorphisms can also be used inside the language:

@ Wadler, 1987: Use isomorphisms as intermediate between an
internal hidden implementation of a data type and an external one,

@ Nipkow, 1990: Incorporate them directly in the type system,

@ Di Cosmo, 1986: Automatically correct typing errors, when the
coercion is unique.

There were several implementations of these ideas.

8/32

Isomorphisms in the presence of references

Motivation for isomorphisms of types in the presence of references:

@ The mentionned works apply isomorphisms for pure languages
(A-calculus, System F...) to languages with effect (ML).

@ The theory of isomorphisms without effects is still sound in the
presence of references, but it may not be complete.

In this work:
@ We prove Laurent's conjecture for finitary types,

@ We characterize isomorphisms in a language with finite types and
higher-order store,

@ We refute Laurent's conjecture in the presence of natural numbers.

9/32

II. A LANGUAGE L5 WITH HIGHER-ORDER STORE

10/32

Types and terms of L,

Definition (Types)

A ::=unit | bool | Ax B | A— B | var[A]

Definition (Terms)

M = x| XxM|MM]|(M,M)|fst M|snd M (A\calculus)
| true | false |if M M M (booleans)

| newsa | M:= M | IM | mkvar M M | skip (references)

Typing rules

Usual rules for A-calculus and booleans, plus:

Ik newy : var[A] FEIM - A

N=-M:var[A] THEN:A
'EM:=N:unit

INFEM:A—unit TTHN:unit— A
I+ mkvar M N : var[A]

Note the presence of bad variables.

I M : var[A]

11/32

12/32

Equality on terms and isomorphisms

We equip L5 with its standard call-by-value operational semantics.

Definition (Observational equivalence)

If M and N are two terms, then M = N if and only if for all context C[—]
such that C[M] and C[N] are closed,

CIM I < CIN Y

Definition (Isomorphisms of types)

Two types A and B are isomorphic (A ~, B) if there are terms
x:AFM:Bandy:BF N: Asuch that

¢

(AWY.N)M =2 x
(AXM)N = y

Our main result

Theorem

Isomorphisms in L, are given by the following equational theory:

AxB = BxA
Ax(BxC) =¢ (AxB)xC
AXunit =¢ A
bool xA—B =g (A— B)x(A— B)

(
var[A] =¢ (A — unit) x (unit — A)

Note that A— (B — C) ~ B — (A — C) is not satisfied, because of the
CBYV setting (the n-rule only applies on values).

13/32

14/32

ITII. GAME SEMANTICS FOR L»

15/32

Interpretation of types: arenas

Following Abramsky, Honda & McCusker, 1998.

Definition

An arena is a tuple A = (Ma, Aa, Ia,Fa) where

M, is a set of moves,

Aa: Ma— {0, P} x {Q, A} is a labelling function,
Ia € A\~ H({OQ}) is a set of initial moves,

FaC M3 is a relation called enabling.

For the purposes of this work, we additionally require A to be:

o Complete: for each question g € My, there should be an answer
a € My such that g4 a,

o Finitely branching: any m € M, justifies finitely many moves.

For each type constructor, there is a corresponding arena construction.

16/32

Legal plays and strategies

Definition
A legal play on A is a pointing string on M, abiding with -4 and /4.
Moreover, it is

@ Alternating: O and P alternate,

@ Well-bracketed: each answer points to the pending question.

If s only satisfies well-bracketing, it is a pre-legal play. Let £, denote
the set of legal plays on A, and £/, the set of pre-legal plays on A.

Definition
A strategy o : A is a subset 0 C L4 which satisfies:
@ All plays in o are P-ending, and o is closed under P-ending prefix,

@ o is deterministic: Vsab,sab’ € o, b=b'.

17/32

Composition and the category Gam

Definition
Let 0 : A= B and 7 : B = C, then we define:
uaB €0

0, T=4 UAac |UBCET A= C
upa,c € Lasc

Theorem

This operation defines a category Gam, in which one can interpret L,
(not straightforward).

18/32

IV. ISOMORPHISMS IN Gam

19/32

Paths and path isomorphisms

Definition
A path on Ais a play p € L4 such that each move points to the previous
move. We write p € P4. A path morphism from A to B is a function
¢ : Pa — Pp which:
o Preserves sequentiality: ¢(€) = € and ¢(sa) = ¢(s)b for some b.
@ Preserves labelling: if ¢(sa) = ¢(s)b, Aa(a) = Ag(b).

Remark

If A and B are forests, they are path-isomorphic if and only if they are
identical up to renaming of moves.

Definition
We have a category Path of arenas and path morphisms

Our goal is to relate isomorphisms in Gam with isomorphisms in Path.

Weaker notions of morphisms

Definition
A sequential play morphism from A to B is ¢ : £/, — L such that:

@ It preserves sequentiality:

ple) = e
¢(sa) = ¢(s)b for some move b in B

@ It preserves labelling:
If ¢(sa) = ¢(s)b, then Aa(a) = Ag(b)

There is a category Seq of arenas and sequential play morphisms,

i,/k . Ao) = O
\:) fAAf?44>— 1o

\

° Ae)=P

20/32

21/32

Relating isos in Gam with isos in Seq

Isomorphisms must be zig-zag:

Definition

A play s € La_. g is zig-zag if:
1. Each P-move following a O-move in A is in B,
2. Each P-move following a O-move in B is in A.

Definition
A strategy o : A= B is zig-zag if all its plays are.

Proposition

Isomorphisms in Gam are zig-zag strategies.

22/32

From zig-zag isomorphisms to play isomorphisms
Take the relation ¢, = Rel(c) (Hyland and Schalk’s relational functor)

o ’ (o2 ,
A—B LYy ——— L5
/
S ,
s S1 5
S> ,
s 52 Sy
2
! /
53 S3 S3
S3 :
Sn :/
Sn S
! n
sn

When o is iso, ¢, is in fact a function, and a sequential play morphism.

Proposition }

S(0) = ¢, yields an isomorphism of groupoids between Gam; and Seq;.

(where C; denotes the groupoid of isomorphisms in a category C)

23/32

Possible extensions of a play

How many ways are there to extend s € £/,?
o If a € My, its arity is ar(a) = [{b € Ma | ata b}

@ An extension of s € £/, corresponds to a move and the choice of its
justifier:
ext(s) = {(I'7 b) | be MagAsita b}

@ Thus for all s € £/,, there are

lext(s)] = [{(i,b) | be MaAs;Fab}|
= | |J{(,b) | si+a b}
i<|s|

Is|

= Z ar(s;)

i=1

ways to extend s to sa.

24/32

Actions of sequential isomorphisms on extensions of plays

Suppose ¢ : A — B is an iso in Seq. Then:

@ For all s € £, ¢ induces an isomorphism

os : ext(s) = ext(o(s))

Thus we always have |ext(s)| = |ext(¢(s))|

o For all ¢(sa) = &(s)b,

|ext(sa)] = [ext((s)b)|
|ext(s)| +ar(a) = lext(¢(s))| + ar(b)
ar(a) = ar(b)

So sequential isomorphisms preserve the arity of moves.

Generalization: Sequential isomorphisms associate to each move a move
with a k-isomorphic subtree, for all kK € N.

25/32

Laurent’s conjecture is true

Theorem

If A and B are isomorphic in Gam, then they are isomorphic in Path.

Proof.

We have built in fact a family of functions:
GA,B : Gam;(A, B) — Path,-(A, B)

The extraction function Ga g can be made natural in A and B, but (we
conjecture) not functorial. O

v

It is crucial that A and B are finitely branching.

Corollary: isomorphisms in £,

Theorem

Isomorphisms in Ly are given by the following equational theory:

Ax B =¢
Ax(BxC) =¢
A X unit =¢
bool X A= B =¢
var[A] =g

Bx A

(Ax B)x C

A

(A= B)x (A— B)

(A — unit) x (unit — A)

26/32

27/32

V. ISOMORPHISMS WITH INFINITE DATA TYPES

Laurent’s conjecture is false

The following arenas are isomorphic in Gam,:

@ On one side there are 2N choices, on the other side N + 1.

@ In general, if ¢’ has been played n times, we need a bijection

between (n+ 1)N and N+ n.
So in the general case, Laurent’s conjecture is false.

28/32

(nat — unit) — (nat — unit) — unit
~, (nat — unit) — (unit — unit) — unit.

29/32

f : (nat — unit) — (nat — unit) — unit f: (nat — unit) — (unit — unit) — unit
new count := 0, func := | in new count := 0, func := | in
Ag :nat — unit. Ag :nat — unit.

let x =f (An. g(n* (Icount + 1))) in let x = f (An.

Ah:unit — unit.
count =

let (q,r) = div n (count + 1) in
lcount + 1; if r =0 then g g else !func r (q + 1))
let ¢ = lcount in in
func := An. if n =lcount
then h

Ah :nat — unit.
else !func n;

count :=!count + 1;
x (An. if n =0 then !func c () else

func := An. if n =!count then h
else !func n;
g((n—1)* (‘count + 1) + ¢)) let ¢ =!count in x (A.. !func c 0)
These two terms are inverses of one another!

30/32

More examples

Some more isomorphisms in L:

nat X nat <~ nat

(nat — unit) — (nat — unit) — unit

1

(nat — unit) — (unit — unit) — unit

nat — (nat — unit) nat — unit

12

nat — (nat — unit) =~ (nat X nat) — unit

Some non-isomorphisms:

(nat — unit) — (nat — bool) — unit % (nat — unit) — (unit — bool) — unit
nat — (nat — bool) % (nat X nat) — bool

31/32

VI. CONCLUSION

32/32

Conclusion

The game-theoretic theorem also directly applies:
@ To L, extended with sums and empty type,
@ To var-free isomorphisms in a language without bad variables.

It should extend as well:
e To L3 with call/cc,
e To call-by-name £ with nat but without call/cc.

In CBN, building a non-trivial isomorphism requires call/cc.

