
Reversed PAM and pointer structures

Pierre Clairambault

September 1, 2008

Abstract

We recall the definitions for pointer structures. We then prove define a simple simply-typed
lambda calculus and prove the equivalence of the normalization of its linear head reduction and
the finiteness of pointer structures subject to natural conditions. To achieve this, we define a
reversed version of the Pointer Abstract Machine, which browses a pointer structure, recovering
dynamically two lambda terms whose set of possible interactions include the current pointer
structure.

Contents

1 Pointer structures 2

2 The ΛU-calculus 4
2.1 Definition . 4
2.2 Weak normalization . 5
2.3 Linear Head Reduction, definition and normalization 6
2.4 Unary Bœhm Trees . 8

3 Normalization proof for pointer structures. 10

1

1 Pointer structures

In what follows, ≡will denote the even/odd equivalence on integers.

D 1. A pointer structure is a function f :N→N ∪ {⊥} such that :

• ∀i ∈N, f (i) = ⊥ ⇒ ∀ j > i, f (j) = ⊥

• ∀i ∈N∗, f (i) , ⊥ ⇒ f (i) < i

• ∀i ∈N∗, i . f (i)

• f (0) = 0

D 2. A pointer structure is finite if ∃i ∈N, f (i) = ⊥. Otherwise, it is infinite.

D 3. Let f be a pointer structure. We define its domainD f as:

• N if f is infinite

• {i ∈N | f (i) , ⊥} otherwise.

D 4. If f is a pointer structure, we define its P-view function pfq : D f → P(N) by :

• pfq(0) = {0}

• If i ≡ 1, pfq(i) = {i} ∪ pfq(i − 1)

• Otherwise pfq(i) = {i} ∪ pfq(f (i))

Similarly, we define its O-view function by :

• xfy(0) = {0}

• If i ≡ 1, xfy(i) = {i} ∪ xfy(f (i))

• Otherwise, xfy(i) = {i} ∪ xfy(i − 1)

Finally, we define its view function by:

• pfy(x) = pfq(x) if x is odd,

• pfy(x) = xfy(x) if x is even.

Alternatively, there is a nice mutually recursive definition of the view function:

D 5. Let f be a pointer structure, we define simultaneously the view pfy and the coview xfq
the following way:

• pfy(0) = xfq(0) = {0}

• pfy(i) = {i} ∪ xfq(n − 1)

• xfq(i) = {i} ∪ pfy(f (i))

D 6. Let f be a pointer structure. We say that x sees y in f if x ∈ D f and y ∈ pfy(x).

D 7. A pointer structure f is visible if ∀x ∈ D f , x sees f (x).

D 8. Let f be a pointer structure. A n-fork on f is a pair (ψ0, (ψi)i∈{1...n}) ∈ D f ×D
n
f such that :

• ∀i, j ∈ {1 . . . n}, f (ψi) = f (ψ j) = ψ0

• ∀i , j ∈ {1 . . . n}, ψi , ψ j

D 9. Let f be a pointer structure, let (ψ0, (ψi)) be a n-fork on f . (ψ0, (ψi)) is said to be conscious
if ∀i ∈ D f , ∀ j ∈ {0 . . . i}, ψi sees ψ j.

2

D 10. Let f be a pointer structure. We define the depth function of f , denoted d f by:

• d f (0) = 0

• d f (n) = 1 + d f (f (n))

The depth of f is
depth(f) = sup

i∈D f

d f (i)

Note that the depth may be infinite if d f is not bounded. We say that a pointer structure is bounded if its
depth function is bounded.

D 11. Let f be a pointer structure. We define the memory of f as the largest k ∈N such that f
admits a conscious k-fork. Let mem(f) denote the memory of f .

T 1. Let f be a visible pointer structure. Then the two following proposition are equivalent:

(i) d f is bounded and the memory of f is finite,

(ii) f is finite.

Another formulation of the same result (in fact slightly stronger) :

T 2. Let f be a bounded visible pointer structure. Then if it has an ω-fork, it has a infinite ω-fork.

3

2 The ΛU-calculus

2.1 Definition

Syntax.

• T ::= λx.T | x | TT | T + T |z

Reduction. Reduction is β-reduction, with a weak head strategy, with an additionnal non-
deterministic reduction rule, and a rule for the daimon.

(λx.M)N→M[N/x]

M + N→M

M + N→ N

zN→ z

At each step, we only consider the unique redex which is in head position.

Typing. The types are natural numbers, with the following inference rules :

Unary Λ

ax
Γ, x : k ` x : k

dai
Γ ` z : k

Γ, x : k `M : 0
lam

Γ ` λx.M : k + 1

Γ `M : k + 1 Γ ` N : k
app

Γ `MN : 0

Γ `M : k Γ ` N : k
sum

Γ `M + N : k

Subtyping.1 We define an order 4 on integer the following way :

• ∀n, 0 4 n

• ∀n, n + 1 64 0

• ∀n, p, n + 1 4 p + 1⇔ p 4 n

P 1. 4 is an order onN.

Proof. By induction. �

Subtyping

Γ `M : k k 4 p
sub

Γ `M : p

P 2 (Subject reduction). If Γ `M : k and M→M′, then Γ `M′ : k

1The final proof does not use subtyping anymore. However I find this definition quite nice and natural, thus I leave it
here for the moment. . .

4

Proof. We extend the rewriting rules to a cut elimination procedure on the proof trees. There are
three cases to consider (since there are three types of redexes). First β-reduction :

π1

Γ, x : k `M : 0
lam

Γ ` λx.M : k + 1

π2

Γ ` N : k
app

Γ ` (λx.M)N : 0

→
π1[π2/axx]

Γ `M[N/x] : 0

Where π1[π2/axx] is defined on induction on π1, replacing occurrences of x by N and uses of the
axiom rule on x by π2. This induction produces a correct type derivation for Γ `M[N/x] : 0. Now
non deterministic choice :

π1

Γ `M : k

π2

Γ ` N : k
sum

Γ `M + N : k

→

π1

Γ `M : k
or

π2

Γ ` N : k

Finally, the daimon :

π1

Γ ` z : k + 1

π2

Γ `M : k
app

Γ ` zM : 0

→ dai
Γ ` z : 0

�

2.2 Weak normalization

This calculus admits an easy weak normalization proof, by means of standard à la Kleene realizabil-
ity. In what follows, the M N will denote the fact that all reduction sequences of M converge to
N. This is still weak normalization since we only reduce head redexes, however non deterministic
choice lead to nondeterministic reduction sequences.

D 12 (Realizability). We define a relation
 ⊆ Λ ×N the following way :

• M
 0⇔M z

• M
 k + 1⇔ ∀N
 k, MN z.

Then we can prove immediately the

L 1 (Adequation). Suppose x1 : n1, . . . , xp : np ` M : k. Then for all N1
 n1, . . . ,Np
 np,
M[N1/x1, . . . ,Np/xp]
 k.

Proof. By induction on the proof tree of M. Look at the root rule of the tree :

• ax, dai. trivial.

• lam. The last rule is
Γ, x : k `M : 0

lam
Γ ` λx.M : k + 1

Let N1
 n1 . . .Np
 np. We need to show that (λx.M)[Ni/xi]
 k + 1. Suppose N
 k, then :

((λx.M)[Ni/xi])N = (λx.(M[Ni/xi]))N→M[Ni/xi][N/x] z

The first step of the reduction is the only one to consider because we use a head reduction
strategy. The other steps are justified by the induction hypothesis.

• app. The last rule is
Γ `M : k + 1 Γ ` N : k

app
Γ `MN : 0

Let N1
 n1 . . .Np
 np. We need to show that (MN)[Ni/xi] z. This is just by definition of
realizability since by induction hypothesis, M[Ni/xi]
 k + 1 and N[Ni/xi]
 k.

5

• sum. The last rule is
Γ `M : k Γ ` N : k

sum
Γ `M + N : k

Let N1
 n1 . . .Np
 np. If k = 0, (M + N)[Ni/xi] reduces in one step to M[Ni/xi] or N[Ni/xi]
which both realize 0 by induction hypothesis, thus (M + N)[Ni/xi] z. Otherwise, we
need to show that (M+N)[Ni/xi]
 k +1. For all T
 k, ((M+N)[Ni/xi])T reduces in once step
either to (M[Ni/xi])T or to (N[Ni/xi])T, which both normalize toz by induction hypothesis.

• sub. The last rule is
Γ `M : k k 4 p

sub
Γ `M : p

We first prove that without context, if M
 k and k 4 p then M
 p. We do this by induction
on min(k, p).

– If min(k, p) = 0, necessarily k = 0. If p = 0 it is evident, otherwise we write it p + 1.
Suppose N
 p. Now since M
 k = 0, we have M z, therefore MN ∗ zN → z,
thus M
 p + 1.

– If min(k, p) > 0, we write k + 1 and p + 1. Let M
 k + 1, and N
 p. Since k + 1 4 p + 1
we have p 4 k, therefore N
 k by induction, thus MN z.

Now the general case. Let N1
 n1 . . .Np
 np. We distinguish the same cases :

– If k = 0, the case p = 0 is trivial. Otherwise we write it p + 1, and take N
 p. By
induction hypothesis, M[Ni/xi]
 z, thus (M[Ni/xi])N zN→ z.

– Finally, none of p and k are zero, we write p + 1 and k + 1. Let N
 p, then by the above
lemma N
 k (p 4 k since k+1 4 p+1). Thus by induction hypothesis (M[Ni/xi])N z
which proves that M[Ni/xi]
 p + 1.

�

An immediate corollary of the adequation lemma is the weak normalization theorem.

T 3 (Weak normalization). Let M be a typable closed term (`M : k is provable). Then any head
reduction sequence of M is finite.

Proof. Suppose ` M : k. By adequation lemma, M
 k. If k = 0, M z by definition of
realizability. Otherwise we write M
 k + 1. Now note that z
 k. Indeed, if k = 0 this is the
definition and if k > 0, for all N
 k− 1,zN→ z. Thus necessarily Mz z. But if there was an
infinite reduction sequence of M, it would be as well an infinite reduction sequence of Mz, thus
M is normalizable. �

2.3 Linear Head Reduction, definition and normalization

We know that the weak head reduction terminates, but what we are interested in is in fact the
normalization of linear head reduction. These two normalization properties are in fact equivalent,
but we will only prove here that normalization of weak head reduction implies normalization
for head linear reduction. We follow Barendregt’s convention, and we consider terms up to
α-equivalence.

If x is a variable of T, we distinguish each occurrence x0, x1, . . . , xn of x in T. If x is a bound
variable in T, we call abstraction subterm of λx the subterm of T beginning at λx.

D 13 (Head occurrences). Let T be a term of type k in Λu. We define its set of head occurrences
hoc(T) as follows :

• hoc(λx.M) = hoc(M)

• hoc(x) = {x}

• hoc(MN) = hoc(M)

6

• hoc(M + N) = hoc(M) ∪ hoc(N)

Only an occurrence of a variable can be a head occurrence. We say sometimes that a variable
x orz is in head position. This means the same as above, but extended toz.

D 14 (head linear redexes). A head linear redex in a Λu term T is a β-redex where the variable
to be substituted appears as a head occurrence. We denote a head linear redex by (xi,A) where xi is an
occurrence of x in head position, and A is the argument subterm of the abstraction subterm of λx.

Remark. For general head linear reduction, redexes are not necessarily β-redexes (only up to a
behaviour preserving equivalence relation on terms). Howevers, one can show easily that for Λu,
any such redex is also a β-redex, since only one variable at a time is abstracted. Therefore this
definition suffices.

D 15 (Head Linear reduction). Let (xi,A) be a head linear redex in T. The head linear
reduction substitutes xi by A (and only xi, not the possible other occurrences of x). A itself is not affected.

We build another realizability equivalence on Λu, based this time on linear head reduction.
In what follows,→ will denote linear head reduction. From this point, we will never talk again
on the realizability relation
 defined above, therefore we reuse the same symbol for the new
realizability relation.

D 16 (LHR-realizability). We define
⊆ Λu ×N the following way :

• M
 0⇔All reductions of M terminates and lead to terms M′ where onlyz appears in head position.

• M
 k + 1⇔ ∀N
 k,MN
 0

The following lemma allows to link linear head reduction with β-reduction.

L 2 (Consistency). Let M,N ∈ Λu, then

(λx.M)N
 0⇔M[N/x]
 0

Proof. Let A denote the set of linear head reduction sequences of (λx.M)N, and B the set of linear
head reduction sequences of M[N/x]. Consider the application Φ : A→ B defined as follows. Take
a reduction chain u1 → u2 → . . . of A. Necessarily each ui is of the form ui = (λx.Mi)N by property
of linear head reduction. We remove of u1 → . . . each reduction step where an occurrence of x
is substituted, and we set u′i := M′i [N/x]. It has an inverse which remplaces all copies of N by x,
and inserts a substitution by N each time the first abstraction of a copy of N was reduced in the
original reduction sequence.

The spaces of linear head reductions of (λx.M)N and M[N/x] are isomorphic, therefore
(λx.M)N
 0⇔M[N/x]
 0. �

T 4 (Convergence of linear head reduction). Let ` M : k. Then any reduction sequence of M
by linear head reduction is finite.

Proof. First, notice that we have shown in 3 normalization of head β-reduction in presence of the
rules for + and z. This extends to β and + by remarking that z must appear in head position
before applying its rule, and a term with az in head position is normal for β plus +. Finally this
extends to β alone by an application of König’s lemma.

If k = 0, the lemma above states that β-reduction preserves convergence. Therefore we nor-
malize M using weak head beta reduction, stopping as soon as z comes in head position. This
happens by the remark above. By 2, the obtained normal form has all its linear head reductions
finite if and only if the original term has all its linear head reductions finite.

If k > 0, we apply the reasoning above to Mz. �

7

2.4 Unary Bœhm Trees

We give here a variant of the calculus above, terms of which will arise as recomposition of agents
on pointer structures. Hence they contain markers which point on parts of the terms which
can be expanded, when more information about them is recovered from the pointer structures.
Syntactically, these markers will behave as z, but will be annotated by an integer to denote
the expanding sites. It is clear that these distinctions do not change anything to the dynamical
behaviour of the terms, hence to normalization.

�-UBT

Γ ` λx.�i : k
Γ, x : k `M1 : p . . . Γ, x : k `M|I| : p

∀i ∈ I, (xi : p + 1) ∈ Γ∪{x : k}
Γ ` λx. ⊕i∈I xiMi : k + 1

P 3 (Unique argument). Let T ∈ �-UBT. Then any occurrence of a variable in T has an
unique argument (which may be a �i). If h is an occurrence of a variable, let arg(h) denote this unique
argument.

Proof. By induction on the type derivation of T. �

D 17. Let t ∈ �-UBT. Let x be an occurrence of a variable in t. We define the occurrence chain
of x by induction on t:

• occx(λy. ⊕i∈I ziMi) = [x] if x is one of the zi

• occx(λy. ⊕i∈I ziMi) = Cons(zk, occx(Mk)) if x is in Mk.

This definition is sane, because any occurrence defines an unique position in the term. Note that the
occurrence chain is a list rather than a set, because the order is relevant : it is a path from the root of the
term to x.

D 18. Let t ∈ �-UBT. Let x be an occurrence of a variable in t. We define the subterm chain of
x by induction on t:

• subx(λy. ⊕i∈I ziMi) = [λy. ⊕i∈I ziMi)] if x is one of the zi

• subx(λy. ⊕i∈I ziMi) = Cons(λy. ⊕i∈I ziMi, subx(Mk)) if x is in Mk

P 4. Let t ∈ �-UBT, and a proof π of ` t : k. Then, just by incrementing by 2 all the types in
π, we get a proof π′ of ` t : k + 2.

Proof. By induction on π. �

D 19 (�-expansion). Take a proof π in �-UBT and a subtree T of π. Let Var(T) be the set
of variable in the context at the root of T, including the possible variable abstracted at the root of T. Take
y ∈ Var(T). We define the �-expansion of π at T along y, denoted exp�(π,T, y), the following way. We
look at the form of T and the type of y, and rewrite π the following way :

• If T is of the form λx.�i and y : 1 ∈ Γ∪{x : k}, we replace every type k in π by k + 2 while performing
the following substitution on T :

Γ ` λx.�i : k + 1 { Γ, x : k + 2 ` λz.�i : 2

Γ ` λx.y(λz.�i) : k + 3

• If T is of the form λx.�i and y : p+2 ∈ Γ∪{x : k}, we perform the following substitution on T, leaving
the rest of the proof unchanged.

Γ ` λx.�i : k + 1 { Γ, x : k ` λz.�i : p + 1

Γ ` λx.y(λz.�i) : k + 1

8

• If T is of the form λx.(⊕i∈IxiMi) and y ∈ {xi | i ∈ I}, the expansion is the identity. In the following
cases, we suppose y < {xi | i ∈ I}.

• If T is of the form λx.(⊕i∈IxiMi), and y : 1 ∈ Γ∪{x : k}, we replace every type k in π by k + 2 while
performing the following substitution on T :

π1 . . . π|I|

Γ ` λx. ⊕i∈I xiMi : k + 1
{ π1 . . . π|I| Γ, x : k + 2 ` λz.� j : 2

(� j fresh)
Γ ` λx.(⊕i∈IxiMi) + y(λz.� j) : k + 3

• If T is of the form λx.(⊕i∈IxiMi) and y : p + 2 ∈ Γ∪{x : k} we perform the following substitution on
T, leaving the rest of π unchanged :

π1 . . . π|I|

Γ ` λx. ⊕i∈I xiMi : k + 1
{ π1 . . . π|I| Γ, x : k ` λz.� j : p + 1

(� j fresh)
Γ ` λx.(⊕i∈IxiMi) + y(λz.� j) : k + 1

Clearly, any expansion of a�-UBT is a�-UBT. This expansion can be seen of the addition of new information
about the behaviour of a strategy in its P-view tree.

9

3 Normalization proof for pointer structures.

We give here a proof of the normalization theorem for pointer structures. The proof is a bit
technical, it inlines a part of the definition and correction of the PAM. Consider a pointer structure
f .

Induction invariant. We build by induction the following data:

I Two terms ` t1 : k1 ∈ �-UBT and Γ ` t2 : k2 ∈ 4-UBT along with their type derivations π1 and
π2.

II Let d = maxi≤N d f (i) be the pointer depth of f until N, then :

– If d is even, then k1 = d + 2 and k2 = d + 1

– If d is odd, then k1 = d + 3 and k2 = d + 2

In particular, k2 = k1 − 1.

III A sequence of linear head reductions u1 → · · · → uN such that u1 = t1t2

IV A sequence of pairs (hi,Ai)i∈{0...N} where hi are occurrences of variables (or ∗ at the initilization
of the machine) in u0 and Ai are subterms of u0 such that :

(1) If N > 0, ∀i ∈ {0 . . .N − 1}, hi+1 is a head occurrence of Ai.

(2) ∀i ∈ {1 . . .N}, hi is bounded by the first abstraction of A f (i).

(3) ∀i ∈ {1 . . .N − 1}, (hi,Ai) is an linear redex (reduced in ui → ui+1).

(4) ∀i ≤ N, Ai = arg(h f (i)).

(5) ∀i ∈ {1 . . .N}, consider the sequence k1, . . . , kp defined as { j ∈ pfy(i) | j . i}, sorted by <.
Then Ak1 , . . . ,Akp is the subterm chain of hi.

(6) ∀i ∈ {1 . . .N}, consider the sequence k1, . . . , kp defined as { j ∈ pfy(i) | j ≡ i}, sorted by <.
Then hk1 , . . . , hkp is the occurrence chain of hi.

V For i ≥ 1, let type(Ai) (resp. type(hi)) denote the type annotation of the subterm (resp. the
occurrence) in π1 or π2. Then it satisfies :

type(Ai) = type(hi) = d + d[2] − d f (i) + 2

Initialization. N = 0 is just the bootstrap of the machine and the first reduction occurs at N = 1.
Thus we assume that f is defined at least up to 1, and we set, for N = 1 :

I We choose t1 = λx0.x0(λx1.�0) : 4 and t2 = λy0.40 : 3, with the following type derivations :

π1 = x0 : 3 ` λx1.�0 : 2

` λx0.x0(λx1.�0) : 4
π2 =

` λy0.40 : 3

II The depth of f until N = 1 is 1 (f (1) = 0 is forced by the axioms of pointer structures), thus
it satisfies the requirements.

III The derivation sequence is the trivial sequence t1t2.

IV The state of the machine is (∗, t1), (x0, t2). It satisfies the requirements.

V We just have to check for i = 1.

type(A1) = 1 + 1 − 1 + 2 = 3 = type(t2)

type(h1) = 1 + 1 − 1 + 2 = 3 = type(x0)

10

Run of the machine. Suppose the machine has been run until step N. If f (N +1) = ⊥, the machine
halts. Otherwise, we consider A f (N+1). We need to show that A f (N+1) begins with an abstraction
of a variable which is in the typing context of AN so that it has a sense to have this variable as a
head occurrence of AN. There are two cases : either f (N + 1) = N and it is evident, or by visibility,
f (N + 1) ∈ pfy(N + 1) = pfy(f (N)) and f (N + 1) . f (N). Thus, by IV.5, A f (N+1) is in the subterm chain
of h f (N). But by IV.4, AN is the argument subterm of h f (N), thus the variable abstracted at A f (N+1) is
necessarily in the typing context of AN. Now we distinguish several cases :

• x is already a head occurrence of AN. This means that we do not need to expand the terms.
This means as well that f (N+1) has already been pointed thus the depth (or equivalently, the
types or t1 and t2) need to change. We review point by point the definition of the invariant :

I t1, t2, k1, k2, π1, π2 are unchanged.

II d is unchanged, nothing to check.

III We extand u1 → · · · → uN+1. By hypothesis, this can be done simply by reducing the
linear redex (hN,AN).

IV We set hN+1 to x (which is by hypothesis a head occurrence of AN), and AN+1 =
arg(h f (N+1)). As needed :

(1) By definition of hN+1.
(2) By construction, hN+1 is an occurrence of the variable beeing abstracted at A f (N+1),

therefore with the induction hypothesis this is true for i ≤ N + 1.
(3) (hN+1,AN+1) is a linear redex in uN+1 : (hN,AN) was a linear redex in uN (by IV.3), and

hN has been substituted by AN which has hN+1 as head occurrence. Moreover, hN+1
was abstracted at A f (N+1) (by IV.2), and since (h f (N+1),A f (N+1)) was a linear redex by
IV.3, h f (N+1) was substitued by A f (N+1) at u f (N+1) → u f (N+1)+1, thus the argument of
h f (N+1) is the subterm corresponding to hN+1, thus (hN+1,AN+1) is a linear redex.

(4) AN+1 = arg(h f (N+1)) by construction.
(5) { j ∈ pfy(f (N)) | j . f (N)} sorted by < corresponds to the subterm chain of h f (N) by

IV.5. But hN+1 ∈ hoc(AN) = hoc(arg(h f (N))) (by IV.1 and IV.4), thus the subterm chain
of hN+1 is just the subterm chain of h f (N) appended with AN. But { j ∈ pfy(N + 1) | j .
N + 1} = {N} ∪ { j ∈ pfy(f (N)) | j . f (N)}, which concludes.

(6) { j ∈ pfy(f (N)) | j ≡ f (N)} sorted by < corresponds to the occurrence chain of
h f (N) by IV.6. But hN+1 ∈ hoc(AN) = hoc(arg(h f (N))) (by IV.1 and IV.4), thus the
occurrence chain of hN+1 is just the occurrence chain of h f (N) appended with hN+1.
But { j ∈ pfy(N + 1) | j ≡ N + 1} = {N + 1}∪ { j ∈ pfy(f (N)) | j ≡ f (N)}, which concludes.

V The depth has not changed, therefore we only need to check the equalities for AN+1 and
hN+1.

type(AN+1) = type(h f (N+1)) − 1 (AN+1 is the argument of h f (N+1))
= d + d[2] − d f (f (N + 1)) + 2 − 1
= d + d[2] − (d f (N+1) − 1) + 2 − 1
= d + d[2] − d f (N + 1) + 2

type(hN+1) = type(A f (N+1)) − 1 (hN+1 is abstracted at A f (N+1))
= d + d[2] − d f (N + 1) + 2

• x is not a head occurrence of AN, but we know it should have type type(A f (N+1)) − 1. Neces-
sarily, type(A f (N+1)) ≥ 2 (this is an easy consequence of the formula). Suppose the inequality
is strict, we can safely expand π1 at AN along x (or π2, depending on which one AN is a
subterm) without changing the types. Same checks as above :

11

I Depending on the equivalence class modulo 2 of N, either t1, π1 or t2, π2 are expanded.
k1, k2 are unchanged, and the definition of expansion ensures that π1 and π2 are still
proofs of ` t1 : k1 and ` t2 : k2.

II Two cases arise. If d = maxi≤N d f (i), we may have d f (N + 1) ≤ d, or d f (N + 1) = d + 1.

∗ If d f (N + 1) ≤ d, there is nothing to check since both d and k1, k2 are unchanged.
∗ Otherwise, d is odd. Indeed,

type(A f (N+1)) > 2 ⇔ d + d[2] − d f (f (N + 1)) + 2 > 2
⇔ d + d[2] > d f (f (N + 1))
⇔ d + d[2] > d
⇔ d[2] = 1

Therefore, the new depth d + 1 is even, thus the equalities still hold.

III,IV The dynamical concerns are exactly the same, thus the proof is the same.

V We use the remark in II that if the depth changes, it goes from odd to even, therefore
d + d[2] does not change, and neither do we change the type derivations. Therefore the
same argument as in the first case applies.

• x is not a head occurrence of AN, and type(A f (N+1)) = 2. This can only happen in a very
particular situation :

type(A f (N+1)) = 2 ⇔ d + d[2] − d f (f (N + 1)) + 2 = 2
⇔ d + d[2] = d f (f (N + 1))

But since d f (f (N + 1)) ≤ d, this can only happen if d is even and d f (f (N + 1)) = d. Note
that this implies that f (N + 1) is even (because ∀i ∈ D f , f (i) . i), thus N + 1 is odd, which
means that AN is in t1. Thus we’ll have to expand t1 at AN along x. As above, we update the
invariant :

I We define the following :

t′1 = exp�(t1,AN, x)
t′2 = t2

k′1 = k1 + 2
k′2 = k2 + 2

II d is even, thus k1 = d + 2 and k2 = d + 1 by induction hypothesis. Thus k′1 = d′ + 3 and
k′2 = d′ + 2, which is perfectly correct since d′ is odd.

III,IV As above, the dynamical part of the invariant of the invariant are as in the first case.

V d′ + d′[2] = d + d[2] + 2, thus the formula is preserved for all i ≤ N. For N + 1, the proof
is the same as in the first case, but with d replaced by d′.

Termination. We are going to prove that if d f is bounded but f is infinite, then the memory of f
is infinite. Suppose d f bounded, we make the following observations :

(1) By the induction invariant, the types of π1 and π2 are bounded as well.

(2) We apply the following construction to π1 and π2. Take each non-leaf node λx.
⊕

i∈I xiMi.
Separate it into |I| + 1 nodes : λx, x1M1, . . . , x|I|M|I|. Each occurrence node will point to its
corresponding λ node, each λ node will point to the occurrence node for which it is an
argument (if it exists). This way we get two trees π′1 and π′2. They both have finite depth by
remark (1).

12

(3) If π′1 and π′2 were both finite, this would mean that there is N ∈N after which no expansion
is made on t1 and t2. Therefore u1 → u2 → . . . would be an infinite head linear reduction
sequence of the finite term t1t2, which has type 0 by construction. This is impossible, since
by 4, Λu has only finite linear head reduction sequences. Therefore one of those trees is
infinite, let π′i denote this infinite tree.

(4) Now, by König’s lemma, since this π′i tree has its depth bounded, it must have a node with
an infinite degree. Since each occurrence node has by construction an unique son in the tree,
it must be an abstraction node.

(5) Let call x the repeated variable. Consider again this π′i where x is infinitely repeated. We
focus back on its original Böhm tree πi. Since all terms are unary, its only branchings are the
sums. We remove all branches where x does not appear : the obtained tree is necessarily
still infinite. However it is finitely branching, because all sums are finite. Therefore it has an
infinite branch, where each occurrence of x is in the argument subterm of the previous.

(6) Consider this infinite branch x1, x2, Let ψ1, ψ2, . . . be the indices when each of these
occurrences of x have been introduced. Then ∀i ∈ N∗, ∀ j ∈ {1 . . . i}, ψi sees ψ j. Indeed,
each of these occurrences is in the argument subterm of the previous, therefore for a fixed
occurrence xi of this infinite chain, every x j with j ≤ i is in the occurrence chain of xi. Thus,
by IV.6, any j ≤ i is such thatψ j ∈ pfy(ψi). Remains to prove that ∀i, j ≥ 1, f (ψi) = f (ψ j). Take
1 < i < j, then by IV.5 the subterm chain of hψi is a prefix of the subterm chain of hψ j (since
they correspond to the views). Now it is trivial from the definition that a given subterm
appears at most once in a subterm chain, thus the abstraction subterm of hψi appears at most
once in the subterm chain of hψi . Let us summarize : ψi and ψ j must both point to f (ψi) and
f (ψ j) such that A f (ψi) = A f (ψ j) is their corresponding abstraction subterm. But by visibility
they point into their views which are prefix of one another and which are their subterm
chains by IV.5, which contain no more that one occurrence of the corresponding abstraction
subterm. Conclusion : they must point to the same integer.

Finally, we have successfully built a conscious ω-fork from an infinite but bounded pointer
structure, which concludes the proof.

Example. To help the reader getting an idea of how the proof works, we include an example of
the dynamics of the machine. Consider the following finite visible pointer structure :

◦ • ◦ • ◦ • ◦ •

The diagram is intended to be read from left to right. Each ◦ or • represents an integer, and
points to its image by f . We describe the computation of the machine when run on this input.
At each step i, hi will be in blue and Ai will be in red. There is an inaccuracy in the diagram
below : when the machine updates the terms t4 and t2, it updates them retroactively in the part
of the computation that has been already done, in order to have at any moment a valid reduction
sequence for the last version of t1 and t2. Here, we will show only at each step the part of the
terms which is already known at this moment.

13

◦ ∗λx0.x0(λx1.�0) : 4 λy0.40 : 3

• λx0.x0(λx1.�0) : 4 λy0.40 : 3

◦ λx0.x0(λx1.�0) : 4 λy0.y0(λy1.40) : 3

• λx0.x0(λx1. x0(λx2.�0)) : 4 λy0.y0(λy1.40) : 3

◦ λx0.x0(λx1. x0(λx2.�0)) : 4 λy0.y0(λy1.40) : 3

• λx0.x0(λx1. x0(λx2.x1(λx3.�0))) : 6 λy0.y0(λy1.40) : 5

◦ λx0.x0(λx1. x0(λx2.x1(λx3.�0))) : 6 λy0.y0(λy1.y0(λy2.40)) : 5

• λx0.x0(λx1.[x0(λx2.x1(λx3.�0))] + [x1(λx2.�1)]) : 6 λy0.y0(λy1.y0(λy2.40)) : 5

And the machine stops since f is no longer defined.

14

