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Abstract9

We compare three models of the probabilistic λ-calculus: the probabilistic Böhm trees of Leventis,10

the probabilistic concurrent games of Winskel et al., and the probabilistic relational model of11

Ehrhard et al. Probabilistic Böhm trees and probabilistic strategies are shown to be related by12

a precise correspondence theorem, in the spirit of existing work for the pure λ-calculus. Using13

Leventis’ theorem (probabilistic Böhm trees characterise observational equivalence), we derive14

a full abstraction result for the games model. Then, we relate probabilistic strategies to the15

weighted relational model, using an interpretation-preserving functor from the former to the16

latter. We obtain that the relational model is itself fully abstract.17
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1 Introduction23

The interest in probabilistic programs in recent years, driven in particular by applications in24

machine learning and statistical modelling, has triggered the need for theoretical foundations,25

going beyond the pioneering work of Kozen [14] and Saheb-Djahromi [21]. Although a variety26

of approaches exist, we focus on the probabilistic λ-calculus Λ+, which extends the pure27

(untyped) λ-calculus with a probabilistic choice operator. The extension is natural and28

applications are quick to arise — see for instance [3]. But in order for Λ+ to become a useful29

formal model for probabilistic computation, the extensive classical theory of the λ-calculus30

must be readapted.31

Among the existing research in this direction, we are especially interested in the work32

of Ehrhard, Pagani and Tasson [11], and of Leventis [16, 17]. In [11], the authors define an33

operational semantics for Λ+ and study a model in the category of probabilistic coherence34

spaces, an existing model [9] of Probabilistic PCF. They prove an adequacy theorem for Λ+,35

and this result applies to the weighted relational model, of which probabilistic coherence36

spaces are a refinement.37

More recently, the PhD thesis of Leventis [16] offers a thorough exploration of the38

syntactical aspects of the calculus. In particular the author defines a notion of probabilistic39

Böhm tree, and redevelops in a probabilistic setting the Böhm theory for the λ-calculus,40

including Böhm’s separation theorem: probabilistic Böhm trees, in their infinitely extensional41

form, characterise precisely the observational equivalence of Λ+ terms.42
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In this paper, we propose an alternative model in the framework of concurrent games,43

integrating ideas from our earlier work on a concurrent games model of probabilistic PCF [5]44

and from Ker, Ong and Nickau’s fully abstract semantics of the pure untyped λ-calculus [13].45

In [13], an exact correspondence is proved between strategies and infinitely extensional46

Böhm trees. Drawing inspiration from that work, we relate probabilistic strategies and47

probabilistic Böhm trees, but unlike [13], the correspondence is not bijective, because of the48

additional branching information contained in probabilistic strategies. By quotienting out49

this information, we derive from Leventis’ theorem a full abstraction result for the games50

model.51

Finally, we study a functor from the probabilistic games model to the weighted relational52

model. This functor is a time-forgetting operation on strategies, in the spirit of [1] (note that53

proving the functoriality of such operations is usually challenging even without probabilities,54

see for example Melliès’ work [19] — here, we address this by leveraging a “deadlock-55

free lemma” proved in concurrent games in [5]). We show that the functor preserves the56

interpretation of Λ+, with significant consequences: Ehrhard et al.’s adequacy result can be57

lifted to strategies, and the full abstraction result obtained for games via probabilistic Böhm58

trees can be shown to hold also for the weighted relational model, so far only known to be59

adequate1.60

In Section 2, we present Λ+ and its operational semantics; we also recall Leventis’ work61

on probabilistic Böhm trees and define concurrent probabilistic strategies, hinting at the62

correspondence between the two. In Section 3, we outline the construction of a category of63

concurrent games and probabilistic strategies, and the reflexive object that it contains. We64

then study, in Section 4, the correspondence between probabilistic strategies and probabilistic65

Böhm trees, and prove full abstraction for the games model. Finally, in Section 5, we collapse66

probabilistic strategies down to weighted relations, thus showing full abstraction for the67

relational model.68

2 The Probabilistic λ-calculus69

2.1 Syntax70

The set Λ+ of terms of the probabilistic λ-calculus is defined by the following grammar,
where p ranges over the interval [0, 1] and x over an infinite set Var:

M,N ::= x | λx.M |MN |M +p N.

Write Λ+
0 for the set of closed terms, i.e. those with no free variables.71

The operator +p represents probabilistic choice, so that a term of the form M +p N72

has two possible reduction steps: to M , with probability p, and to N , with probability73

1− p. Accordingly, the reduction relation we consider is a Markov process over the set Λ+,74

and corresponds to a probabilistic variant of the standard head-reduction. It is defined75

inductively:76

(λx.M)N 1−→M [N/x] M +p N
p−→M M +p N

1−p−−→ N
77

M
p−→M ′

λx.M
p−→ λx.M ′

M
p−→M ′ M 6= λx.P

MN
p−→M ′N

78

1 Independently and using a different method, Leventis and Pagani have obtained an alternative proof of
full abstraction, but this work is so far unpublished.
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For M,N ∈ Λ+, there may be many reduction paths from M to N . The weight of a79

path π : M p1−→ . . .
pn−→ N is the product of the transition probabilities: w(π) =

∏n
i=1 pi. The80

probability of M reducing to N is then defined as Pr(M → N) =
∑
π:M→∗N w(π).81

The normal forms for this reduction are terms of the form λx0 . . . xn. y M0 . . .Mk, where82

n, k ∈ N and Mi ∈ Λ+ for all i. Such terms are called head-normal forms (hnfs). A pure83

λ-term has at most one hnf called – if it exists – its hnf, though of course, that does not84

hold in the presence of probabilities.85

Given a set H of hnfs, we set Pr(M → H) =
∑
H∈H Pr(M → H). The probability86

of convergence of a term M , denoted Pr⇓(M), is the probability of M reducing to some87

hnf: Pr⇓(M) = Pr(M → {H ∈ Λ+ | H hnf}). Finally we say that two terms M and N88

are observationally equivalent, written M =obs N , if for all contexts C[ ], Pr⇓(C[M ]) =89

Pr⇓(C[N ]).90

2.2 Probabilistic Böhm trees91

Infinitely extensional Böhm trees for pure λ-terms92

There are several notions of infinite normal forms for pure λ-terms, including e.g. the Böhm93

trees [2] and the Lévy-Longo trees, among others. The normal forms for the probabilistic94

λ-terms considered in this paper build on the infinitely extensional Böhm trees (also95

called Nakajima trees), which provide a notion of infinitely η-expanded normal form.96

The infinitely extensional Böhm tree of M is in general an infinite tree, which can be97

defined as the limit of a sequence of finite-depth approximants. In fact those approximants98

will suffice for the purposes of this paper: given a λ-term M and d ∈ N, the tree BTd(M) is99

⊥ if d = 0 or if M has no head-normal form, and100

λz0 . . . znx0x1 . . . • y

BTd−1(P0) . . . BTd−1(Pk) BTd−1(x0) BTd−1(x1) . . .
101

if d > 0 and M has hnf λz0 . . . zn.y P1 . . . Pk.102

In order to deal with issues of α-renaming, we adopt the same convention as Leventis [16],103

whereby the infinite sequence of abstracted variables at the root of a tree of depth d > 0 is104

labelled xd0, xd1, . . . so that any tree is determined by the pair (y, (Tn)n∈N) of its head variable105

and sequence of subtrees.106

Leventis’ probabilistic trees107

Infinitely extensional Böhm trees for the λ-calculus have striking properties: they characterise108

observational equivalence of terms, and as a model they yield the maximal consistent sensible109

λ-theory (see [2] for details). In his PhD thesis, Leventis [16] proposes a notion of probabilistic110

Böhm tree which plays the same role for Λ+. Intuitively, because a term of the form111

λx0 . . . xn.z P0 . . . Pk +p λy0 . . . ym.w Q0 . . . Ql has two hnfs, it may be represented by a112

probability distribution over trees of the form of that above. Accordingly, two different kinds113

of trees are considered: value trees, representing head-normal forms (without probability114

distribution at top-level), and probabilistic Böhm trees, representing general terms:115
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I Definition 1. For each d ∈ N, the sets PT d of probabilistic Böhm trees of depth d116

and VT d of value trees of depth d are defined as:117

118

VT 0 = ∅,119

VT d+1 =
{

(y, (Tn)n∈N) | y ∈ Var and ∀n ∈ N, Tn ∈ PT d
}

and120

PT d =
{
T : VT d → [0, 1] |

∑
t∈VT d T (t) ≤ 1

}
.121

122

We can then assign trees to individual terms:123

I Definition 2. Given M ∈ Λ+ and d ∈ N, its probabilistic Böhm tree of depth d is124

the tree PTd(M) ∈ PT d defined as follows:125

PTd(M) : VT d −→ [0, 1]126

t 7−→ Pr(M → {H hnf | VTd(H) = t})127
128

where for any hnf H = λz0 . . . zn.y P0 . . . Pk, the value tree of depth d of H is defined as129

VTd(H) =
(
y,
(
PTd−1 (P0) , . . . ,PTd−1 (Pk) ,PT d−1 (xdn+1

)
, . . .

))
.130

131

Consider for example the term M1 = λxy.x (y+ 1
3

(λz.z)), a head-normal form. Figure 1a132

outlines the first steps in the construction of its value tree of depth d, for some fixed d ≥ 2;133

note that we use the symbol δt to denote the distribution in which t has probability 1, and134

all other trees 0.135

Infinitely extensional probabilistic Böhm trees precisely characterise observational equiva-136

lence in Λ+; writing M =PT N if for every d ∈ N, PTd(M) = PTd(N), we have:137

I Theorem 3 (Leventis [16]). For any M,N ∈ Λ+, M =obs N if and only if M =PT N .138

So infinitely extensional probabilistic Böhm trees provide a fully abstract interpretation of139

the probabilistic λ-calculus. We will see now that similar trees arise as probabilistic strategies140

when interpreting λ-terms in a denotational games model.141

2.3 Strategies and event structures142

Going towards our game semantics of Λ+, we will first introduce our probabilistic strategies143

as a more economical, syntax-free presentation of probabilistic Böhm trees. This extends144

naturally, in the probabilistic and nondeterministic case, the usual correspondence between145

Böhm trees and innocent strategies [12, 13].146

First, we notice that the precise name given to variables in e.g. Figure 1a does not matter.147

Techniques like De Bruijn levels or indices do not apply here since we abstract infinitely many148

variables at each level – however, a variable occurrence is uniquely identified by a pointer149

to the node where it was abstracted, along with a number n, expressing that the variable150

was the (n+ 1)-th introduced at this node. For example, the variable xd0 is expressed with a151

pointed to the initial node, along with number 0. As a consequence of this representation,152

we can omit the abstractions: at each node, there are always countably many variables being153

introduced, and their name does not matter as they will be referred to differently.154

Next, we split each node of the Böhm tree into two: first a node intuitively carrying the155

abstractions (the target of pointers – we refer to these nodes as negative), and one carrying156

the variable occurrence (the source of pointers – we refer to those as positive). Besides157
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λxd0x
d
1x
d
2 . . . • xd0

1
3δVTd−1(xd

1) + 2
3δVTd−1(λz.z) δVTd−1(xd

2) δVTd−1(xd
3) . . .

where VTd−1(xdl ) (for l ∈ N) and VTd−1(λz.z) are
λxd−1

0 xd−1
1 xd−1

2 . . . • xdl

δVTd−2(xd−1
0 ) δVTd−2(xd−1

1 ) . . .

λxd−1
0 xd−1

1 xd−1
2 . . . • xd−1

0

δVTd−2(xd−1
1 ) δVTd−2(xd−1

2 ) . . .

and so on.
(a) As a value tree of depth d ≥ 2.

	

⊕0

	0 	i

⊕1 ⊕0 ⊕i+1

	j 	k ...

⊕j ⊕k+1

...
...

1
3

2
3

(b) As a probabilistic strategy.

Figure 1 Two interpretations of the term M1 = λxy.x (y + 1
3

(λz.z)).

bringing us closer to games, this allows us to easily distinguish the two kinds of branching158

of probabilistic Böhm trees. The different arguments of a variable node form a negative159

branching: each come with their own (implicit) distinct set of fresh variables, and a sub-tree160

(by convention, we annotate by n the negative node corresponding to the nth argument).161

In contrast, for a probabilistic choice such as 1
3δVTd−1(xd

1) + 2
3δVTd−1(λz.z) in Figure 1a, the162

two subtrees start by defining the same variables – so instead we represent this by a positive163

branching, where we further annotate the first node of each branch with its probability.164

Altogether, and ignoring the wiggly line for now, the reader may check that165

the diagram of Figure 1b matches the Böhm tree of Figure 1a according to these conventions166

(the correspondence will be made formal in Section 4). Read from top to bottom, these167

diagrams have an interactive flavour: they describe the actions of a player ⊕ depending on168

those of its opponent 	. Our formalisation in terms of strategies will follow this intuition.169

2.3.1 Probabilistic Böhm trees as probabilistic event structures.170

Now, we formalise the representation introduced above as a probabilistic strategy in the sense171

of [24], i.e. certain event structures with probabilities. In this section we only provide this172

as a static representation, and leave the mechanism to compose those for Section 3.173

Our strategies (such as the one of Figure 1b) involve a partial order: the dependency174

relation (going from top to bottom); a relation indicating conflict and generated175

by probabilistic choice; and an annotation for probabilities. These are naturally formalised176

as probabilistic concurrent strategies [24] (though for the purposes of this paper we will only177

make use of sequential such strategies). We first recall the definition of event structures.178

I Definition 4. An event structure [22] is a tuple (E,≤,Con) where E is a set of events,179

≤ a partial order indicating causal dependency, and Con a non-empty set of consistent180
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finite subsets of E, such that181

[e] = {e′ | e′ ≤ e} is finite for all e ∈ E182

{e} ∈ Con for all e ∈ E183

Y ⊆ X ∈ Con =⇒ Y ∈ Con184

X ∈ Con and e ≤ e′ ∈ X =⇒ X ∪ {e} ∈ Con.185
186

The event structures we consider additionally have a polarity function pol : E → {+,−}187

indicating for each event whether it is a move of Player (+) or Opponent (−). We call them188

event structures with polarity (esps).189

We fix some notation. Write e _ e′ for immediate causality, i.e. e < e′ with no events190

in between. Write C(E) for the set of finite configurations of E, i.e. those finite x ⊆ E191

such that x ∈ Con and x is down-closed: if e ≤ e′ ∈ x then e ∈ x. If E has polarity, we192

sometimes annotate an event e to specify its polarity, as in e+, e−. If x, y ∈ C(E), write193

x ⊆+ y (resp. x ⊆− y) if x ⊆ y and every event in y \ x has positive (resp. negative) polarity.194

Ignoring probabilities and pointers, the diagram of Figure 1b is an esp: ≤ is the transitive195

reflexive closure of _, and consistent sets are those finite sets whose down-closure do not196

contain two events related by the immediate conflict . We now equip esps with197

probabilities, which comes in the form of a [0, 1]-valued function called a valuation.198

For the forest-like event structures required to represent probabilistic λ-terms, it suffices to199

fix, for each Opponent event, a probability distribution on the Player events that immediately200

follow, as in Figure 1b. But to compose them we apply the more general machinery of [24],201

where valuations assign a coefficient to each configuration and not simply to each event. For202

x ∈ C(E), the coefficient v(x) is the probability that the configuration x will be reached in203

an execution, provided the Opponent moves in x occur. The following definition is from [24]:204

I Definition 5. A probabilistic event structure with polarity consists of an esp (E,≤205

,Con, pol) and a valuation, that is, a map v : C(E)→ [0, 1] satisfying206

v(∅) = 1;207

if x ⊆− y, then v(x) = v(y); and208

if y ⊆+ x1, . . . , xn, then209

v(y) ≥
∑
I

(−1)|I|+1 v

(⋃
i∈I

xi

)
210

where I ranges over non-empty subsets of {1, . . . , n} such that
⋃
i∈I xi is a configuration.211

Leaving aside pointers the diagram of Figure 1b represents a probabilistic esp, setting212

the valuation of a configuration x to be 1
3 (resp. 2

3 ) if it contains the event annotated with 1
3213

(resp. 2
3 ), and 1 otherwise – a configuration cannot contain both labelled events.214

Probabilistic strategies are certain probabilistic esps, equipped with a labelling map into215

the game they play on. Games are themselves esps, with the following particular shape:216

I Definition 6. An arena is an esp A which is217

forest-shaped: if a, b, c ∈ A with a ≤ b and c ≤ b then a ≤ c or c ≤ a; and218

alternating: if a _ b then pol(a) 6= pol(b).219

race-free: if x ∈ C(A) has x ⊆− y ∈ C(A) and x ⊆+ z ∈ C(A), then y ∪ z ∈ C(A).220

Usually in game semantics, arenas represent types. For our untyped language, strategies221

representing terms all play on a universal arena U , introduced soon. For now though, we222

define a probabilistic strategy playing on arbitrary arena A as an esp, labelled by A.223
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I Definition 7. A probabilistic strategy on A consists of a probabilistic esp S, and a224

labelling map σ : S → A preserving polarity, and such that:225

(1) σ preserves configurations: for every x ∈ C(S), σx ∈ C(A);226

(2) σ is locally injective: if e, e′ ∈ x ∈ C(S) and σe = σe′, then e = e′;227

(3) σ is receptive: for x ∈ C(S), if σx ⊆− y ∈ C(A), there is a unique x ⊆ x′ ∈ C(S) such228

that σx′ = y;229

(4) σ is courteous: for s, s′ ∈ S, if s _S s′ and if pol(s) = + or pol(s′) = −, then230

σs _A σs
′.231

Conditions (1) and (2) express that σ is amap of event structures from S to A. Conditions232

(3) and (4) are there to restrict the behaviour of Player: they prevent any further constraints233

from being put on Opponent events than those already specified by the game.234

The diagram of Figure 1b presents a probabilistic strategy σ : S → A – or more precisely235

the diagram presents S, with the pointers being representations of the immediate dependency236

in A of positive moves (though we do not display A for lack of space).237

Winskel [24], building on previous work [20], showed how to compose probabilistic238

strategies and organise them into a category. But his games are affine, and cannot deal with239

the replication of resources. In recent work [5], we have extended probabilistic strategies240

with symmetry, that augments the expressivity of esps by allowing interchangeable copies of241

the same event. In the next section we introduce probabilistic strategies with symmetry, and242

give the interpretation of Λ+. Because of this replication of resources the interpretation of243

the term M1 of Figure 1 will be an expansion of Figure 1b, taking into account Opponent’s244

replications – and in general, our correspondence theorem will associate a probabilistic Böhm245

tree with its expansion in that sense, formulated as a probabilistic strategy.246

3 Game semantics for Λ+
247

In this section we construct our game semantics for Λ+. The category of games we use is248

close to our earlier concurrent games model of probabilistic PCF [5], in which we introduce a249

universal arena inspired from [13].250

3.1 Games and strategies with symmetry251

Symmetry in event structures [23] can be presented via isomorphism families:252

I Definition 8. An isomorphism family on an event structure E is a set Ẽ of bijections253

between configurations of E, such that:254

Ẽ contains all identity bijections, and is closed under composition and inverse of bijections.255

For every θ : x ∼= y ∈ Ẽ and x′ ∈ C(E) such that x′ ⊆ x, then θ|x′ ∈ Ẽ.256

For every θ : x ∼= y ∈ Ẽ and every extension x ⊆ x′ ∈ C(E), there exists a (non-necessarily257

unique) y ⊆ y′ ∈ C(E) and an extension θ ⊆ θ′ such that θ′ : x′ ∼= y′ ∈ Ẽ.258

As usual [23], it follows from these axioms that any θ ∈ Ẽ is an order-isomorphism, i.e.259

preserves and reflects the order. An event structure with symmetry is a pair (E, Ẽ),260

with Ẽ an isomorphism family on E. If E has polarity, then we ask that every θ ∈ Ẽ261

preserves it, and call (E, Ẽ) an event structure with symmetry and polarity (essp).262

We illustrate this definition by presenting as an essp the universal arena — the game263

that Λ+ strategies will play on. It is an infinitely deep tree, with at every level, ω available264

moves, corresponding to calls from one of the players to a variable in context. There are ω265

‘symmetric’ copies of each move. Formally:266
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I Definition 9. The esp (U,≤,Con, pol) is defined as having:267

events: U = (N× N)∗, finite sequences of ordered pairs;268

causality: s ≤ t if s is a prefix of t;269

consistency: no conflicts, Con = Pfin(U);270

polarity: pol(s) = − if |s| is even, + if it is odd.271

In a pair (m,n) ∈ N× N, m represents the variable address (the subscript in Figure 1b) and272

n is the copy index of the move (not displayed in Figure 1b).273

We now add symmetry on U , following the intuition that different copies of the same274

move should be interchangeable. The isomorphism family Ũ is generated by an equivalence275

relation ∼ on events, defined as the smallest equivalence relation satisfying s ∼ s′ =⇒276

s · (m,n) ∼ s′ · (m,n′) for any s, s′ ∈ U and m,n, n′ ∈ N. Then, a bijection θ : x ∼= y between277

configurations of U is in Ũ whenever for all e ∈ x, e ∼ θ(e).278

The elements of Ũ are reindexing bijections, which may update the copy indices of moves279

in a configuration. In the sequel, we will identify strategies differing only by the choice of280

positive copy indices, hence we need to formally identify the bijections in Ũ which do not281

affect Opponent’s copy indices. Because of the dual nature of games we must do the same for282

Player; thus we define ∼+ and ∼− to be the smallest equivalence relations on U satisfying:283

s ∼p s′ =⇒ s · (m,n) ∼p s′ · (m,n) (for p ∈ {+,−})284

s ∼+ s′ and |s| is even =⇒ s · (m,n) ∼+ s′ · (m,n′)285

s ∼− s′ and |s| is odd =⇒ s · (m,n) ∼− s′ · (m,n′)286
287

for any s, s′,m, n, n′. Just like ∼ generates Ũ , the relations ∼+ and ∼− generate isomorphism288

families Ũ+ and Ũ−, respectively.289

In general, the compositional mechanism will require all arenas to come with similar data:290

I Definition 10. A ∼-arena is a tuple A = (A, Ã, Ã−, Ã+) with A an arena, and Ã, Ã−,291

and Ã+ isomorphism families on A, such that292

Ã− and Ã+ are subsets of Ã;293

if θ ∈ Ã− ∩ Ã+ then θ is an identity bijection;294

if θ ∈ Ã− and θ ⊆− θ′ ∈ Ã then θ′ ∈ Ã− (where the notation ⊆− makes sense since295

bijections preserve polarity);296

if θ ∈ Ã+ and θ ⊆+ θ′ ∈ Ã then θ′ ∈ Ã+.297

In particular, ∼-arenas are certain thin concurrent games, in the terminology of [8, 6].298

I Lemma 11. U = (U, Ũ , Ũ−, Ũ+) is a ∼-arena.299

Strategies are in turn equipped with symmetry:300

I Definition 12. A probabilistic essp is an essp S with a valuation v : C(S)→ [0, 1], such301

that for every θ : x ∼= y in S̃, v(x) = v(y). A probabilistic ∼-strategy on a ∼-arena A302

consists of a probabilistic essp S, and a labelling σ : S → A, such that:303

(1) the underlying map σ : S → A is a strategy;304

(2) σ preserves symmetry: if θ : x ∼= y ∈ S̃ then σθ : σx ∼= σy defined as {(σ s, σ s′) | (s, s′) ∈305

θ}, is in Ã (that is, it is a map of essps (S, S̃)→ (A, Ã));306

(3) σ is ∼-receptive: if θ ∈ S̃ and σθ ⊆− ψ ∈ Ã, there is a unique θ ⊆ θ′ ∈ S̃ s.t. σθ′ = ψ.307

(4) S is thin: for θ : x ∼= y in S̃ with x ⊆+ x∪{s}, there is a unique t ∈ S s.t. θ∪{(s, t)} ∈ S̃.308
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Finally, before we define our category of games and strategies with symmetry, let us say309

what it means for strategies to be the same up to Player copy indices:310

I Definition 13. Probabilistic ∼-strategies σ : S → A and τ : T → A are weakly
isomorphic if there is an isomorphism of essps ϕ : S → T , such that for any x ∈ C(S),
vS(x) = vT (ϕx), and moreover the diagram

S
σ ��

ϕ // T
τ}}

A

commutes up to positive symmetry, in the sense that for any x ∈ C(S), the set {(σe, τ(ϕe)) |311

e ∈ x} is (the graph of) a bijection in Ã+.312

3.2 The category PG313

We now define a category with objects the ∼-arenas, and morphisms probabilistic ∼-strategies.314

Let us first define some constructions on games: if A is a ∼-arena, its dual A⊥ is315

the ∼-arena obtained by reversing the polarity of events in A, and swapping the positive316

and negative isomorphism families. If A and B are ∼-arenas, their parallel composition317

A ‖ B is the tuple (A ‖ B, Ã ‖ B̃, Ã− ‖ B̃−, Ã+ ‖ B̃+), where A ‖ B is the esp with events318

A + B (the tagged disjoint union), componentwise causal dependency and polarity, and319

consistent sets those of the form XA ‖ XB for XA ∈ ConA and XB ∈ ConB ; and where the320

parallel composition Ã ‖ B̃ of isomorphism families Ã and B̃ comprises bijections of the321

form θ : xA ‖ xB ∼= yA ‖ yB , defined as θ(1, a) = (1, θA(a)) and θ(2, b) = (2, θB(b)) for some322

θA : xA ∼= yA and θB : xB ∼= yB in the component iso families. Note that we will often make323

use of the parallel composition ‖i∈I Ai of a family of ∼-arenas; it is defined analogously.324

With that in place, a probabilistic ∼-strategy from A to B is a probabilistic ∼-
strategy on the ∼-arena A⊥ ‖ B. Given σ : S → A⊥ ‖ B and τ : T → B⊥ ‖ C, we can form
their interaction as the pullback

T ~ SΠ1
uu

Π2
))

S ‖ C
σ‖C

((
A ‖ T

A‖τ
uu

A ‖ B ‖ C

in the category of event structures with symmetry (and without polarity). The interaction is325

probabilistic: for any configuration x ∈ C(T ~S), we set vT~S(x) = vS((Π1x)S)×vT ((Π2x)T ),326

where (Π1x)S is the S-component of Π1x ∈ C(S ‖ C), and likewise for (Π2x)T . The resulting327

map τ ~ σ : T ~ S → A ‖ B ‖ C is not quite a probabilistic ∼-strategy, because σ and τ play328

on dual versions of B, making ambiguous the polarity of some events.329

So as in [20, 7], the composition of S and T is obtained after hiding those moves330

of the interaction which act as synchronisation events — the moves e ∈ T ~ S such that331

(τ ~ σ)e = (2, b) for some b ∈ B. The remaining set of events (so-called visible) induces332

an event structure T � S with all structure inherited from T ~ S, and polarity induced333

from A⊥ ‖ C. Any configuration x ∈ C(T � S) has a unique witness [x] ∈ C(T ~ S). The334

isomorphism family T̃ � S comprises bijections θ : x ∼= y such that there is θ′ : [x] ∼= [y] in335

T̃ ~ S with θ ⊆ θ′. We get a map τ � σ : T � S → A⊥ ‖ C which satisfies all the conditions336

for a probabilistic ∼-strategy, with vT�S(x) = vT~S([x]) for every x ∈ C(T � S).337
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Copycat.338

As usual in game semantics, the identity morphism on a ∼-arena A will be a probabilistic339

∼-strategy ccA : CCA → A⊥ ‖ A called copycat, in which Player deterministically copies the340

behaviour of Opponent — so any Opponent move immediately triggers the corresponding341

Player move in the dual game, with probability 1. Formally, CCA has the same events,342

polarity, and consistent subsets as A⊥ ‖ A and the extra immediate causal dependencies343

{((1, a), (2, a)) | a ∈ A, polA⊥(a) = −} and {((2, a), (1, a)) | a ∈ A, polA(a) = −} (from this344

≤CCA
is obtained by transitive closure). Copycat has an isomorphism family CC

Ã
which we345

do not define here for lack of space (it can be found e.g. in [6]). Together with the valuation346

vCCA
(x) = 1 for all x ∈ C(CCA), this turns copycat into a probabilistic ∼-strategy.347

Recall that strategies are considered up to weak isomorphism (Definition 13). Doing so348

crucially relies on the thinness axiom on strategies, which implies [6] that weak isomorphism349

is stable under composition, so that we may perform a quotient and retain a well-defined350

notion of composition. Though identity and associativity laws for strategies only hold up to351

isomorphism, the quotient will turn them into strict equalities. So as in [5], we have:352

I Lemma 14. There is a category PG having353

objects: ∼-arenas354

morphisms A +→ B: weak isomorphism classes of probabilistic ∼-strategies on A⊥ ‖ B.355

Categorical structure.356

PG itself is a compact closed category, but we are interested in the subcategory PG−, where357

∼-arenas and strategies are negative (that is, all initial moves are negative), and strategies358

are moreover well-threaded (meaning that events in S depend on a unique initial move).359

Let A and B be objects of PG−. Their tensor product A ⊗ B is simply defined as360

A ‖ B. The tensorial unit is the empty ∼-arena, and moreover the tensor is closed: the361

function space A ( B has events those of (‖min(B) A
⊥) ‖ B with same polarity. The362

causal dependency is induced, with extra causal links {((2, b), (1, (b, a))) | b ∈ min(B), a ∈ A}.363

The function χ : (A( B)→ A⊥ ‖ B defined as (1, (b, a)) 7→ (1, a) and (2, b) 7→ (2, b) allows364

us to characterise consistent sets and iso families concisely: ConA(B is defined as the largest365

set making χ a map of esps, and an order-isomorphim θ between configurations of A( B366

is in Ã( B iff χθ ∈ Ã⊥ ‖ B. PG− also has cartesian products, with A& B defined as367

A ‖ B, only with consistent sets restricted to those of A ‖ ∅ and ∅ ‖ B. The rest of the368

structure, including symmetry, is induced from A ‖ B by restriction.369

Finally there is a linear exponential comonad [18] ! on PG−. Given A ∈ PG−,370

the ∼-arena !A is an expanded version of A with countably many copies of every move.371

Accordingly, the esp !A is simply ‖i∈ω A, and the bijections in !̃A are those θ : ‖i∈Ixi ∼= ‖j∈Jyj372

such that there exists a permutation π : I ∼= J and bijections θi ∈ Ã with θ((i, a)) = (πi, θia)373

for all (i, a) ∈‖i∈I xi. Recall that A is negative, so the set !̃A+ of positive bijections (those374

in which only Player moves are reindexed) comprises those θ ∈ !̃A for which I = J and375

π : I → J is the identity function, and such that each θi ∈ Ã+. On the other hand, bijections376

in !̃A− can consist of any π : I ∼= J , so long as θi ∈ Ã− for all i.377

We leave out all further details of the categorical structure of PG−, including the various378

constructions on morphisms. It can be shown that PG−, together with the data above, is a379

model of Intuitionistic Linear Logic. From here it is standard that the Kleisli category for !380

is a ccc:381

I Lemma 15. There is a cartesian closed category PG−! having382
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objects: negative ∼-arenas383

morphisms A +→ B: (weak isomorphism classes of) negative and well-threaded probabilistic384

∼-strategies on !A⊥ ‖ B.385

With a slight abuse of notation, we shall keep using � for composition in the Kleisli category386

PG−! . We use the following notations for the cartesian closed structure: A ⇒ B is the387

function space !A ( B, cur is the bijection PG−! (A & B, C) ∼= PG−! (A,B ⇒ C), and388

evA,B : (A ⇒ B) &A +→ B is the evaluation morphism.389

3.3 Interpretation of Λ+
390

We finally come to our interpretation of Λ+ terms as probabilistic strategies. We start by391

imposing one key new condition on strategies: sequential innocence. The cut-down model392

will be closer to the language, allowing us to prove a correspondence result in Section 4. We393

assume from now on that all strategies are negative and well-threaded:394

I Definition 16. A probabilistic ∼-strategy σ : S → A is sequential innocent if395

a subset X ⊆ S is a configuration if and only if it is an Opponent-branching tree (that is,396

causality is tree-shaped and if a _ b and a _ c in X then pol(a) = +) and σX ∈ C(A);397

for every x, y, z ∈ C(S) such that x = y ∩ z and y ∪ z ∈ C(S), either v(x) = 0 or

v(y ∪ z)
v(x) = v(y)

v(x)
v(z)
v(x) .

Less formally, innocence forces the independence (causal and probabilistic) of Opponent-398

forking branches of the strategy. Sequential innocent probabilistic ∼-strategies are closed399

under composition, stable under weak isomorphism, and copycat verifies all conditions, so we400

can consider the subcategory PGsi
! of PG! consisting of those strategies. It is easy to check401

that PGsi
! is still a ccc; it is the category we will use to interpret Λ+, and in what follows we402

refer to PGsi
! -strategies simply as Λ+-strategies.403

A reflexive object.404

Recall the ∼-arena U defined in 3.1. It is a reflexive object, meaning that there are maps405

λ ∈ PGsi
! (U ⇒ U ,U) and app ∈ PGsi

! (U ,U ⇒ U) such that app� λ = idU⇒U . It is easy to406

see that there is an isomorphism of essps ρ : U ∼= U ⇒ U . To turn this into a isomorphism407

is PGsi
! , we can lift it to a copycat-like strategy which “plays following ρ”. Details of this408

lifting are omitted but can be found in [6].409

Closed terms of the probabilistic λ-calculus are interpreted as probabilistic strategies on410

U . Open terms M with free variables in Γ are interpreted as Λ+-strategies JMKΓ : UΓ +→ U ,411

where UΓ =
˘
x∈Γ U . The interpretation of the λ-calculus constructions is standard, using412

that U is a reflexive object in a ccc:413

JxKΓ = πx, the xth projection414

Jλx.MKΓ = λ� cur(JMKΓ,x)415

JMNKΓ = evU,U � 〈app� JMKΓ, JNKΓ〉416
417

In order to give an interpretation to the probabilistic choice operator, we must define the418

sum of two strategies. Let σ : S → (UΓ)⊥ ‖ U and τ : T → (UΓ)⊥ ‖ U be Λ+-strategies, and419

let p ∈ [0, 1]. The essp S +p T has a unique initial Opponent move (as do S and T — wlog420
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call this move ε), and continues as either S or T non-deterministically. That is, it has events421

{ε} ] (S \ {ε}) ] (T \ {ε}), and all structure induced from S and T , with X ∈ ConS+pT iff422

X ∈ ConS or X ∈ ConT . We define vS+pT (x) to be 1 if x = ∅, {ε}, pvS(x) if x ∈ C(S), and423

(1− p)vT (x) if x ∈ C(T ). The obvious map σ +p τ : S +p T → (UΓ)⊥ ‖ U is a Λ+-strategy,424

and the interpretation of the syntactic +p is simply JM +p NKΓ = JMKΓ +p JNKΓ. We have:425

I Theorem 17 (Adequacy). For any M ∈ Λ+
0 , writing σ : S → U for JMK, we have426

Pr⇓(M) =
∑

x∈C(S)
|x+|=1

vS(x),427

where x+ is the set of positive events of x.428

We only state the result at this point; it will follow directly from the interpretation-preserving429

functor of Section 5 and the adequacy of the weighted relational model for Λ+. A direct430

corollary of Theorem 17 is the following soundness result:431

I Lemma 18 (Soundness). For any M,N ∈ Λ+ with free variables in Γ, if JMKΓ = JNKΓ
432

then M =obs N .433

In fact we will prove in Section 5 that the converse, full abstraction, also holds modulo434

a mild (effective) quotient. It will also follow that the weighted relational model itself is435

also fully abstract, which was open. These facts rely on Leventis’ result [16] along with the436

formal correspondence between strategies and Böhm trees, to which we now move on.437

4 The Correspondence Theorem438

In [13], the authors prove an exact correspondence theorem for the pure λ-calculus: infinitely439

extensional Böhm trees precisely correspond to deterministic innocent strategies on a universal440

arena. They work in a different games framework, but the analogous phenomenon occurs441

in ours (the main technical difference, if we were to conduct the proof in the deterministic442

case, would be the explicit duplication of moves: our strategies are expanded, in order to443

accommodate Opponent’s choice of copy index for every move).444

For Λ+ however, the correspondence is not so exact: although terms M and M +pM445

have the same probabilistic Böhm tree, they have different interpretations in PGsi
! , where446

each probabilistic choice is recorded as an explicit branching point.2 In what follows, we447

identify a class of Böhm tree-like probabilistic strategies for which the exact correspondence448

does hold, and we show that any strategy can be reduced to a Böhm tree-like one. Two449

strategies can then be considered equivalent if they reduce to the same.450

First, given a Λ+-strategy σ : S → U , define a relation ≈ on the events of S as the smallest451

equivalence relation such that if s1 ≈ s′1, s1 _ s2, s′1 _ s′2 and there is an order-isomorphism452

ϕ : {s ∈ S | s2 ≤ s} ∼= {s′ ∈ S | s′2 ≤ s′} such that σ s ∼+ (σ ◦ ϕ) s for all s ≥ s2, then453

s2 ≈ s′2. Informally, ≈ identifies events coming from the same syntactic construct in two454

copies of a term in an idempotent probabilistic sum, as in M +pM (where Opponent has455

played the same copy indices).456

I Definition 19. We say σ is Böhm tree-like if it satisfies457

(1) for every x ∈ C(S), vS(x) > 0; and458

2 In particular, PGsi
! does not yield a probabilistic λ-theory in the sense of Leventis [16].
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(2) for every s, s′ ∈ S, if s ≈ s′ then s = s′.459

In other words, a Böhm tree-like strategy is one with no redundant branches. Many460

Λ+-strategies do not satisfy this property, but all can be reduced to one that does:461

I Definition 20. Given a Λ+-strategy σ : S → U , let Sbt be the set of ≈-equivalence classes462

containing at least one event s such that vS([s]) > 0 (where [s] is the down-closure of s).463

It is direct to turn Sbt into an essp Sbt with structure induced by S. The (partial) quotient464

map f : S → Sbt is then used to push-forward the valuation, i.e.465

vSbt(x) =
∑

y∈C(S)
fy=x

vS(y).466

Then, σbt : Sbt → U is a Böhm tree-like Λ+-strategy. Write σ =bt τ when σbt = τbt.467

We can now make formal the connection between Λ+-strategies and probabilistic Böhm468

trees. To do so we define a bijective map from the set of Böhm tree-like Λ+-strategies of469

depth d on (UΓ)⊥ ‖ U , to the set PT Γ
d of probabilistic Böhm trees of depth d with free470

variables in Γ. Let us say first what we mean by the depth of a strategy:471

I Definition 21. The depth of a Λ+-strategy σ : S → U , depth(σ), is the maximum number472

of Player moves in a chain s0 _ · · ·_ sn in S, and ∞ if such chains have unbounded length.473

We can show by induction on d:474

I Lemma 22. For every d ∈ N and every Γ ⊆fin Var there is a bijection475

Ψd
Γ : {σbt | σ ∈ PGsi

! (UΓ,U) and depth σ ≤ d}
∼=−→ PT dΓ.476

Proof (sketch). In Section 2.3, we motivated the definition of probabilistic strategies via477

a geometric correspondence with probabilistic Böhm trees, to be expected in the light of478

standard definability results in game semantics.479

However, probabilistic strategies differ from the picture of Section 2.3 due to the necessity480

for Player to acknowledge Opponent’s replications, spawning countably many symmetric481

copies of branches starting with an Opponent move. It follows however from the axioms of482

symmetry that events differing only by Opponent’s choice of copy indices have isomorphic483

futures. One can, with no loss of information, focus on a sub-strategy where Opponent484

performs no duplication, and apply the correspondence explained in Section 2.3. J485

We now show that this bijection preserves the interpretation of Λ+.486

I Theorem 23 (Correspondence theorem). For any M ∈ Λ+ and d ∈ N, Ψd
Γ((JMKd)bt) =487

PTd(M), where JMKd is the maximal sub-strategy of JMK with depth ≤ d.488

Proof (sketch). The proof is by induction on d, and follows a similar argument as in the489

non-probabilistic case [13], with the additional difficulty of dealing with infinite width: a490

probabilistic Böhm tree may be a probability distribution with infinite support, and the first491

level of Player moves in a probabilistic strategy may be infinite. One must therefore consider492

finite-width approximations.493

Probabilistic strategies are traditionally ordered using a probabilistic version of the prefix494

order: given σ : S → A and τ : T → A we say σ v τ if S ⊆ T (i.e. S ⊆ T and all data495

is inherited), and for all x ∈ C(S), vS(x) ≤ vT (x). However the naive restriction of this496

order to the set of Böhm tree-like strategies is not sensible, because σ v τ does not imply497
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σbt v τbt. An alternative is given by Leventis [16, p. 111], who defines an order 4 on the set498

PT dΓ, characterised in this setting as follows: t 4 t′ iff there exists a strategy σ such that499 (
Ψd

Γ
)−1 (t) =bt σ and σ v

(
Ψd

Γ
)−1 (t′). Intuitively, the branches of σ are those of

(
Ψd

Γ
)−1 (t),500

duplicated and assigned probability in such a way that they can be extended to those of501 (
Ψd

Γ
)−1 (t′) using the prefix order v.502

Under 4 the set PT dΓ is a cpo, and we also call 4 the corresponding order on the set of503

Böhm tree-like strategies (this automatically makes Ψd
Γ a continuous bijection).504

Leventis proves the crucial property that for every term M there is a chain t0, t1, . . .505

of finite-width trees satisfying PTd(M) =
∨
ti. Replaying his argument in our game506

semantics, we show that the chain
(
Ψd

Γ
)−1 (ti), i ∈ N has lub (JMKd)bt. We conclude, because507 (

Ψd
Γ
)−1

(
PTdΓ(M)

)
=
(
Ψd

Γ
)−1 (∨

i∈N ti
)

=
∨
i∈I
(
Ψd

Γ
)−1 (ti) = (JMKd)bt. J508

Using the correspondence it follows easily that:509

I Lemma 24. For any M,N ∈ Λ+, M =PT N if and only if JMK =bt JNK.510

I Theorem 25 (Full abstraction). The model PGsi
! / =bt is fully abstract, i.e. M =obs N if511

and only if JMK =bt JNK.512

5 Weighted Relational Semantics513

In this final section, we consider the weighted relational model of Λ+. It lives in the514

category PRel! whose objects are sets and whose morphisms are certain matrices with515

coefficients in the set R+ = R+ ∪ {∞}. This interpretation of probabilistic λ-terms was first516

suggested in [11], where authors consider the category PCoh! of probabilistic coherence517

spaces, a refinement (using biorthogonality) of the model PRel! presented here. PCoh!518

has desirable properties (notably, all coefficients are finite) but because there is a faithful519

functor PCoh! → PRel! preserving the interpretation of Λ+, all the results of [11] hold for520

the simpler model PRel!, which we focus on in this paper and proceed to define.521

5.1 The weighted relational model of Λ+
522

We use the notation PRel! to indicate that the model is obtained as the Kleisli category523

for a comonad !, much like PG!. The underlying category PRel is a well-known model524

of intuitionistic linear logic (see e.g. [15]), but we skip its construction and give a direct525

presentation of PRel!:526

I Definition 26. The category PRel! is defined as follows:527

objects: sets;528

morphisms from X to Y : maps ϕ : Mf (X) × Y → R+, where Mf (X) is the set of529

finite multisets of elements of X;530

composition: for ϕ ∈ PRel!(X,Y ), ψ ∈ PRel!(Y, Z), define ψ ◦ϕ :Mf (X)×Z → R+ as531

(ψ ◦ ϕ)(m, c) =
∑

p∈Mf(Y )

ψp,c
∑

(mb)b∈p

s.t. m=]mb

∏
b∈p

ϕ(mb,b)532

for every m ∈Mf (X) and c ∈ Z.533

identity: for any set X, and for any m ∈Mf (X) and a ∈ X, define534

idX(m, a) =
{

1 if m = [a]
0 otherwise.

535
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PRel! is cartesian closed, with X & Y = X ] Y and X ⇒ Y = Mf (X) × Y . There is a536

reflexive object D in PRel!, supporting the interpretation of Λ+, and defined as the least537

fixed point of the operation X 7→ Mf
(˘

n∈ωX
)
, i.e. the lub of the chain D0, D1, . . . where538

D0 = ∅ and Di+1 =Mf
(˘

n∈ωDi

)
for all i. Terms of Λ+ are interpreted in the standard539

way, with JM +p NKΓ(d) = pJMKΓ(d) + (1− p)JNKΓ(d) for every d ∈ D. We have:540

I Theorem 27 (Adequacy [11]). For any M ∈ Λ+
0 , the map JMKPRel! : D → R+ satisfies541

Pr⇓(M) =
∑
d∈D2

JMKPRel!(d).542

5.2 Relational collapse543

We now connect the two models via a functor ↓ : PGsi
! → PRel!, which intuitively forgets the544

causal information in a strategy, only remembering the states reached during the execution.545

If (E, Ẽ) is an event structure with symmetry, write ∼= for the equivalence relation on546

C(E) defined as x ∼= y if and only if there is θ : x ∼= y in Ẽ. For A an arbitrary negative547

∼-arena, the set ↓A is then defined as the quotient {x ∈ C(A) | x non-empty}/ ∼=.548

For any A,B, there is a bijection ↓(A ⇒ B) 'Mf (↓A)×↓B, enabling morphisms of PGsi
!549

to be mapped to those of PRel!: if σ : S → !A ⇒ B is a Λ+-strategy and x ∈ ↓(A ⇒ B)550

(so x is an equivalence class of configurations), the set of witnesses of x is defined as551

witS(x) = {z ∈ C(S) | σz ∈ x and the maximal moves of z have polarity +}/ ∼= . Because552

vS is invariant under symmetry, we can transport σ to ↓σ : ↓(A ⇒ B)→ R+ via553

↓σ(x) =
∑

z∈witS(x)

vS(z)554

for each x ∈ ↓(A ⇒ B). One can then easily deduce from the deadlock-free lemma of [5]:555

I Lemma 28. ↓ is a functor PGsi
! → PRel!.556

Furthermore, ↓ preserves the interpretation of Λ+ terms and is well-defined on the quotiented557

model PGsi
! / =bt:558

I Lemma 29. ↓U ∼= D and up to this iso, for any M ∈ Λ+ we have ↓JMKPGsi
!

= JMKPRel! .559

I Lemma 30. If σ =bt τ then ↓σ = ↓ τ .560

Combining the previous two lemmas and the soundness theorem, we finally get:561

I Theorem 31 (Full abstraction). For any M,N ∈ Λ+ with free variables in Γ , M =obs N562

if and only if JMKPRel! = JNKPRel! .563

6 Conclusion564

Interestingly, the results of this paper should also entail that the interpretation of Λ+ in the565

simpler model of Danos and Harmer [10] is also fully abstract, since one can in principle map566

our strategies functorially to theirs. Note however that since it is not known how to state567

a notion of probabilistic innocence in Danos and Harmer’s model, definability fails in that568

model and the present work could not have been carried out there.569

So using probabilistic concurrent games, we obtain probabilistic analogues of well-570

established results from the theory of the pure λ-calculus: the correspondence between571

Böhm trees and innocent strategies [13], and the full abstraction property of the relational572

model [4].573
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