Erratum on "The Biequivalence of Locally Cartesian Closed Categories and Martin-Löf Type Theories"

In [1], pseudo cwf-morphisms (2-cells in the 2-category of cwfs) are defined as follows

Definition 1 (Pseudo cwf-transformation) Let (F, σ) and (G, τ) be two cwfmorphisms from (\mathbb{C}, T) to (\mathbb{C}', T') . A pseudo cwf-transformation from (F, σ) to (G, τ) is a pair (ϕ, ψ) where $\phi : (F, \sigma) \Rightarrow (G, \tau)$ is a natural transformation, and for each Γ in \mathbb{C} and $A \in \text{Type}(\Gamma)$, a morphism $\psi_{\Gamma,A} : FA \to GA[\phi_{\Gamma}]$ in $\mathbf{T}'(F\Gamma)$, natural in A and such that the following diagram commutes:

where θ and θ' are the isomorphisms witnessing preservation of substitution in types in the definition of pseudo cwf-morphism.

There is a glitch with this definition: the component ψ is not constrained enough by ϕ . This causes a mismatch with the 2-cells in **LCC** (where only the ϕ remains), and in consequence the family of cwf-transformations ϵ used in the biequivalence (see [1]) fails a condition of pseudonatural transformations.

Missing from this definition is the following coherence diagram:

This means that ψ becomes redundant, and can be defined from ϕ – one could get rid of ψ and adopt natural transformations $\phi: F \Rightarrow G$ as 2-cells from (F, σ) to (G, τ) . We refrain from doing that because pseudo cwf-morphisms is most naturally presented with the ψ , reflecting the second components of cwfs and cwf-morphisms.

Finally, we finish this erratum with two remarks:

- (1) The pseudofunctor H of [1] yields cwf-transformations satisfying this diagram: in fact they are defined in this way.
- (2) The coherence diagram in the original definition above follows from this, as is established in a straightforward adaptation of Lemma 5 in [1] (the proof uses the fact that G preserves finite limits which might not be the case in general, but as a pseudo cwf-morphism it always preserves the substitution pullback used in the proof).

References

 Pierre Clairambault and Peter Dybjer. The biequivalence of locally cartesian closed categories and martin-löf type theories. *Mathematical Structures in Computer Science*, 24(6), 2014.